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Local fluctuation effects in coupled small superconducting particles

R. C. Ward, S. Cremer, ~ and E; Simanek:
Department of Physics„University of California, Riverside, California 92521

(Received 21 October 1977)

A phenornenological Ginzburg-Landau: treatment of a necklace of Josephson-coupled small particles is

presented. The effective. local gap 6:and the relaxation rate of, the order parameter 1 are calculated within

the -Hartree approximation. These values are, used to obtain, the nuclear spin-lattice relaxation time Tl ~ The
model explains the different size dependence in the T,(T) measurements on Sn and Al small particles.

I. INTRODUCTION

In recent years there has been renewed interest
in the electronic properties 'of small (zero-dimen-
sional) superconducting particles. The fluctuation
properties of a zero-di. mensional superconductor
of volume 0 are characterized by the parameter
5 = (I/N, Q)/ksT„which is the ratio of the mean
electron- energy-level spacing to the characteris-
tic energy k~T, . N, is the electronic density of
states at the Fermi level and T, is the bulk mean-
field superconducting transition temperature.

One of the local electronic properties, of great
interest is the nuclear spin-lattice relaxation time
T]. Early measurements of T, on small Al parti-
cles done by Masuda and Redfield' did not show a
diverging relaxation rate I/T, as expected from
the theoretical predictions of Maki et a/. ' Follow-
ing the renormalization scheme of Patton, ' Simanek
et a/. 4 proposed a theory which was in agreement
with the Masuda-Redfield data. ' However, the
agreement at lose temPexatuxes appeared to be
fortuitous since it did not use a proper form for
the. effective gap K(T). Indeed, subsequent mea-
surements of T, for smaller Al particles' cannot
be reconciled with the theory of Ref. 4 at lower
temper atures.

Later measurements of T,(T) on Sn and Al parti-
cles by Kobayashi et a/. ' which'were done in rela-
tively strong (for AI! ) magnetic fields of 5-10 kOe

(a) exhibited a much stronger size dependence for
Al than for Sn particles, and (b) showed near T,
a more pronounced dip for Sn than for the same-
size Al particles. Sone's microscopic theory, '
which includes the effect of the Zeeman energy
splitting due to the magnetic field II, in spite of
succeeding to explain the general features of the

T,(T) data on Al, does not account for the dip near
T = T,. This can be attributed to an overestimate
of fluctuations in the smaller-sized particles. Re-
cent measurements on Al particles in relatively
low fields (0—1.2 kOe) again show a definite dip
structure near T,.'

In this paper we propose a model that includes

II. EFFECTIVE GAP

Following Deutscher et al. ,
"we introduce the

Qinzburg-I. andau free-energy functional for N

equal-volume (II) coupled particles arranged on a.

necklace,

5=1

+x, Pc„~e,. (2.1)

where 4, is the time-dependent superconducting
complex order parameter for the ith particle. A
= T/T, 1 and B = [b, +(b, b,)T/T, ]/T'„with b„
= (1.76) ' and b, = 0.106. The above form for B(T)
is chosen to simulate, in the bulk limit, the BCS
result for r (T) at low temperatures. The last
term in expression (2.1) represents the Josephson

the effect of Josephson coupling between particles
to account for the more pronounced dip structure
of T,(T) near T„and to explain the differences be
tween the results for Sn and Al particles [see (a)
and (b) above]. It is expected that coupling should

increase the effective volume, leading to a depres-
sion of the order-parameter fluctuations and, con-
sequently, to the enhanced dip structure in T,(T)
near T,. Such couplings are expected since the
particles form chains as a result of strong van der
Waals forces between them. These chains or neck-
laces (closed chains) appear in electron micro-
graphs of samples of small particles. '

An important feature which distinguishes Sn from
Al particles is the presence of large spin-orbit
coupling in Sn.' We believe that the difference in

T, (T) cannot be explained by the spin-orbit inter-
action. The latter tends to compete with the Zee-
man splitting due to the external magnetic field,
which is always present in the above reported ex-
periments (see Ref. 6). Thus, it is expected that
the T, (T) curves for Sn, in the presence of spin-
orbit coupling, will show a stronger size depen-
dence than was seen experimentally [see (a) above].
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coupling between neRx'est neighbors. Assuming R

homogeneous coupling» C ~ ~ = C» the 1 elRtlon be-
tween C and'the size parameter 5 is given by

