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Based on the Hohenberg-Kohn-Sham formalism a fully self-consistent calculation of the electron

density distribution around a proton in the metallic density range is presented. The calculation

takes into account the hrst gradient correction to the exchange-correlation potential, hitherto treat-

ed only ln the local density approximation. Very shallows bound states are found to exist for all

metallic densities (r, =2.07—5} considered. The physical picture regarding the electronic structure

of a proton in the metallic density range is that of an extended H ion accompanied by an equally

extended compensating hole in the uniform electron gas. Assuming that a positive muon (p, +}

constitutes a heavy impurity in an electron gas, the Knight shift at p,
+ site as a function of electron

density (r,. } has also been calculated and the results are compared ~ith experiment.

I. INTRODUCTION

Hydrogen in metals forms the simplest arid yet the
most interesting impurity, Its simplicity stems from
the fact that hydrogen upon dissolving in a metal dis-

sociatcs into a proton and an electron, the former has

no electronic 'core" structure, It is this latter fact
which makes the problem theoretically very interest-

ing. Since. the proton provides a very strong perturb-

ing potential to the electron gas, the problem of calcu-

lating the screening charge around a proton is a non-

linear one, ' A somewhat related question concerns
the electronic state of hydrogen in the metallic-density

range, namely, does a proton remain a's a free point
charge or does it exist in a bound state with the elec-
trons'

Recently, Fopovic et a/. have calculated the non-

linear electron-density distribution around a proton in

a paramagnetic electron gas, using the density-
functional formalism of Hohenberg, Kohn, and

Sham. These authors were able to obtain approxi-
mately self-consistent electron density by parametriz-

ing the effective electron potential. While this work

was in progress, a fully self-consistent calculation of
this problem has been carried out by Almbladh et al.
and Zaremba et ar'. ' All these calculations have beer
done in the local density approximation, which is valid

for the case of a slowly varying density. In the case gf
a proton where ihe electron pile up around it is large
and varies rather rapidly, it is a priori not clear that

the local density approximation is valid.

In this paper, using the Hohenberg-Kohn-Sham
(HKS) formalism, ' we present a fully self-consistent
calculation of electron-density distribution around a

proton in the metallic density range. We incorporate
the first gradient correction to the exchange-
correlation potential, We neglect higher-order gra-
dient corrections since they have been shown" to be
small cvcn fof surface density profiles. Thc question
regarding the electronic state of a proton in metals is

discussed.
Assuming that a positive muon (p. ), like a proton,

consitutes a heavy impurity in an electron gas, we

have calculated the Knight shift at a p, site as a func-
tion of r, (electron density). The results are compared
with available experimental data. '

II. KOHN-SHAM FORMALISM

For the sake of completeness, we shall here briefly

Outline thc density-functional formalism of Hohen-

berg, Kohn, and Sham. According to this formalism,
onc writes the energy functional of the particle density
n (r) as

E[n(r)] =-To[n(r)]+e f drn(r) V,„,(r)
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where To[n (r)] is the kinetic energy of a system of
noninteracting electrons with the same density n (r ),
and E, [n {. r )] is the exchange correlation energy.
The other terms in Eq. (1) have their usual meaning.
The true ground-state density is that n (r ) which
minimizes E[n (r)]; this minimum being the true
ground-state energy.

This variational principle leads to the following set
of self-consistent equations (we have used Rydberg
atomic units throughout this paper): V„, [n(r.)] =—[ne„,. (n)] —p,„v(np)

d
n

(6)

where e„.(n) is the exchange-correlation energy per
particle for a homogeneous electron gas of density
n (r ); and here, it has been taken from the work of
Vashishta and Singwi8

»„,. (r, ) = — —0.112+0.0335 lnr, —0.9163 0.02
r,

' 01+r,
In this approximation, we then have

[—'7 + V,(r[n(r), r]}([(,(r) =
,e](((r)

n ( r ) = $ ~
(](,( r ) }'

V,(r[n{r),r] =(P(r) + V„, [n(r)]

where the electrostatic potential

4(r) = ——+e d r' n(r')

(2a)

(2b)

(2c)

