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Excitation spectrum of a system of interacting bosons
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The Bogohubov treatment of a weakly interacting Bose gas is extended by allowing macroscopic occupation
of many single-particle quantum states. This generalization of having more than a single condensed mode

gives rise to a nonuniform condensate and is being considered as a possible mechanism for the description of
a dense strongly interacting Bose gas at low temperatures. The model with a repulsive 5-function
interparticle potential gives an energy spectrum of elementary excitations or quasiparticles with both phonon
and roton features. The values obtained for the roton minimum energy I and the speed of (first) sound agree
reasonably well with inelastic-neutron-scattering data.

I. INTRODUCTION

The classic work of Bogoliubov' on a microscop-
ic theory of superfluidity is successful in obtain-
ing a phononlike low-momentum spectrum from a
repulsive interaction. The crucial assumption for
this weakly interacting Bose system is the macro-
scopic occupation of a single quantum state. In
fact, this assumption is the fundamental fcatv re
of the existing microscopic theories of superfluid-
ity and underlies, for instance, the perturbation
theory for bosons. '

However, on the one hand, the results' '" for a
dilute Bose gas are given in terms of an expansion
parameter —the ratio of the scattering length to
the correj. ation length —which is large when ev3l-
uated for 'He. More importantly, however, the
elementary excitation spectrum' does. not give rise
to the roton minimum observed with the neutron-
scattering experiments. "'

On the other hand, the variational calculation of
Feynman, ' although not a full microscopic theory,
is particularly successful in obtaining the excita-
tion curve for phonons and rotons —it relates the
static form factor 8{k) to the energy E; of an ex-
citation. The agreement with the experimental
excitation curve may be improved' by introducing
a wave function which allows for back flow in order
to conserve the current density for a roton. Nev-
ertheless, in these variational calculations the

experimental stati c fo rm factor for scattering neu-
trons from the liquid is used as an input —instead
of the pair potential between the atoms —in order
to obtain the excitation spectrum.

In this work, we suggest a model for the des-
cription of a dense st;rongly interacting Bose gas
which may describe the main features of real
helium at low temperatures. The model supposes
macroscopic occupation of many single-particle
quantum states and is suggested by the integral
representation"

f(T, p, u) a(p) dT dp dh,

V 1
(p mu) /2m' & &

V 1 T~ T0
O'Ae '~ » ~~'-1

and the positive definite spectral function f(T, p, u)

is normalized to unity

f(T, p, u) dTdpdu = 1 . (3)

Suppose that E(T, pl u) =f(T, p, z(), then

for the helium momentum distribution n(p), where

3/2
&u{p) =N l —,— &(p —nzu)

T0

n(P) =

2&U
+ 3 dp

0
k~T dT

/
f(T, (o, zz)uduln ',

(

+ ., dp k~T dT
0

e" i&P+mu) /mP~&
f(T, p, ) dz(uz(l —n , ( „)z) „r {4)
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If, for T& To, f(1', q, zz) is peaked around some val-
ue of T and u =u, such that A» 1, then the last
t:erm jn (4) gives for p=p, —:mzz„pzz(p)
-e -'') )" z~'zz' . (Actually, we have a smeared-
out Gaussian function. ) This broad peak around
some moirientum p, is observed in neutron-scat-
tering experiments and is identified with roton
excitations. " Note that, rotons appear here in the
limit of Boltzmann statistics since we have to
suppose that A»1. Also, if, for T&T„,f(T, q, zz)

is peaked around some value of T and u =u„ then
the second term in I'4) gives rise to a narrow peak
in pzz(p) around p =mzz, ,—corresponding to a
smeared-out logarithmic singularity. This peak
i.s due clearly to t:he condensate since the spectral
function whi. ch gj.ves rise t.o it; contributes t;o the
condensate —the first integral in (4). [See also Eq.
(22) of Ref. 10. ] This peak appea. rs in no calcula-
tion" of ping).

Now it may be that the appearance of these peaks
j.ny, T, p„z() is not completely unrelated) that is,
the structure of. pzz(p) due to roton excitations and
the condensate are related. In the succeeding
sections a model with macroscopic occupation of.

many single-particle quantum states is introduced
and we obtain the roton features of the experiment-
al].y observed excitation spectrum.

In the method of Bogoliubov, the dilute Bose gas
at low temperatures is described by an asymptoti-
cally exact perturbation expansion in the density
and. in the potential. With respect to this pertur-
bation theory, real helium is considered dense.
Since macroscopic occupation of a single quantum
state need not be true for sufficiently strong in-

teraction, we see that macroscopic occupation of,

many single-particle quantum states may be a fea-
ture not only of a strongly interacting Hose gas,
but also of a dense system as well ~

II. MANY-0"ONDENSATE MODEL HAMILTONIAN

Consider the Hamiltonian12

A P(~a ~a~ +-
k k k 2P' kl+k2) k;-+k, l

k 1 k:- k3kg

&& a- a- a- a-t
k~ k2

for an interacting Hose ga;-. with e-„= (iz zfz'/2zzz„, ),
where nz„, xs the mass of the belgium atom. To
first order, the constant matrix element g for the
potential energy is related to the s-wave scatter-
ing length a in vacuum by g = (4zziz'a/'m„, ).