C = (io' jft„)6 =- n6, (2.2)

g (A +8 II'+ 2C) (e,.('
i=&

For an isolated particle (C=0) the thermodynamic
averages can be calculated exactly. '"' However, the
Hartree approximation for & is not significantly
different from the exact result, and therefore, we
Use this Rppl oximatlon to llnearlze the free-enex'gy
functional for the case of coupled particles (C @0).

Using the usuRl matllx formalism, (~&, ~
)„are

glveD by

(~e,.~
)„/2T', =6(T/T, ) detQ~, /detP~, . (2.4)

The nonzero elements of the symmetric matrix
P~ Rx'e defined by

(2 5)

where D=:4+8(~l',.~')+2C. The matrix Q~, is ob-
tained from P~ simply by setting the "closing
chain elements P~ @

= P~ 1
= 0. The detex"xnlnants

det P„,and det Q~ satisfy

detP~ = detQ~ —C detQ~ —2C

detgp =+Ddetg, ~„~ —C detQ@ 2,

(2.6a,)

(2.6b)

where detQ, =D, Rnd detQ, =D' —C".
It can be shown that for sV strongly coupled parti-

cles (C —~) the effective gap is given by the equa-
tion

6„'-' (A +80 „') = TT,( 5/IV), (2.7}

where the equation for the effective gap of an iso-
lated particle &, is obtained from Eq. (2.7) with
X = 1. Taking the limit N- ~ in Eq. (2.7) we obtain
r,.' = 0 for T == T, and I1„2 = A/8 for T ~ T, -which is
the BCS blllk 11IIllt. (The sRnle I'Bsul't ls 011'tRIIled

where A„ is the interparticle junction normal re-
818taIlce (111 0111118). Dlle to diff lcllltles 111 coI'rect-
ly measul lng the reslstRDce R@ ln powdex"s of SIDRll

particles, one has only an order of magnitude es-
timate of the parameter II defined by Eq. (2.2). Be-
low we Use A = 1 to chRracterize the stx'ongly cou-
pl. ed Sn particles. This value is consistent with re-
slstlvlty measurements on compressed Sn pow-
dex's.

To calculate the effective gap of one particle, &
= ((~4',.P)„)'~', we use the Hartree approximation
of the free-energy functional (2.1),

for &0 by taking the limit 5-0.) Finally, at high
temperatures (T) T,) where 8r„' «A, n„' is simply
given by &o/N, i.e. , the effective volume of a
stl ongly coUpled pRx'tlcle lncx'eRses fV times.

III. THE ORDER-PARAMETER RELAXATION RATE

The equation of motion fol" the oldex' parametel
4,. of the ith particle, is

d ~ BT 8 F~

where the Gaussian-random forces II,. have (via the
equipartition theorem) the correlation function

(II,*. (f)II,.(0)) = (27T/iV", n}6„.6(f): 1 = BTjv.
The power spectx'um matrix'~ of the correlation
fl111ctlo118 G II(l') = (O' I(t)4'I(0))g/T~ 1s obtained Rs

G(~) = 26'(T/T, )IP~(-I~)P,(I~)] '
(&.2)

where the "admittance" matrix. P~(i&@) is obtained
from P& by I eplacing D by (yD+ I' u) and C by yC.

In the case of an isolated particle, the tim. e de-
pendence of the correlation function (4 (t)4 (0)) is
exponential with the order-par ameter relaxation
I'Rie I 0 g1ven bv I o

= y(A +8 +2O) ~

When X pRrtlcles Rx'e coupled, the systexn can
be excited in N normal modes 1,.(I'= 1,Ã) given by.
the (purely imaginary) poles of the matrix element
G,",(e)." It can be shown that the lowest normal
mode I „ fol eVexg N, .ls given by the expression
1", =- y(2+8&'), similar to the expression for I', .