(3)

where V„,.[n] has been defined with respect to the
exchange-correlation potential p, „,. for the average
density n((of the host metal. As r ~, both 4(r)
and V„,. (n) tend to zero. The local density approxima-
tion is certainly valid if the density variation is
sufticiently gentle. This is definitely not the situation
either at a metal surface or near a proton. Neverthe-
less, this approximation in the former case has been
found9 to give'results in reasonably good agreement
with experiment.

gE„[n (r )].
V, (.(r)] =

gn(r)

In most applications, the local density approxima-
tion for E„,[n(r)] is used, i.e. ,

E„,((rl(= JdÃ (r( I.(rH„.

(4) III. GRADIENT CORRECTIONS TO
EXCH ANGE-CORRELATION KN ERG%

Exchange-correlation energy of an inhomogeneous
electron gas can be expanded in powers of small devi-
ations from the average density, i.e.,

F, (n) = dr n(r)»„,. n(r + — dr g', ." n(r '7n r) '+ — d rg„', .
' n(r) n r)'7 '7'n(r) +

where the first term is the well-known local density
term while the second and third terms r"present,
respectively, the first and second gradient corrections.
The coefticient g„",. '(n) has recently been estimated by
Rasolt and Geldart' and Gupta and Singwi. The
latter authors find that the correction to the surface
energy of metal-vacuum interface due to the first gra-
dient term is of the order of +20%, and that due to
the second gradient term is negative and amounts to
only a few percent. guided by this fact, we decided to
include only the first gradient correction term in the
self-consistent calculation of the screening charge
around the proton in the HKS formalism. The
exhcange-correlation potential then has the form

V„, [n (r)] [n. e„.(n=)—] —p„,(no), .

n

l* (2)
'

+g (n) —— (8)1 dgxt dn ~2) d n

2 dn ~ dr dr

where the coe%cient g",. '(n) is given by

IV. NUMERICAL PROCEDURE

Since the eft'ective electron potential in Eq. (2c) is
spherically symmetric, it is convenient to express Eq.
(2a) in terms of its radial component,

O' I (I +1)+ V„(r)+ k' UkI(r) =0
df f2

(10)

where we have assumed the unperturbed system to be
free-electon-like so that the electron wave functions

g'. '(n) = 4ne p(r, )/—(3rr n)

Since the electron density in the vicinity of a proton is

large (i.e., r, small), we have used for P(r, ) the values
given by Rasolt and Geldart, ' which are exact in the
high-density limit [p(r, ) of Eq. (9) is related to c(r, )
of Rasolt and Geldart' by
p(r, ) = —[(3n')' '/2n]c(r, ) }.
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The radial wave function U/, /(r) has the well-known
asymptotic form at large r, namely,

U„,(r) = cos5/(~ )j/(kr) —sin8/(~/, ) n/(kr}, (13)
f ~OO

where 5/'s are the scattering phase shifts for / th par-
tial wave and jI and n/ are, respectively, spherical
Bessel and Neurnan's functions of order /. The
scattering phase shifts at the Fermi energy satisfy the
Friedel sum rule:

Z =—g (2/ +1) B((er)
/

(14)

Z is the charge of the impurity and is unity in the case
of a proton. The factor 2 is due to spin.

For a suNciently strong potential, there can also ex-
ist bound states. The condition f'or the occurrence of
bound states in the /th partial wave is

S,(.„=0)=- n~,
and the number of bound electrons with quantum
number / is 2n (2/+1). It is worth mentioning that it

is energetically favorable for the first bound state to
occur in the / =0 state. In the present problem, we
found the presence of only s-wave bound states. To
obtain the bound-state energy as well as the bound-
state wave function, one has to solve Eq. (10) for
negative energy states. The bound-state wave func-
tion QI, must then satisfy the boundary condition

U(r) -e ", (15)

with I[(„{r)= [1/{42r) '"]U„(r)/r and the binding ener-

g), l~~l = k~'

If one writes the deviation of the electron density
around a proton from the average density no as 5n (r),
then including contributions from bound states (if
any},

are plane waves and the energy of the electron in state
k is k'. The wave function Q, is expressed in terms of
its radial component U/, /(r) through