Suppose we have macroscopic occupation of many
discrete .single-part;icle states, that is,

ak = (k ~Np, whex'e —4 ~+ (k ~+ 1,

wxth the. real c number (~ denoting the fraction of
particles in the condensate with momentum k and

so that the average linear momentum of the con-
densate is zero —we choose the system with re-
spect to which our condensate with N, particles is
at rest. .

If the leading terms in X, are kept after the re-
placement (6), the Hamiltonian (5) becomeszz

S/2
H=N F-e.- gN A.-+ ~

Z ( +a)aA-$ - - ~~ e-a -a-2
o k 1(y~ q y M z k q, -z+z M ) z )

q

+ —~Z (A.- - a- a- +4A« - a-a-+A- - a- a- )
rc

2tzz k]+k2 kl k2 kl k2 k2 "1 kl+k2 kl k2
k lk 2

wiih the second equality in (&) following from (7).
The quantity A, is identically equal to unity and

~4z(x) ~z = —-tt PA;e" '", (10)

with @(x) denoting the condensate wave function.
Thus, macroscopic occupation of more than a sin-
gle quantum state gives rise to a nonuniform con-

den sate.
The Hamiltonian (8) reduces to Bogoltubov's

case—condensation in the zero-momentum state
only —for (k —&k o, that zs, A- —~- 0. In particu-
lar, the term linear in the creation and annihila-
tion operators vanishes. The appearance of the
linear term irz (8) implies" further condense, tion
in the states with momenta which are integral
multiples of the momenta of the original states in
the condensate, provided, of. course, that the sum
~~, ( „- -A; does not vanish. Therefore, we may
delete the linear term in (8) but with the consist-
ency proviso that the condensate gets augmented
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by these added states: an infinite number.
Si.nce

N=NO+Q 'a~ay,

then

(12)

X8=' Q A- +No/ $~»p
q. ' k

g~N~g ~, )

N—~+~ ~ a~a- =—
2y y ~ k k 2V' '

k

Therefore, the final model Hamiltonian becomes

+k„. . . , +2MkQ, Thus, we must begin our analysis
again but now with macroscopic occupation of the
states with k=5, +k„. . . , +2Mk, and conclude, as
before, that we must have macroscopic occupation
of the states with k= |},+k„.. . , +4Mk, , and so
on. Therefore, provided that the coefficient ~
xA;( -„„-of the term linear in the creation and an-
nihilation operators in (8) converges, we obtain a,

sequence limitihg to macroscopic occupation of a
denumerably infinite number of single-particle
quantum states. (Note that, in general, we em&

have finite sums over the variable kQ )' Now'we
have by Cauchy's inequality that

1/2 l. /2
A'- & A-P„- - & A2

+ . Q (A r, n gt:+4Ap ) Qr,: gpky+k2 ko k1, kl k2 k2 kl
k gk2

+Ak k ap ap ).

No/ P„-»~+- ~ g A-„' —p, No.0 k k 2y c(, . Q: (14)

The kinetic energy N, P„- $2~»„- of the condensate
can be made vanishingly small (see below) and,
hence, the replacement (11) has not been applied
to this term. The number of particles XQ in the

A

condensate is eliminated by considering N = (N).
Particle nonconservation may also be taken into
account by introducing instead a chemical potential

If one minimizes the quantity

III. DIAGONALIZATION PROBLEM

The diagonalization of the model Hamiltonian
(13) is accomplished by the canonical transforma-
tion

ak ~ &k k~~k~+~ I kk'~k'
k'

(15)

defining new creation and anni. hilat, ion operators.
The coefficients a„—„,and p„-k-, are assumed to' be
real and satisfy the relations

Therefore, in order to avoid any forrnal difficulty
with the limiting sequence of condensRtes, we re-
quire. that ~A'; be finite. [This quantity plays a
fundamental role in our work (see below). ]

with respect to $„- [or, equivalently, its Fourier
transform 1/(N, )'~'qI(x)], then one is lead to the
Gross-Pitaevskii equation. " This, however, does
not necessarily give the state of the system for
given density and temperature. One should dia, -
gonalize (13) first and afterwards minimize the
free energy with respect to the condensate wave
function for fixed density and temperature; There-
fore, in general, the condensate wave function
does not satisfy the Gross-Pitaeyskii equation.

