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A phenomenological Ginzburg-Landau treatment of a necklace of Josephson-coupled small particles is
presented. The effective local gap ‘A ‘and the relaxation rate of the order parameter I" are calculated within
the Hartree approximation. These values are used to obtain.the nucleéar spin-lattice relaxation time T;. The
model explains the different size dependence in the T\(T) measurements on Sn and Al small particles.

I. INTRODUCTION

In recent years there has been renewed interest
in the electronic properties of small (zero-dimen-
sional) superconducting particles. The fluctuation
properties of a zero-dimensional superconductor
of volume § are characterized by the parameter
5= (1/N,)/kzT,, which is the ratio of the mean
electron-energy-level spacing to the characteris-
tic energy kzT,. N, is the electronic density of
states at the Fermi level and T, is the bulk mean-
field superconducting transition temperature.

One of the local electronic properties of great
interest is the nuclear spin-lattice relaxation time
T,. Early measurements of T, on small Al parti-
cles doné by Masuda and Redfield' did not show a
diverging relaxation rate 1/7, as expected from
the theoretical predictions of Maki ef al.> Follow-
ing the renormalization scheme of Patton,® Simanek
et al.* proposed a theory which was in agreement
with the Masuda-Redfield data.! However, the
agreement at low tempervatures appeared to be
fortuitous since it did not use a proper form for
the effective gap A(T). Indeed, subsequent mea-
surements of T, for smaller Al particles® cannot
be reconciled with the theory of Ref. 4 at lower
temperatures.

Later measurements of 7,(T) on Sn and Al parti-
cles by Kobayashi ef al.® which were done in rela-
tively strong (for Al!) magnetic fields of 5-10 kOe
(a) exhibited a much stronger size dependence for
Al than for Sn particles, and (b) showed near T,

a more pronounced dip for Sn than for the same-
size Al particles. Sone’s microscopic theory,’
which includes the effect of the Zeeman energy
splitting due to the magnetic field H, in spite of
succeeding to explain the general features of the
T,(T) data on Al, does not account for the dip near
T =T, This can be attributed to an overestimate
of fluctuations in the smaller-sized particles. Re-
cent measurements on Al particles in relatively
low fields (0-1.2 kOe) again show a definite dip
structure near T,.®

In this paper we propose a model that inciudes
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the effect of Josephson coupling between particles
to account for the more pronounced dip structure
of T,(T) near T,, and to explain the differences be-
tween the results for Sn and Al particles [see (a)
and (b) above]. It is expected that coupling should
increase the effective volume, leading to a depres-
sion of the order-parameter fluctuations and, con-
sequently, to the enhanced dip structure in 7,(T)
near T, Such couplings are expected since the
particles form chains as a result of strong van der
Waals forces between them. These chains or neck-
laces (closed chains) appear in electron micro-
graphs of samples of small particles.®

An important feature which distinguishes Sn from
Al particles is the presence of large spin—'orbit
coupling in Sn.® We believe that the difference in
T,(T) cannot be explained by the spin-orbit inter-
action. The latter tends to compete with the Zee-
man splitting due to the external magnetic field,
which is always present in the above reported ex-
periments (see Ref. 6). Thus, it is expected that
the T',(T) curves for Sn, in the presence of spin-
orbit coupling, will show a stronger size depen-
dence than was seen experimentally [see (a) above].

Ii. EFFECTIVE GAP

Following Deutscher et al.,'® we introduce the
Ginzburg-Landau free-energy functional for N
equal-volume () coupled particles arranged on a
necklace,

F|¥ & ; B
)N, 3o (Al g
i=1

N

+Ng D Cyl ¥y -¥ 7, (2.1)

k24

where ¥ is the time-dependent superconducting
complex order parameter for the ith particle. A
=T/T,-1and B=[b,+(b,-b,)T/T,)/T%, withb,
=(1.76)"2 and b, =0.106. The above form for B(T)
is chosen to simulate, in the bulk limit, the BCS
result for A(T) at low temperatures. The last
term in expression (2.1) represents the Josephson
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coupling between nearest neighbors. Assuming a
homogeneous coupling,'® C,,=C, the relation be-
tween C and the size parameter & is given by