4, (r) =- [U„(r)/r] Y„„('r) (11)

Thus the electron density in Eq. (2b) can be rewritten
as

/'~

n(r) = dk k2$(21+1)(U(((r)/r)2

d'r P„'(r) = 1

Thus, given an initial potential, one solves Eq. (10)
for- U&/(r) for k ranging from 0 to kI; and all values of
partial waves. In practice, we have divided the inter-
val from 0 to kI; in twenty segments a'nd /from 0 to
14 The radial wave functions are matched to the
asymptotic form in Eq. (13) for r ~19.5ao [beyond
which ~,f](r) was set equal to zer(o] and n(r) i's com-
puted from Eq. (12). Calculations were repeated for
diN'erent choices of the cut off radius (r & 19ao),

'

and
it was found that the corresponding values of' n(r) did
not'diA'er by more than 0.1% (the accuracy claimed in
the convergence procedure). The electrostatic part is
then computed from this new charge density by solv-
ing the Poisson's equation, .

'72'&(r) =42re[B(r) —gn(r)]

where the proton is situated at the origin, The
exchange-correlation potential is computed from both
Eqs. (6) and (8). In each iteration, the Friedel sum
rule has to be satisfied. The process is repeated until
self-consistency in the electron-density distribution is
achieved. Although in principle it is a simple pro-
cedure, the main difhculty in obtaining a self'-

consistent solution is a numerical one. For this
scheme to work, ii is necessary to demand an unrea-
sonably high accuracy in the Friedel sum rule of Eq.
(14). A small violation of this rule leads to a small
amount of charge 5Z which has a long Coulomb tail.
In subsequent iterations, this leads to a divergent
result. To overcome this difhculty, Popovic et a/. '
chose to parametrize the electrostatic potential using
two parameters and obtained an approximate self-
consistent solution f'or the charge density. Zaremba
et a/. ' have extended the accuracy of' the results by
taking ten parameters to represent the electrostatic po-
tential.

We have followed a numerical procedure suggested
by Manninen et a/. " where no such parametrization is
necessary. In this method, one rewrites Eq. (18) as

V'e -k,'„a =4~e[~(r.) -Sn(r)] -kT~Fq, (19)

which has a recursive solution,

q) (I ) = d r' — 4~e [g(r ') —gn. '(f ')]
4~lr —r'l

bn (r) = n (r) —no
'I

dk k' $(2l +1) — JJ (kr)—U„', (r)
r'

I

k 2 (gI(( —l)(r ) ] (20)

+2yb'(r),

with the normalization requirement that

where j and j —1 correspond to the number of itera-
tions and kT~ is the Thomas-Fermi screening constant.
Note that Eq. (20) is mathematically correct when
4(r) is self-consistent, i.e., 4'(r) = 4' '(r). The ad-
vantage of this procedure is that the nonzero
Coulomb tail at large r, that would normally exist if
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the Friedel sum rule is not satisfied, gets truncated
due to the exponential term in Eq. (20).

Using this procedure, we were successfully able to
achieve self.-consistency in electron density. to better.
than 0.1% at small r, The convergence at large r was
much better. In the high-density limit (r, —2), it was
sufhcient to.perform about 20 iterations whereas for
low density (r, -5) to achieve the same kind of accu-
racy, we had to go beyond 30 iterations, %e found
that it is not the singular nature of the electrostatic
potential in Eq. (3) that causes the solutions not to
converge, but the difhculty lies iri the. eA'ective poten-
tial not being. zero at large, r due to numerical inaccu-
racy.

V. ELECTRON DENSITY DISTRIBUTION AND

BOUND STATES

%e shall first discuss our results of the electron dis-
tribution around a proton in both local density approx-
imation and including first gradient correction. The
question of formation of bound states will be taken up
in the latter part of this section.