The macroscopic occupation of a, denumerably
infinite number of single-particle quantum states
does not give rise to any formal difficulty. Sup-
pose we have macroscopic occupation of a finite
number of single-particle quantum states wjth
k = 5, +k„. . . , &Mk„where M is a positive in-
teger. Then the sum in (9), with 2M+1 terms,
gives that. A-; is, in general, r&onvanishing for
q = 5, +k„. . . , + 2Mk„. Thus, from (8), we have
terms of (at +a„-}for k = y (M+ 1)k„.. . , + 2Mk, and
can consider both a-„and a& as macroscopic c
numbers equal to $„-(N,)' ' with an asymptotic ac-
curacy. " Therefore, we actually have macro-
scopic occupation of the states with k = 5,

H= N' gA';+N, g
k k

+ Tr (l)hp+2aAp+2p8p)+ g F„hfdf-, (18)-
k

where the elements of the matrices h, A. , and 8
are given, respectively, by

h;-, =(»-—kks k y
A'-) &-- —..=h-&—kk~ k kk~

a

(19)

gÃ
kk' 2y k+k~ &

1

(20)

gN
2y k-k' '

0= nP —P(™y,

when expressed concisely in terms of matrices or
tensors. (n denotes the transpose of n. ) On sub-
stituting (15) into (13) we get
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The nondiagonal elements of H are made to van-
ish by the conditions

cvIzn+PAP+26AP+4c7. Bn q 4PBf3+2PAa. = (E1),
(32)

(jf)p+ ~++4cvBp+ PAP = O,

PIzn+PAP+4PB~+ ~™

(22)

(23)

Now„by (29)—(31), the term with the trace in

(18) becomes

Tr(t3hP+ 2& All +4(3BP) = Tr [- —-h —2B+ —,'(El) ].
(33)

Consequently, (18) becomes

( ~+0)(»+2A+4B)(~+P) =(El) (25)

The notation (El) indicates a diagonal matrix with
elements E-.

On adding (22)-(24} we get

o
H =-—Ã2

2V Q A2+N„Q j'-e-

2g&ohE- —e-+ ~Q A- ——-)k k

On subtracting (23) and (24) from (22) we get

(n —P}(h —2A+4B)(o' —P) = (El) .

Now (16) and (17} imply

(~- P)(~+0) =1,

(26)

+~ E„-b-b„-.
k

Results (30)-(32) allow us to obtain a whole se-
quence of sum rules for even powers of the eigen-
value E-. We have

or its transpose

(~+P)(~ —(3) =1.

Results (25)-(28) may be simplified by defining

Q E-'" = Tr [(h+ 2A+4B)(h —2A+4B) ]",

&z =1, 2 {35)

In particular for v=1 and n=2 we have

y=- cv+P, and ~-=n —P,

which give

j (h + 2A + 4B )y =- (E 1),

&(h —2A+4B) & = (El),

(29)

(31)

Q Ei. = Q e'. + e. 4g ~—2g
N NoC

k „k k
~

V P'
k . k

N'+,~ C(C —1)

k k

-4g 3N~C3 20g 3Ã~C' 10g 970~
p3 p3 p2

4N4C4 14~& lN4C3 1O@ 3N 3

k'

ga 4N4
+—~,, o

k} kl+ k2 k2+k3 k3
k1k2k3

&.,A' + — .,
' "g A- A- A-k' k' P ' „ ~ kl k2 kl +k2/

k) k2
2

A'- — ', ' —g A- A- A-
y '

k1 k2 k1+k2
k1 k2

C==Y A'. =1,

since -1-=A--- 1 for all q and Ao=1.
tl

Note that in the simpler case of I3ogoliubov A-

, that is, C = 1, and, hence, the kth term of
k, o'

the sum s in the sum rules may be identified for-
mally and we obtain the classic result'

E's„=e'-+ (N2"g/Vo) e „- . (39)

However, such a direct identification of I."-k from
the sum rules, for instance, from (36), is not
valid in our more general case and would not sat-
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isfy (37).
The sum rules (35) suggest that

E'- = &'-+ e- — '- —--'--- + ~ C(C —1)+f-4gNo 2gNoC g X
k k k P V V'2 k ~

(40)

where the real function f; is such that P„.e.,"f„=0
for n =0, 1,2 and leaves unchanged the sum rule
(36). However, the added, probably oscillating,
term fI will make a. contribution to (37) of the form

g f', :=P — ', .'(c —))a'„.+,a;+ .), (4))16g N

set of sum rules (35), two of which have been
written out explicitly in (36) and (37).

. From (30)-(32) we have the result

y(h+2A+ 4B)(h —2A+ 4B) y ' = (B'I), (42)

where we have assumed ~= j ', tha, t is, from (32}
that y has a,n inverse matrix. Therefore, the
square of the energies E2 of the elementa. ry exci-
tations or quasiparticles are the eigenvalues of the
matrix (k+2A+4B)(h —2A+4B). The corresponding
eigenvalue equation is

I 20(k)+

where n, and n, are unknown constants, so that
the sum rule (3'|}is satisfied. The coefficients n,
and o., vanish for C =1, since f.- vanishes identical-
ly for C=1.