C=(10*/R)6=ab , (2.2)

where R is the interparticle junction normal re-
sistance (in ohms). Due to difficulties in correct-
ly measuring the resistahce R, in powders of small
particles, one has only an order of magnitude es-
timate of the parameter « defined by Eq. (2.2). Be-
low we use a =1 to characterize the strongly cou-
pled Snparticles. This valueis consistent withre-
sistivity measurements on compressed Sn pow-
ders.'t

To calculate the effective gap of one particle, A
=((|¥,]» )2, we use the Hartree approximation
of the free-energy functional (2.1),

N
FH:——1—<Z (A+Ba?4 2C)|¥,|?

i=1

N
—CY @ ’;\yi). (2.3)
iy

For an isolated particle (C=0) the thermodynamic
averages can be calculated exactly.’* However, the
Hartree approximation for A is not significantly
different from the exact result, and therefore, we
use this approximation to linearize the free-energy
functional for the case of coupled particles (C #0).

Using the usual matrix formalism, (|¥,;|?, are
given by

(il y/T2=0(1/T,) detq,.,/detP, . (2.4)

The nonzero elements of the symmetric matrix
P, are defined by

Pyi=D; P =-C; Pl,N:_C’ (2.5)

iy i+ 1
where D=A +B(|¥,|» +2C. The matrix §, is ob-
tained from P, simply by setting the “closing
chain” elements P, y =Py ,=0. The determinants
det P, and det @, satisfy

detP, =det() ;, — C2det@ ., - 2C7 (2.6a)

detQ = + Ddetd ., - C*det@ ., , (2.6b)

where detQ, =D, and det@,=D? - C®.

It can be shown that for N strongly coupled parti-
cles (C - =) the effective gap is given by the equa-
tion

AZ(A+BAX)=TT,(5/N), (2.7)

where the equation for the effective gap of an iso-
lated particle 4, is obtained from Eq. (2.7) with
N=1. Taking the limit N -« in Eq. (2.7) we obtain
A2=0for 7> T, and AZ=-A/B for T < T, which is
the BCS bulk limit. (The same result is obtained

for A, by taking the limit 6 - 0.) Finally, at high

‘temperatures (7> T,) ‘where BAZ <A, A2 is simply

given by AZ/N, i.e., the effective volume of a
strongly coupled particle increases N times.

III. THE ORDER-PARAMETER RELAXATION RATE

The equation of motion for the order parameter
¥, of the ¢th particle, is

d

dt
where the Gaussian-random forces %; have (via the
equipartition theorem) the correlation function

(Y (O, 0) = (2yT/N,)8,,6(1); v=8T/m.

The power spectrum matrix™® of the correlation
funetions G¥ (1) = @ Y()¥ (0)),/T? is obtained as
ij i J N c

G(w)=269(T/ T Py (~iw) Py (iw) ™ (3.2)

where the “admittance” matrix F’N(iw) is obtained
from P, by replacing D by (yD +iw) and C by yC.

In the case of an isolated particle, the time de-
pendence of the correlation function (\lf*(t)~1/ 0)) is
exponential with the order-parameter relaxation
rate Iy given by I'y=y(4 + BA]).

When N particles are coupled, the system can
be excited in N normal modes I';(i=1,N) given by
the (purely imaginary) poles of the matrix element
GN(w)." It can be shown that the lowest normal
mode I';, for every N, -is given by the expression
T, =y(A +BA®), similar to the expression for T',.