The electron distribution normalized to the. mean
density no of the homogeneous background is plotted
in Fig. 1 for the density range 2 & r,. «5. %e note
that the electron pile up increases sharply as r,. in-
creases. In the inset of Fig. 1 are shown the Friedel
oscillations. The amplitudes of these oscillations are
larger for lower density, which reflect the large pile up
of electrons at the origin. The electron distribution
for r,. =2.07 (Al density) is in very good agreement
with the calculation of Popovic et al. ,

' except that the
amplitudes of the Friedel oscillations in the present
calculation are slightly bigger.

In order to assesq the influence of the first gradient
correction on the electron-density distribution, we
have repeated the calculation for r, =2.07 and 5 ising
for V,., [n] the expression in Eq. (8). The results are
compared with the local density approximation for
r, =5 in Fig. 2. The electron density in the vicinity of
the proton with the first gradient correction is
enhanced by about 15% over the corresponding result
in the local density approximation. The diAerences at
large r are no more than (2—3)%. As expected, the
gradient correction aA'ects the electron density for
r, =2 much less, namely, it leads to an enhancement
of about 2% in the electron density at small r. To il-
lustrate this point further, we have compared the
exchange-correlation potential in the local density ap-
proximation with the first gradient correction for r, = 5
in the inset of 'Fig. 3. Although the gradient term is a
very small fraction of the exchange-correlation poten-
tial, its eAect on n(r) is not negligibly small at small r.
It is, however, encouraging to note that the local den-
sity approximation does not underestimate appreciably
the electron-density profile even for r, =5, where n (r')'
varies rather rapidly with r. These results combined
with recent calculations of surface profiles' give us ad-
ded confidence that the HKS formalism' even within
the local density approximation can provide reliable
quantitative results.

Some comments regarding the relevance of gradient
corrections are appropriate at this stage. Almost all
a priori calculations of g",. '(n) have shown that it is a
positive quantity and the inclusion of the first gradient
correction in the calculation of surface energy of me- .

tals has a significant eff'ect and in the right direction.
On the other hand, for ato'ms a negative g,',"(n) is ap-

200-
I I I I

150 150

t
o100 ~100

1'3

0
0 2

~ (a.)—
2

r(a. )

FIG. 1. Normaliied electron-. density distribution n(r) jno
around a proton in electron gas. - . - - (r, -2.07); -—

—4r,. =3), - - - - - (r, =4} and —(r = S). In the inset are

shown the Friedel oscillations on a magnified scale.

FIG. 2. Electron-density profiles around a proton for

r, = 5; —local density approximation, - -.- - including first gra-

dient correction to exchange-correlation potential. The
corresponding Friedel oscillations are magnified in the inset.



parently needed to improve upon the local density

results, as found by Herman et a/. " In view of this,
one might worry about the significance of gradient
corrections in the present problem. Since the bound

states in this problem are extremely shallow, it is rea-

sonable to take for g,',. '(n) the values which are cal-

culated for an inhomogeneous interacting electron gas.
For atoms or ions no a priori calculations of g, . (n)„ (2)

ex!St at present. The problem of H ion in the
Kohn-Sham theory and its relationship to the inhnitely

d!lute limit (r, ~) is of interest. This problem is

now being considered in detail by Shore and co-

workers.
We now turn to the question: Does the proton ex-

ist in a bound state with electrons in the metallic den-

sity range and if so, what is its electronic structure~

During the course of our numerical self-consistent cal-

culation, we found that bound states exist for all me-

tallic densities (r, =2.07—5) considered. The conver-

gence in our binding energies was not as good as that

in the electron density and potential. In the local den-

sity approximation, the binding energies, for example,
at r,. -2.07 and 5 are 0.00035 and 0.016 Ry, respec-

tively. With the first gradient correction taken into ac-

count, the binding energy of the electron at r, = 5 de-

creases to about 0.001 Ry, while this has only a small.

effect on the electron-density distribution. These
binding energies [as obtained by solving Fq. (2a) for

negative energy va!ues with the boundary condition in

Eq. (15)] are indeed tiny as compared to 1 Ry in a hy-

drogen atom.
The total perturbed electron density can be written

as a sum of the scattering and bound-state contribu-

tions:

hn (r) = hn„. (r) + hn/, (r)

Conservation of charge requires that 5n (r) d'r =1.
There are two electrons in the bound state