The effective ord'er-parameter 1 elRXRtlon rRte
I ls obtRlned fox' R glveD IX, by flttlDg the function
G,",(~) to a. Lorentzian I'/(&u'+ I"). At very low
ternperatuxes, where A. +8&'-0, the system pre-
fers to stay in the lowest mode I', . As the temper-
ature approaches T„ the relative. separation of the
levels (1,. —I', )/I'„- C/(A+ J'r ') decreases drastic-
ally (especially for relatively large particles), and
therefore l" reaches a value near- the center of the
"band" of normal relaxation modes. Since at these
temperatures (T- T,) all I',. are of the same order
of magnitude, the level mixing seems to have little
effect on the exponential behavior of G,'~(f). There-
fore, the fit of G,~(f) to a. single Lorentzian of ef-
fective w ldth I ls, 8Rtlb fRctox'y.

Figure 1 shows the temperature dependence of
the effective gap & (linear scale) together with that
of the order pRl"ametex' relaxatlon x'ate I

»
fol &V=

4» and 8. FQx' comparison we plot Rlso the iso
lated-particle and the mean-field results. It can be
seen that as zV lncx'eRses» the + Rnd I cux'ves ap-
proach the Incan-field result; only in the limit
C —~ will they matc. h exactly.

In what follows we confine our attention to the
case (V=8. For this ease, N is large enough to
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tained by solving Eqs. (2.4) and (2.5}with the re-
placement'(4. l)."

The values of &(H=0, T) for 5 =0.01, 0.1, and
1.0 are exhibited in Fig. 2 together with the cor-
responding &(H, T) values calculated for Sn (T,
= 3.72'K) in an applied magnetic field of 5 kOe. As
can be seen, the effect of the coupling is much
stronger in the case of the smaller particles (5
=-1.0), whereas the effect of the magnetic field is
almost unobservable. This is explained by the
fact that the coupling drastically increases the ef-
fective volume of the smallest particles; while in
the case of larger particles (5 =0.01), the effective
increase of the volume due to the coupling does not
appreciably change their bulklike behavior. We
note that the effect of the coupling is stronger for
all 5 values at temperatures around T,. The ef-
fect of the field is simply explained by the 5 de-
pendence of o.„, which takes larger values as the
bulk limit is approached.

The corresponding values for the effective re-
laxation rate I" are presented in Fig. 3. The effect

FIG. 1. Local effective gap 6 (linear scale) and the
order-parameter relaxation rate I' (logarithmic scale)
as a function of the reduced temperature TjT, for 6 =-0.1
and ct', =0.5 for %=2, 4, 8. The dashed (dotted) lines rep-
resent the single-particle (mean-field) results.

6/T I.
-"

C

smooth out the effect of closing the chain but small
enough to allow for a direct analytical calculation
of the determinants and G„(e). Furthermore, in the
following we will take C = 5 (n = 1.0) to describe the
strong coupling regime. At low temperatures at
least, a. coupling strength C =5(i.e. , n = 1.0) is
strong enough to simulate the infinite coupling lim-
it for the particular value X=-8.

I.O

C

IV. NUCLEAR SPIN-LATTICE RELAXATION TIME

A. Pair-breaking effect of the magnetic field

The field pair breaking is accounted for in our
scheme simply by replacing A = T/T, —1 by

05

vn„&(T,) &(T,}
Bk,T, &(T) ' Z(T) ' (4.1)

1 e" v~ 1 H

15m 6 c & N„A~T,
(4 2)

where v~ is the Fermi velocity. " In the general
case, for any finite C, we calculate first &(T,)
and, using this value, &(H, T) and I'(H, T) are ob-

where, following Maki, "it is assumed that the
pair-breaking mechanism is self-consistently con-
trolled by the effective gap itself. The parameter
o.„is defined as