The effective order-parameter relaxation rate
T is obtained, for a given N, by fitting the function
GN(w) to a Lorentzian I'/(w?+I'?). At very low
temperatures, where A +BA?~ 0, the system pre-
fers to stay in the lowest mode I';,. As the temper-
ature approaches T',, the relative separation of the
levels (I'; - T',)/T", ~ C/(A + BA®?) decreases drastic-
ally (especially for relatively large particles), and
therefore I' reaches a value near the center of the
“band” of normal relaxation modes. Since at these
temperatures (T~ Tc) all I'; are of the same order
of magnitude, the level mixing seems to have little
effect on the exponential behavior of G¥(f). There-
fore, the fit of GJ(¢) to a single Lorentzian of ef-
fective width T is satisfactory.'®

Figure 1 shows the temperature dependence of
the effective gap A (linear scale) together with that
of the order parameter relaxation rate I', for N=
2, 4, and 8. For comparison we plot also the iso-
lated-particle and the mean-field results. It can be
seen that as N increases, the A and T curves ap-
proach the mean-field result; only in the limit
C -~ will they match exactly.

In what follows we confine our attention to the
case N=8. For this case, N is large enough to

8T 8 F, .
* L Fy_g .
\Ij"([)+1rN08\Ili 0 h(1), (3.1)
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FIG. 1. Local effective gap & (linear scale) and the
order-parameter relaxation rate I' (logarithmic scale)
as a function of the reduced temperature T/T, for 6=0.1
and @ =0.5 for N=2,4,8. The dashed (dotted) lines rep-
resent the single-particle (mean-field) results.

smooth out the effect of closing the chain but small
enough to allow for a direct analytical calculation
of the determinants and G (w). Furthermore, inthe
following we will take C =6 (a=1.0) to describe the
strong coupling regime. At low temperatures at
least, a coupling strength C=06(i.e., «=1.0) is
strong enough to simulate the infinite coupling lim-
it for the particular value N=8.

IV. NUCLEAR SPIN-LATTICE RELAXATION TIME

A. Pair-breaking effect of the magnetic field

The field pair breaking is accounted for in our
scheme simply by replacing A=T7/T,- 1 by

oy ) A(T,) A(T)
C

8, 1.) ) A (4.1)

A»4+<

where, following Maki,'® it is assumed that the
pair-breaking mechanism is self-consistently con-
trolled by the effective gap itself. The parameter
a, is defined as
1 [\ F( 1 >H2
el ol o I 4.2
u= 15y (ﬁc) c\NJ#,T,) 5" (4.2)

where v, is the Fermi velocity.'” In the general

case, for any finite C, we calculate first A(T,)
and, using this value, A(H,T) and I'(H, T) are ob-

tained by solving Egs. (2.4) and (2.5) with the re-
placement (4.1)."®

The values of A(H=0,7) for §=0.01, 0.1, and
1.0 are exhibited in Fig. 2 together with the cor-
responding A(H, T) values calculated for Sn (T,
=3.72°K) in an applied magnetic field of 5 kOe. As
can be seen, the effect of the coupling is much
stronger in the case of the smaller particles (5
=1.0), whereas the effect of the magnetic field is
almost unobservable. This is explained by the
fact that the coupling drastically increases the ef-
fective volume of the smallest particles; while in
the case of larger particles (6 =0.01), the effective
increase of the volume due to the coupling does not
appreciably change their bulklike behavior. We
note that the effect of the coupling is stronger for
all § values at temperatures around 7,. The ef-
fect of the field is simply explained by the 6 de-
pendence of a,, which takes larger values as the
bulk limit is approached.

The corrésponding values for the effective re-
laxation rate I' are presented in Fig. 3. The effect
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FIG. 2. Temperature dependence of the effective local
gap A(T) for H=0 (dashed lines) and H=5 kOe (solid
lines) calculated with T'.=3.72°K for Sn. The curves
labeled by a (6=0.01), b (6=0.1), and ¢ (6=1.0) repre-
sent the isolated particle case, whereas the respective
curves A, B, C represent the case of eight coupled par-
ticles with o =1.0.
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of the coupling and of the magnetic field on the I'
values is similar to that for the effective gap. We
point out that, in the case of an applied magnetic
field, especially for larger particles (6 =0.01), the
values for I' become, at 7= T,, comparable to, or
even larger than, the characteristic energy k.7 .