IV. EXCITATION SPECTRUM
OF THE MODEL HAMILTONIAN

In Sec. III the simple form (34) wa. s obtained for
the model Hamiltonian (13). Also, the single-
particle excitation energy h- satisfies the infinite

k'

Gpss
2

+ ', ' g A„--„„A„-„-,Q(k') E'&f=&(k), (43)

where we assume that the eigenfunction satisfies
P(k) = 6(-k), this assumption is by no means es-
sential. In terms of Fourier transforms, (43) be-
comes

H He

where

y(x) = P y(k)c)f x

V (45} 2k' ~R J 2 2' v'p(x) '0&[&(x)= E'P(x) . (48)
m.„,V V

Note that the condensate density
~

@(x)~' is in
principle determined by the minimization scheme
mentioned at the end of Sec. II. Nevertheless, we

may obtain important information on the excitation
spectrum by considering the a.symptotic behavior

( ~x
~

— ) of (44). Now, from (10) and (38), we find

by taking the mean va, lue of the oscillations that

lim
~

)I'(x ) ~' =N, /V,
lx I

(46)

These asymptotic values are valid for finite values
of ~x~ if the macroscopic occupation occurs over a
dense set of singj. e-particle states. Thus, in the
asymptotic region (44) becomes

Therefore, asymptotically )t)(x) oscillates inde-
finitely and we have that Q(x)-e'" "+ e '"'" is an
eigenfunetion of (48) with eigenvalue

(49)
o 2 2

B' = e'+~- {— ' — ' + "C(C —1)
y y y2

This result also follows directly from (43) for

~

k
~

—~. Note that expression (49) for B„' is posi-
tive definite since C ~ 1 and has a minimum for
C ~ 2. It is clear that (49) cannot be valid for all
values of k —since for C & 1 it does not satisfy
the sum rule (37) —however, it represents cor-
rectly the energy spectrum for large values of
~k~, that is, f.„ in (40) is negligible. This can be
inferred from the fact that (49) satisfies the sum
rule (36) exactly but only gives the correct first
two leading terms in (37). Also, the oscillating
solution for Q(x) is only valid in the asymptotic
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region and, thus-, for finite values of k. As ex-
pected, (49) reduces to the correct result (39)
of Bogoliubov when C = j..

The replacement of the constant g for the actual
potential V(k) in (5) gives rise to an artificial di-
vergence of the form 5~1//z' in (34) when using
(49). For ~k~ —~, (40) gives

2gX„gX,C g'N, ', (3C —4) f1

hence, also the coefficients of the higher order
terms in the series (55), of the form Z&q' A

&

with. In = 2, 3, ~ '. Also, Q q (- ~Q- q
~
j~

~

since

~ t;~ ~ 1; therefore, the condensate kinetic energy
& ~/;,",„-2«„- ls arbltrarlly small.

On substituting (55) in (44), we get

O'P'HH ~ H l H V Vl H V

TI161efol'6, the dlvel'glllg t:Bl"111 ln (34) t&ecolnes
He rl

+ 3g No2

V2 P(II) = E'Q(i) . (56)

(51)

when using (41). With the aid of (51) the c-number
term in (34) becomes

gp,"2C g-N,'g X,'g 4~aff '

A solution of the linear differential Eq. (56) is
dI(x)-(e'"'"+e "")a, nd, hence, the eigenvalue be-
cornes

~@'&oc 4g&oE-- «- ———«-+ — -- -«-
k k V k V kM

'

@2' g2pf 2Q 2
0 @2' ~ 0

4~efi '
PJi He

o'2
CX

2V
k

If we now make the replacement (53) to first
order in (52), we get

V
k

k

where the last sum cor.verges.
In older to find the excltatlon spectrum ln the

low-momentum I'eglon we shall consldel the solU-
tion of (44) in the neighborhood oi' the origi~ Ix

Now I"om (9)»d (10) w«I»d

~

4 (Ir)
~

' =—' g 4- ———'
~

2C
~

'g q'A- + ~ ~ ~ .
V ' 6 V

rl

We shall suppose that Z;q'~ (;~ is arbitrarily
small, that is, the origin q2,= 0 is an accumula-
tion point of the set of condensate states and that

)~; t'; is finite, that' is, 4'(x = 0) finite. Since

(55)

p &*4),
q

we have that Q;q'A; is arbitrarily small and,

+ —) E —B»+—- -'—--—+;"—,(52)2~ " k V V 2V «-

where to second ordel. in ~ra the s wave scatter
. lng length 0 ls given ' bp

his result for the excitation spectrum also fol-
lows directly from (43) for ~k

~

-0. If we require
a phononlike behavior for our excitation spectrum
(57) then we must have that

(g2 2 2 ry2 2 3;r2Ã 2

V2 . V2 ~ q, V2

that is, C ==2;A&=-Z;A;. [The solution K;A;-'
= 3K;A; of (58) is not acceptable since E2 must
be posl'tive Clefllllte. j CollseqlleIltly, (57) llecoll'les

2'„C gN,E =«, + —«»+ —g «A

Therefore, the phononlike behavior is achieved
since p~; «.;A„' has been made arbitrarily small so
that