(IAnt, (r) d'r =2) as required by Eqs. (16) and (17).
We find that, in this case, thc scattering charge der!si~y

integrates to yield —1, i, c.,

hn„. (r) d'r = —I

which ensures the validity of Eq. (21). The total

charge of the proton is screened within a distance of
two Bohr radii, whereas the bound-state wave func-

tion, due to shallow binding, extends over a much

larger region '=20ao.
In Fig. 4, we have shown thc contributions of the

scattering and bound-charge densities to the screening

charge Z(R ) contained in a sphere of radius R for

var!oUs r valUcs, For all dcnsltlcs, thc pioton !s
screened within a radius, R —2ao. Within this screen-

ing IadlUs thc contr!but!of! of boUAd-chaigc dcnsltlcs

to the proton screening increases steadily with r, . For

example, at r, =-2.07„bound state contributes only

25 /0 of thc scrccfi!Ag, whereas this amounts to 80 jo of
the screening charge for r, ==5. For large

R, Z(A) +2 for bound states for —l and for

scattering states —as it should. It is also of interest to

note that the electron density at the proton site n(0)
approaches the ttmtttng value of' (1/m)aa ' f'or a hydro-

gen atom as r, increases. In the local density approxi-

rnation n (0) ==0,519, 0.394, 0.351, and 0.323ao ' for

r, =2.07, 3, 4, and 5, respectively. When gradient

r,. =5

0
t

20 30

r

/
/

/
/

/
I/

1.0

r, = 207 = 3

0.5 'l. 0
r (a.)—

FIG. 3. Comparison between electrostatic (—) and

exchange-correlation potential (- -.- -) in the local density ap-

proximation for r, =5. The first gradient correction (—--) to

the exchange-correlation potential is compared with its local

density value in the inset.

0 2 4 6 8 2 4 6 8
R (a,)—

FIG. 4. Screening charge of a proton due to bound (- -.- -)

and scattering states (—------). The solid line represents the

total screening charge within a radius R (a.u. ).
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corrections are included, one has to go to larger r,
values for n (0) to approach its limiting value of
(1/m)ao ' as is expected from a weaker binding.

The physical picture regarding the electronic struc-
ture of a proton in the metallic density range that em-

erges from our calculation is that of a very extended
H ion accompanied by an equally extended hole in

the continuum, Since in the HKS formalism, the
quantity which has a physical significance is the
ground-state electron density, one might wonder
about the physical relevance of these bound states.
This question has been discussed by Almbladh ej a/. 4

They have pointed out that the life time broadening"
of the single-particle states below the continuum due
to electron-electron interactions is larger than the
corresponding binding energy. Thus no distinction
between these shallow bound states and incipient
bound states can be made. Furthermore, the interac-
tion of these extended bound states with the ionic
cores of the lattice (neglected in the present calcula-

tion) would tend to make the bound states less stable.
These bound states should„ therefore, be viewed more
as resonant states.

VI. KNIGHT SHIFT AT p.
+ SITES

Recently, positive muons created in an anisotropic
parity violating decay of m+ mesons have been used to
probe the electronic structure of condensed matter.
Internal fields measured at p,

' sites have been
analyzed to provide information regarding the magnet-
ic coupling of the muon spin with the spin-polarized
conduction electrons in ferromagnetic metals. " The
complicated band structures of ferromagnetic metals
make a quantitative theoretical understanding of this
hyperfine interaction diNcult.

A related quantity, Knight shift in paramagnetic me-
tals, measures the electron spin density at the muon
site. A positive muon is about 200 times heavier than
an electron. Assuming that a positive muon can be
treated, like a proton, as a static point charge in an
electron gas, the results of the electron distribution
around a proton in the present calculation can be used
to predict Knight shift values at p,

" sites in metals.
This assumption is supported by a recent experiment
on Knight shift at p,

+ site in Pd which turns out to be

the same as that on the proton site.
There are several contributing mechanisms to

Knight shift of which the Fermi-contact term and
exchange-core polarizatiori are the most dominant
ones. The former is due to the interaction of the nu-

clear spin with the polarized conduction electrons,
through the Fermi-contact term; and the latter is due
to the interaction between the nuclear spin with

exchange-polarized core electron orbitals of the ion.
Since p,

+ is a point charge and does not have any such
conventional core structure in metals, this contribu-
tion is zero. The contact part of the Knight shift K at
a p, site is given by

K = —, 7rx, (yl:(0) ('

~here x, is the paramagnetic susceptibility. )&~(0) )'
is the density of the electrons on the Fermi surface at
a p.