I.O ———T/ Tc

FIG. 2. Temperature dependence of the effective local
gap &(T) for H=0 (dashed lines) and H=5 kOe (solid
lines) calculated with T,=-3.72 K for Sn. The curves
labeled by a (6=-0.01), b (4=0.1), and e (6=1.0) repre-
sent the isolated particle case, whereas the respective
curves A. , B,C represent the case of eight coupled par-
ticles with o'. = 1.0.
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ma netic field on the I'of the coupling and of the mag I'
' lilar to that for the effective ga.p. eVRlues ls slnlllar o R a

the case of an app le m
er articles (5 =

2' ompar able to or

'
ld es eciall, y for larger p

values for I" become, at T ~ „c
th the characteristic energyeven 1Rl ger, Rn,

B. Nuclear spin-lattice relaxxation rate

ical schenle developed above is
a lied here to obtain the nuclear spin- a lce

t on of temperaturlaxation time 2", as a unc i e ln
d magnetic fiethe presence of coupling an

expression for T, is given by

(4.3)
— Z2where z = [(Tx+pea)+ ir'/2]/& and u, = (z~.

(4 3j
' a generalization of the—1) ' ' Expression ~». , 1s a . e

result of Be . o if 4 t include the Zeeman energy split-
in

'
d H " This effect is importanting due to the fiel

reduces the overlap of the spin- p

t the fje]d j.nduc ed pair br
was taken into account previously ln e e

d laxation- rate calculations.gap an re ax
Ke renlark that in general the coupling between

ct the s in-spin correlationthe parti. cles can affec e p
nd therefore via the spin suscepti l l y

thT (T) expression. However, smce
s ln suscep l l l y lt'b'1't is mainly controlled byp

r k and the la.tter is muchFermi wave number k» an
len thth ' rse Pippard coherence lengla.rger than e lnve

h effect of cou-j '- k (T /T ) we expect that the e ec5(0 y c
much smallerpling on the T (T) expression will be muc

th n on the & and I" values.
T e, . r three differenThe T,(T) results calculated fo

= 0.01 0.1, 1.0) are summarized
4 Let us first discuss the effect o e

'
ld n the isolated particles case n =

ointed out earlier, the magnetic ie

of & and increases the value of I' or e
5=0.01) size particles. Additionally, since at a

t the values of r (T) for the largeriven temperature e vag
ll than for the smaller partl-particles are sma, er an
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FIG. 4. Nuclear spin-lattice relaxation'time T& as a
function of. T,/T for (a) 6=0.01, (b) 6=0.1, and (8) 6
= 1.0, The dashed curve in each plot represents the
normal bu1,k behavior for H = 0.0 and n = 0.0.

cles,, the Zeeman energy splitting (proportional to
ji +/4) is more effective in decreasing the value
of the integral in Eq. (4.3). ' Therefore, the T,(T)
cup'ves for 5 =0.91 and 5=0.j. are drastically
shifted to higher values, whereas the T,(T) curve
for the smallest particles is unchanged. More-
over, we can see that in this case (H = 5 kOe, n
=0.0) the 5=0.01, O. l curves become much closer
together, especially in the low-temperature re-

gime. We turn now to the case of (strongly) cou-
pled part)c?es (n = 1.0). Again, it can be seen that
the coupling between the particles mostly affects
the T, (T) curve for the smallest particles, induc-
ing R deflnlte dip Rl ound T 7@. Note that the dip
structure for the larger particles is increased as
well. If the magnetic field H is turned on, the
larger particle T, (T) curves are shifted, as in the
n = 0.0 case, to higher values such that all three
curves are brought together. It should be pointed
out that, while the differences near T, are dras-
tically diminished, they remain distinguishable.

The combined effect of the coupling and the field,
as seen in the case H = 5 kQe and o. = 1.0, seems to
explain the weaker size dependence of T,(T) mea-
surements in the Sn particle case, which is pertin-
ent to the strong coupling regime. In the case of
Al, where e is orders of magnitude smaller than
one, it is expected that, the size dependence of the
T,(T) curves will be more pronounced, as in the
results for H = 5koe and n = 0.0.'0

Finally, we remark that the present treatment
is based on a, somewhat idealized model which does
not take into account the particle size distribution
or fluctuations in the Josephson coupling strength
between the particles. In addition, in real (packed)
samples, the chains will cluster, producing a
quasi-three-dimensional network. " This effect is
expected to enhance the tendency toward bulklike
behavior.
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