2~&'NoC
' " 2@+E-- —«- for ——» «-~V «Q -O

V
'

k

(60)

It should be remarked that our requirement of
a phonon branch for the excitation spectrum must
be based purely on an attempt to agree with ex-
perirnental findings. 'The known theorems, "' albeit
based on a term by term exami. nation of the per-
turbatior1 series, stating that the quasiparticle
spectrum cannot exhibit a gap assume macro-
scopic occupation of only one single-particle quan-
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'V2
= 1+ ———

N, t/'
ie(e)~i'- —'-) e

depends implicitly on density and temperature.
Consequently, our Hamiltonian (13) or (34) depends
not only on density but also on temperature through
its explicit dependence on C. Therefore, .the c-
number term in (34), given also by E in (54),
represents the ground-state energy only when

evaluated at T = 0. I

Since the Bogoliubov result is contained in our
general model given by the Hamiltonian (13), we

believe that our work is an extension of Bogoliu-
bov's method for a dense strongly interacting Bose
gas at low temperatures. Thus, we expect, to re-
cover the asymptotically exact perturbative result
of Bogoliubov in the limit of a dilute gas with very
weak potential. That is, C-'1 for N/V-0 and

g- 0 at low temperatures. However, this 'has not

been shown rigorously since we do not have an

expression for Ek for all values of k
Note that Bogoliubov's result, C = 1, follows

for two quite distinct eases: The usual one of a
uniform condensate, with 4(x) '= (N„/V), and
that' of a nonuniform condensate such that
1/V f [~4'(x)

~

' —(N, /V))" dx vanishes in the ther-
modynamic limit. Therefore, in the cases with

C & 1, the dispersion of the condensate density
with respect to the distribution 1/V remains finite
in the thermodynamic limit.

A very interesting possibility for a condensate
density with C =—E; A,.'=Q,-c'L;& 1 occurs when

~4(x) ~' has the same nonzero value, which must.
be (N, /V)C, in (infinitely many) distinct regions
of space with total volume V, and is otherwise
zero. Then C = V/V, and from (44) one obtains the
exact excitation spectra E„'-= e:„-'+ 2g(N, /V) Ce; in
the regions of nonzero condensate density and
E-'= [e-„-g(No/V) C]' in the regions of space where
the condensate density vanishes identically. Now,
the accumulation of condensate states about the
zero-momentum single-particle state implies that
the above condensate droplets must coalesce, thus
forming a single large drop. It is evident that the,
vanishing nature of the condensate density in
regions far away from this drop must be modi-

turn state, the zero-momentum state, and, hence,
a.re not applicable here.

As remarked at the end of Sec. II, the thermo-
dynamic state of the system is determined by
minimizing the Helmholtz free energy with re-
spect to the condensate wave function 4(x) for
given fixed density a,nd tempera. ture. Therefore,
4(x), as well as

Vfl@(x) I
'd x

[J'l4 (x) I'd x]'

fied, so that (46) be satisfied. Therefore, the
latter condition, together with the incoherence
effect of (47), modifies the condens'ate and, con-
sequently, modifies both spectra. t;o the ones found
previously, given by (60) and (49).

y. SUMMARY ANO DISCUSSION

V)(3C —4

(3C 4)1/2
~nn e 2(C 2)

(62)

(63)

po= 2m„, ( gNo/V)(C —2) . (64)

Note that (61) is a parabola in the variable p',
not in the momentum p, and is qualitatively con-
sistent with the asymmetry found" about p„.
(However, in Ref. 18 they see no indications of
this asymmetry. )

From (62)-(64) we obtain the relation

l'~ ™~e+/Po~ (65)

between the roton parameters. For temperature
and density variations of the Landau parameters
for rotons, relation (65) gives

In Sec. Ig, it is shown that the model Hamilton-
ian (13), containing macroscopic occupation of
many single-particle quantum states, gives rise
to the structure and elementary excitations of
liqui. d helium, especially below the A. transition.
In the classic work of Bogoliubov on the dilute
weakly interacting Bose gas, the assumption of
macroscopic occupation of the zero-momentum
state produced the correct long-wavelength phonon
behavior in the excitation spectrum. We now have
shown that macroscopic occupation of a dense set
of single-particle states —in an infinitesimal
neighborhood of the zero-momentum state —gives
the roton feature missing in Bogoliubov's original
result, while preserving the phonon nature of the
long-wavelength excitations.

The excitation spectrum given by (49) and (60)
may be compared with the experimental results
for the Landau parameters for rotons and the
speed of ordinary (first) sound. We shall suppose
that (49) is valid down to the region of the roton
minimum, that is, f in (40) is-negligible. Now

(49) may be written

E„-'= [~; —(gN, /V)(C —2)]'+ (g'N', /V')(3C —4) .