+ site. It is to be noted that only s(l =0}electrons
contribute to the density at the origin,

The Pauli susceptibility X, can be measured, How-
ever, due to experimental difhculties, only a few me-
tals have so far been studied, This quantity can be es-
timated from theoretical calculations. Since both band
structure as well as many-body eAects inAuence the
value of X, „ its accurate determination from a theoret-
ical point of view is rather dificult. Vashishta and
Singwi' have calculated X, for the metallic density
range by including the exchange enhancement due to
many-body interactions and neglected the eft'ect of' the
periodic lattice. Their results agree reasonably well

with the experimental values for. the alkali metals.
Using their results for the exchange enhancement, q
and the present self-consistent electron densities at
r =0 due to s electrons on the Fermi surface, the
Knight shift values for r, =2.07, 3, ,4, and 5 are given
in Table I.

The Knight shift at a p,
+ site in any metal can be ob-

tained by interpolating the results in Table I. Thus for
Mg(r, = 2.65), Li(r, = 3.26), Pb(r, = 3.70), Na(r, . = 3.93),
and K(r, =4.86), the theoretical value for Knight shif't

in ppm units are, respectively, 116, 135, 151, 158, and
181; the corresponding experimental values of
Hutchinson e~ aI. are 86.8, 10.96, 132, 79, and 89.9.
ppm, respectively. Apart from Li, the results are in
semiquantitative agreement with experiment.

rs

5

'Includes the

TABLE I. Knight shift (in ppm) at a p,
+ site in simple metals.

x, '
~y~(0) ~'

(cgs vol. units) (inverse vol. units)

1.68 x 10 6 7.38

1.25 x 10 6 11,97
1.06 && 10-' 18,40

0.95 x 10-6 23.14

factor due to exchange enhancement.

Knight shift

(ppm)

125

163

184
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At this point it is of interest to compare the present
results on Knight shift with an earlier calculation by

Meier. " The latter author adopted an effective elec-
tron potential of' the Hulthen form —ae'/(e"' —1),
where the parameter a was determined using the vari-

able phase function approach. Using the s-wave den-

sity at the origin calculated from this potential by
Meier and the present exchange-enhanced Pauli sus-

ceptibility, the Knight shift values for Mg, Li, Na, and

K are, respectively, 112, 136, 167, and 224 ppm,
respectively. These results are rather in good agree-
ment with our present calculation. The reason for this

agreement is that the electron density at small r

(which is predominantly due to s waves) is largely
determined by the singular electrostatic potential. The
exchange-correlation part of the potential for r & ao, as

sho~n in Fig. 3 for. r, =5, forms only a small fraction

of the total potential. However, for large r this forms
a' significant part of the potential and thus n(r) [and
other electronic properties depending on the behavior
of n(r) at large r], using the Hulthen potential (which

does not contain contributions from exchange correla-
tion), is likely to be inaccurate.

The discrepancy in the Knight shifts between theory
and experiment could be due to several reasons: (a)
contributions from other mechanisms not considered
here and (b) neglect of band-structure eA'ects. Period-
icity of the lattice usually introduces higher angular
momentum components to the electron wave func-
tion. . This would lower the Knight-shift values ob-
tained here. Since alkali metals are known to be free-
electron-like and for which a jellium model is a good
approximation, it is surprising that our results for Na
and K diA'er almost by a factor of 2 from experiment. '
It should be kept in mind that the experiments of
Hutchinson et al. ' were not specifically designed to
measure Knight shifts, and Schenk' in a recent re-
view article has cautioned the reader in taking these
experimental values too seriously, Conclusive experi-
ments are definitely needed.
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