B. Nuclear spin-lattice relaxation rate

The phenomenological scheme developed above is
applied here to obtain the nuclear spin-lattice re-
laxation time 7', as a function of temperature, in
the presence of coupling and magnetic field. The
expression for T, is given by

Tl T [ () e (20 e 22

T, T, . ax w, w,,
1 1

+Re(—>Re —— s
: w, w,

where z, = [(Tx+p  H)+iT/2]/A and Wy =25 m

- 1).'/2 Expression (4.3) is a generalization of the
result of Ref. 4 to include the Zeeman energy split-
ting due to the field H.'® This effect is important

since it strongly reduces the overlap of the spin-up
and spin-down parts of the integrand in Eq. (4.3).
We note that the field-induced pair breaking effect
was taken into account previously in the effective-
gap and relaxation-rate calculations.

We remark that in general the coupling between
the particles can affect the spin-spin correlation
function, and therefore via the spin susceptibility
the T',(T) expression. However, since the normal
spin susceptibility is mainly controlled by the
Fermi wave number &,, and the latter is much
larger than the inverse Pippard coherence length
EO) '~k (T,/Ty), we expect that the effect of cou-
pling on the 7',(T) expression will be much smaller
than on the A and T values.

The T ,(T) results calculated for three different
size particles (6=0.01, 0.1, 1.0) are summarized
in Fig. 4. Let us first discuss the effect of the
field on the isolated particles case (@ =0.0). ‘As
pointed out earlier, the magnetic field, via the
pair-breaking effect, strongly decreases the value
of A and increases the value of I" for the larger
(6=0.01) size particles. Additionally, since at a
given temperature the values of A(T) for the larger
particles are smaller than for the smaller parti-
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FIG. 4. Nuclear spin-lattice relaxation'time Ty as a
function of T,/T for (a) 6=0.01, (b) 6=0.1, and (¢) 6
=1.0. The dashed curve in each plot represents the
normal bulk behavior for H=0.0 and @ =0,0.

¢les, the Zeeman energy splitting (proportional to
u H/A) is more effective in decreasing the value
of the integral in Eq. (4.3). ‘Therefore, the T, (T)
curves for 6 =0.01 and 6=0.1 are drastically
shifted to higher values, whereas the T,(T) curve
for the smallest particles is unchanged. More-
over, we can see that in this case (H=5kOe, a
=0.0) the 6=0.01, 0.1 curves become much closer
together, especially in the low-temperature re-

gime. We turn now to the case of (strongly) cou-
pled particles (¢ =1.0). Again, it can be seen that
the coupling between the particles mostly affects
the T,(T) curve for the smallest particles, induc-
ing a definite dip around 7~ T,. Note that the dip
structure for the larger particles is increased as
well.- If the magnetic field H is turned on, the
larger particle T,(T) curves are shifted, as in the
a=0.0 case, to higher values such that all three
curves are brought together. It should be pointed
out that, while the differences near T, are dras-
tically diminished, they remain distinguishable.

The combined effect of the coupling and the field,
as seen in the case H=5 kOe and a=1.0, seems to
explain the weaker size dependence of 7,(7) mea-
surements in the Sn particle case, which is pertin-
ent to the strong coupling regime. In the case of
Al, where a is orders of magnitude smaller than
one, it is expected that the size dependence of the
T,(T) curves will be more pronounced, as in the
results for H =5kOe and a=0.0.%°

Finally, we remark that the present treatment
is based on a somewhat idealized model which does
not take into account the particle size distribution
or fluctuations in the Josephson coupling strength
between the particles. In addition, in real (packed)
samples, the chains will cluster, producing a
quasi-three-dimensional network.?! This effect is
expected to-enhance the tendency toward bulklike
behavior.
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