(61)

Thus, for C ~ 2, E-„has a minimum at e„-= ( gN, /
V)(C —2). Considering (61) near its minimum, we
can identify the roton parameters, an energy gap
~, an effective mass p,„, arid a momentum p„
and find
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5 p,„/II„=5h/d —2(5p, /p, ) . (66)

At the saturated vapor pressure" and 1.3'K, (66)
gives for the density derivatives of the Landau pa-
rameters —1.1 for the left-hand side and -1.68 for
the right-hand side.

The posltlon of the 1"oton MIIllmum po Rt all
px'essu1"es Rnd temperatures 1s 1"elRted to the den-
sity p by the simple expression'" fp, (p)/h]=Ap'I'
with A = 3.64 cm g

' ' A '. Therefore, (66) gives

5p.„/p„=:5A/D (67)

for the temperature dependence of p,„and 6 Rt

constant density. Thus, p,„ is temperature de-
pendent. '" Relationship (67) was used" to find
vRllles of /J, „(p, 7 = 0) from 'tile clR'ta. 'Rt. fllll'te ten1-
pera. tures. However, it would be more appro-
priate to use (66) since the density variation of
t' he second term in (66) is appreciable.

Result (60) gives for the phonon velocity

c = ( gN, C /m„, V )'I ', (68)

which reduces, with the help of (63) and (64)t to

P, [I+ 4(P„'/III„' )]",&'

m ./2 [-,'-+ —,'(1+ "P,'/m„—', )'I'J" '

1+— (69)

with neglect of higher powers of II„/ms, . Note that
the phonon velocity is proportional to N, /V, as in
early microscopic theories, but we now have the
factor C which drastically modi. fies it. Ãe shall
identify the phonon velocity with the macroscopic
sound velocity.

Since the roton momentum p„depends only on

, the density, we see that the speed of ordinary
(first) sound is almost independent of the temper-
ature in agreement with experimental results-"
and depends on density as p' '. The slight tem-
perature dependence in (69) has the effect of re-
ducing the velocity with increasing temperature
also in agreement with the data, since p,„de-
creases with increasing temperature at constant
P1 eSSul e.

Our identification of the phonon velocity with the
macroscopic sound velocity c may be partially
justified by the following consideration. If at zero
temperature c is related to the density p by c
= o.'p with n and P constants, then the ground-
state energy is related to c by F. = [nI„„Nc'/
2P(2ll+ 1)]. In our case, by considering the lead-
ing term in (54) and (68), we obtain (N„/N) = p(2'+ 1)
so that 0& P ~ . We have seen above that P =

& and„
hence, (No/N)= —' which compares favorably with

(N, /N)=,—', (see below). Note that in Bogoliubov's
case il = ~ so that (N, /N) = 1.

If we use the experimental values for two of the

1

roton parameters, say the momentum p, Rnd the
effective mass II„, then by (65) Rnd (69) we may
deduce the energy gap ~ and the speed of ordinary
(fll'st) soulld c. Uslllg 'the experimental I'esults
II„=0.16 m„, and p, /ff = 1.91 A" for liquid helium
Rt 1.12 'K under its normal vapor pressure, ,

"' we
gei from (65) and {69) that n, k~ == 7 K and c = 218
mg sec, which Rre 1n reRSGIlable RgrPeIYIent with
the experimental value' of (d/k~) = 8.6'K and the
zero-temperature velocity of c = 238 m/sec.

For the parameters C and ( gN„/V) we obtain
from (63) and (64) that C = 32 and (gÃ, /V)= 1 x 10 "
erg. Therefore, the phonon branch (60) is valid
for 0 & I;«2.76 A '= W2(p, /If). To first order,
fl'olll (53), g IV/V = (41IQII N/8 Is V) = 1'x 10 ' erg,
where we have used" n= 2.2 A Rnd u~„„N;/V = 0.145
g/cm . Hence, N~/N= —. Rncl Rgl'ees wltll tile de-
pletion of the condensate which is believed to be
about 90'fo. Note, however, that our approxima-
tion {12)may preclude taking this result for the
fractional depletion of the condensate seriously.

The exact results" in the l.ong-wavelength limit
for the density-density Green's function and the
single-particle Green's function at zero tempera-
ture, which establish that both functions have only
a single pole, corresponding to the macroscopic
sound velocity, as j and {)become small, are not
obviously valid here since we have macroscopic
occupation of many sin~le-particle states. This
has the disadvantage that one has no rigorous
means of determining the macroscopic sound
velocity from the single-part;icle Green' s func-
tion. Nonetheless, we have identified the char-
acteristic velocity of the long-wavelength excita-
tions with the speed of macroscopic sound velocity.
In the Appendix, however, we have proved that our
model for He II does lead to the basic equiva-
lence of the field and density fluctuations.

In closing it should be remarked. that the findings
in this work should have a strong bearing on the
microscopic theory of superfluidity as well as
on theories where macroscopic occupation of sin-
gle-part:icle states plays a fundamental role, for
instance, the structure of superconducting gr.ound
states. Of course, some of the results of this
new model for HeIIcan be regarded as obtainable
from a more conventional approach, a theory
based on a single-state condensate, but with an
appropriate self-energy approximation. " How-
ever, any microscopic theory of liquid. helium
must eventually wrestle with the fundamental
question of the nature of the condensate. "
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APPENDIX

The quasiparticle Hamiltonian (34), with the ex-
citation spectrum E„gi-ven by (49) and (60), allows
us to calculate the thermodynamic quantities of He
rl at temperatures near absolute zero. Now, in-.
elastic neutron scattering from the density fluctua-
tions in He II also gives rise to an excitation spec-
trum. Experimentally, these spectra are found to
be the same', however, within the context of a
microscopic theory, it is not at a)i obvious how

they are related. : A further question is the equiva-
lence of the field and density fluctuations. "

Here we give the results for the single-particle
temperature Green's function and the density cor-
relation function. Throughout this Appendix, we
use the notation of the finite-temperature formal-
ism of Ref. 2.

The Fourier transform of the single-particle
temperatuxe Green's function, for the helium atom
field operators, is given by

Q(q, q; ~„)= —l3hNOV) 6 0

(n--)'
y qk

2' —A E~
k

(6;~)'
KO~ 1 I2

k

(Al)

and the anomalous Green's function by

Q„(q, q;&o„) = —8hNDV);6„

+$k~ gk
2Q) „—I2 F

k

Q ~+ A~~yQ -qk&q k~ 2'„+@ E-
k

(A2)

with v„= 2nzz/Biz and 9=1/ksT The .excitation spec-
trum E„- is that given in the text but with &k replaced
by ek —p, where ]L(. is the chemical potential of the
helium atoms. The coefficients $-„e&„-, and 9&k»

are those of (6) and (15).
The Fourier transform of the density correlation

function is given by

K)(q, q; (u„) =9izil(q)6„, + Q —' ".[x;(q)+ ~;(-q)]

k k

iy-(-q)+&@»(q)]' (M|,|",(q)+N | (-q)] (ng —np )
'E(d „+l2 E|"„zh)+ E (E —E )

+p „- „-. (q)[ „- „- (q)+P„- „- (q)](1+n& +nk ) P" - (-q)iP"" (-q)+P" z (-q)](1+nk +ni7 )

kl k2

(

k
2(d —2I2 Ek . 2(d „+2A Ek (A3)

where

Xk(q) =(N.)"'p ~;,;t;, ;,

&~(q) =(No)"'Q 6~,ktz, -;~

(A4)

(A5)

with

n-= (e~s|"- 1) '.
In the simpler case of Bogoliubov,

e~=-u &k -, and p-'3'= —g) 6-kkl 0 k ~ kl) kkl 0 kt kl

(A10)

(All }

»~,.-,(q) = P
k'1

k'

Pl, ;,,(q)= Q

kl

+klkj+kl+qk2 ~

' k'k g kl qk2

k'ykl k'1-q k2 P

(A6)

(A7)

(Ae)

Therefore,

X'", (q) =(No}'i'u„&z;,

~;"'(q) = —(N.)'"v, 6„-~;,
M-"z (q) =u u

k lk2 kl k2 kl+Qyk2. &

(A12)

(A13}

(A14}

E(q) = —4 Q»„-„-(q)N„-„.(q)n„"(n„-+ 1)
k

and

N-'az (q)=v vklk2 &1 p2 kl q (A15)

—Q M~„-(q)ng(2nz+ 1)
k

N~k;(q)(2n„-+ 3ng+1), (A9)

ua va z-z | (A16)

These values give the usual expressions for the
Green's functions in the Bogoliubov approximation
provided, of course, that we neglect all but the
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first three terms in (A3). [Recall that for homo-
geneous systems, g(q, q', w„) = V6;;, g(q, w„) and

Z(q, q', ~„)= V6;;,Z(q, &„}.] In particular, in the
Bogoliubov approximation, with the help of (A1)-
(A3) and (A11)-(A13), one finds

&"'(q, ~.)
= V" g B."&'( q ~.). (A17)

The condensate considered in the text is com-
posed of a large number of different states with
the single state (k=-0) as a, point of accumulation. ,

Therefore, (A4) and (A5) become

gr(q) = vV@(x=0)o;„-,1

(u„-(q) = v V 4(x = 0)P,-„-. (A19)

If we retain only the second and third terms of
(A3}, we get, with the help of (Al}, (A2}, (A18),
and (A19), that

m(q, q; ~„)= ~4'(x=0} ~' Q g, (q, q; ~„). (A20)

S(q, ~) = —(vh) ' Imn{q, q; ~„j,.

Therefore, in our model for He II, the elementary
excitations [poles of g(q, q; ~„)j are the same as
the density fluctuations [poles of X&(q, q; &„)], the
dynamic structure factor

as 4-0.
Another consequence of the condensate accumula-

tion around the state with k = 0 is that for fixed q
one would expect the coefficient n;; to have a peak
around the value k =q (}3;„-to have a peak around
the value k = —q), the limit of the smeared con-
densate to the Bogoliubov case. Therefore, the
smeared condensate gives rise to a smearing of
the pole in b(q, q; ~„}and, consequently, in
$(q, q; ~„).

The additional terms in (A3), which are usually
neglected in the Bogoliubov approximation, "'"are
due to the two-quasiparticle continuum. Unfor-
tunately, our lack of knowledge of the values of the
discontinuities along the cuts does not permit us
to analyze these terms. It is possible, however,
that these terms may be connected with the multi-
phonon component seen in inelastic neutron scat-
tering. '

Since the temperature and density dependence
of the condensate fraction is of experimental in-
terest [see, for instance, A. D. B. Woodk and
V. F. Sears, Phys. Rev. Lett. 39, 415 (1977) j, we
include here the explicit result for N, /N which
follows from {63) and (64)

Ã 8 AH g-N 9 7n2H

Now" p, (p)/@=Ap'~' with A =3.64 cmg '/' A ' and
hy (53) g =4vaK'/'m„, so that

It was shown in the text that the smeared conden-
sate gives rise to a phonon branch in the excita-
tion spectrum. Now it has been shown that it al.so
leads to the basic equivalence of. the field and den-
sity fluctuations. Therefore, it seems that the
fundamental requirement for the occurrence of the
equivalence is the existence of a phonon spectrum

1 2

2r 14 I /3
p MH

with p is g/cm'.

'N. N. Bogoliubov, J. Phys. Moscow ITSSB ll, 23 (1947).
A. L. Fetter and J. D. Walecka, Quantum Theory of
Vany-Particle Systen7g (McGraw-Hill, New York,
1971).

T. D. Lee, K. Huang, and C. N. Yang, Phys. Bev. 106,
1135 (1957).

'S. T. Beliaev, Zh. Eksp. Teor. Fiz. 34, 433 (1958)I. Sov.
Phys. -JETP 7, 299 (1958)] .

"N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489
(1959).

D. G. Henshaw and A. D. B. Woods. , Phys. Bev. 121,
1266 (1961).

~For a recent review on the structure and elementary
excitations of liquid. helium see A. D. B. Woods and
B. A. Cowley, Bep. Prog. Phys. 36, 1135 (1973).

8R. P. Feynrnan, Phys. Rev. 94, 262 (1954).
B. P. Feynman and M. Cohen, Phys. Rev. 102, 1189

(1956).
'OM. Alexanian, Phys. Bev. A 4, 1684 (1971).
'H, A. Mook, Phys. Bev. I,ett, 32, 1167 (1974).
The notation of Bef„2, especially that of Chap. 10,
will be followed as closely as possible.

' Little confusion should arise by not indicating ex-
plicitly that certain sums are over the single-
particle states of the condensate and other sums
are over the remaining single-particle states. One
just recalls that in a given sum, the subscript k in
$ z indicates sums over the condensate, whereas the

2 .

subscript k in the operator a-... say, indicates a sum
omitting the terms in the condensate.

~4N. N. Bogoliubov, Physica (Utr. ) 26, S1 (1960).
"E.P. Gross, Nuovo Cimento 20, 454 (1961); L. P. Pit-

aevskii, Zh, Eksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys. —

ZETP 13, 451 (1961)].



EXCITATION SPECTRUM OF A SYSTEM OF INTERACTING. . . 35,v7

' K. A. Brueckner and K. Sawada, Phys. Bev. 106,
1117 (1957).

VB. A. Cowley and A. D. B. Woods, Can. J. Phys. 49,
177 (1971).
G. %'. Dietrich, E. H. Gx'af, C. H; Huang, and
L. Passell, Phys. Bev. A 5, 1377 (1972).
B.J. Donnelly, Phys. I ett. A 39, - 221 (1972).
A. D. 8.: Woods, Phys. Bev. Lett. 14, 355 (1965).

2 J,. Gavoret and P. Nozihres, Ann. Phys. (N. &.) 28,
349 (1964); P. C. Hohenberg and P. C. Marhn, Ann.
Phys. (N. Y.) 34, 291 (1965); K. Huang and A. IQe.in,
Ann. Phys. (Ã.Y.) 30, 203 (1964).

2A. Griffin and T„H. Cheung, . Phys. Bev. A 7, . 2086

(1973).
~38ee, for instance, P. Martel, E. C. Svensson,

A. D. B.oods, . p. F. .Sears, and B. A. Cowley, .J.
Low Temp. Phys. 23, 285 (1976) arid references there-
'J.n.
See Befs. 22 Rnd 25 fox' R dlscus81on of the relation
between the field and density fluctuations, in the
presence of a single-state'condensate, when the dy-
nRIQics of the noncondensRte heliuln atoms Rx'e tRken
into account.

~5P. Sz6pfalusy and I. Kondor, Ann. Phys. (N. T.) 82, 1
(1974).


