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Density matrix and x-ray structure factors in LiH
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Within the first-order density-matrix formalism of Lowdin, we show how to obtain the density matrix in

closed-shell crystals setting up the inverse of the overlap matrix between Bloch sums at a few selected k

vectors. Overlap effects in x-ray structure factors in LiH are taken into account in the calculations avoiding

to perform a spherical average of the charge density with regard to each nucleus. Using hydrogenic wave

functions with optimized screening for LiH, we obtain structure amplitudes in better agreement with

experiment than previous calculations.

I. INTRODUCTION

Since Hylleraas' pioneering work' on cohesive
energy, solid lithium hydride has attracted con-
siderable interest because of its simplicity from
the point of view of the electronic structure. The
very diffuse nature of hydride-ion wave functions
gave in early theoretical works results conflicting
with experiments and stimulated even more the
investigations in LiH both for their intrinsic inter-
est or/and as a test before considering more com-
plicated crystals.

It is now well establj. shed that a proper account
of overlap effects is essential in understanding
physical properties of LiH. Lundqvist et a/. ' first
pointed out the importance of overlap effects in

calculation of cohesive energy of LiH. Berggren
et al. ' have shown that overlap effects are basic
to bring Compton-profile calculations in agx'ce-
ment with experiments', further theoretical and

experimental investigations' ' have confirmed this
fact. Overlap effects are also very important in

determining crystal charge density and elastic x-
ray scattering as demonstrated by%aller et al. '
and by Kahane et al. '

In this paper, Sec. II, within the first-order
density-matrix formalism of Lowdin, "we derive
an efficient procedure for obtaining the density ma-
trix in crystals composed by closed-shell units and

we apply it to the case of LiH crystals. Our pro-
cedure, compared with previous adhoc methods' '
developed for the specific case of LiH crystals and

s-like wave functions, turns out to be quite simple
and manageable basically because translational
symmetry is fully exploited from the very begin-
ning. In Sec. III we calculate the x-ray structure
factors, which are primarily related to the crys-
tal charge density. For this purpose we use a
continuous Gaussian transform of Slater-type
orbitais (STO) following the computational tech-
nique introduced by Lafon and Lin" in their work

on band structure of lithium. With this technique
we can avoid to perform a spherical average of
the charge density with regard to each nucleus.
Our results are then compared both with experi-
ment of Calder et al."and with previous calcula-
tions. "'

II. DENSITY MATRIX IN CLOSED-SHELL CRYSTALS

A. Expression of density-matrix coefficients

The crystal structure of LiH is fcc with lattice
constant" ao = 7.720 a.u. The fundamental vec-
tors 7', and g, of the direct and reciprocal lattice
are given by r, = (ao/2)(0, 1, 1), g, =(2w/a, )(-1,1, 1)
and cyclic permutations, respectively. The unit

cell has a basis with hydride and lithium ions in

the positions d, = 0 and d, = (ao/2)(1, 0, 0).
Following most of the works in the literature,

we adopt the ionic picture for LiH and assume the
simple closed- shell electronic configuration Li'
1s', H 1s', where 1s functions are STO's of the
form Q(r)= (& /&)' ~ e ". For the numerical work
the screening n« for Li' ions is set equal to the
free ion value aL, =S ——'=2.6875 a.u. The screen-

16
ing, &„for hydride ions is taken ~„=0.7724, which

is the optimized screening of an hydride ion in the
point charge field for the rest of the lattice"; this
screening leads to Compton profile~' in close
agreement with experiments. '

The problem of the explicit determination of
density matrix in closed-shell crystals is not
satisfactorily settled yet (for a review see, for
instance, Refs. 6 and 15); usually one has to adopt
the series expansion method of Lowdin" with trun-
cation to second order even when off-diagonal
terms in overlap matrix are not small enough to
justify it; in the particular case of LiH crystals,
in which there are only s states, ad hocpro-
cedures have been developed. '"' We present now

a workable procedure for obtaining the density
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matrix in any cl.osed-shell crystal; the applica-
tion to LiH crystals will show the practical con.—

venience and simplicity.
According to a general result of Lowdin, "the

spinless density matrix for crystals composed
by closed-shell units (ions, atoms, or molecules)
is given by

p(r, r') = 2 g + (r- d„r)T„&
fn n

fwhich can be indicated at T„„(f)with w= &„-& ]
are the Fourier transforms in direct space of the
matrix elements T (k), which are periodic func-
tions in the reciprocal l.attice. It is important to
notice that Eq. (3) is automatically satisfied when

elements T„;„pare given by Eq. (7), as it can
be easily verified; Eq. (7) thus constitutes an
important stage toward the explicit inversion of
the overlap matrix (2).

xP„(r'-d„—7„),
where T and T„aretranslation vectors, p and v

label all occupied orbitals in the unit cell in the
appropriate centers d„and g, matrix T is the in-
verse of the overlap matrix S, whose elements

S„,„~=(P„(r-d„—T )
~
P„(r-d„—T„)),(2)

are two-center integrals between atomic (or
molecular) orbitals. The overlap integrals (2) can
be expressed in terms of independent parameters"
and computed with standard programs. The basic
relation

B. Computation of density-matrix coefficients

The crucial point to compute the density-matrix
coefficients T„„(r)is to perform the sum over k
in Eq. (7). The problem of optimized choices of k
vectors has been considered in the literature""
and we discuss here the application to our specific
problem.

Given a generical function F(k} periodic in k
space, consider first the sum over the Brillouin
zone

SZ

fn' n na na fn m
S - - T-,- =5, 5 ~

p'F

(3)
S= —'P F(k).

N

is known as the Lowdin. theorem. "
Equation (3) determines in principle the matrix

elements T„;„;,but we provide here a more
N~ n

convenient expression for them starting from the
standard Bloch sums

4„(k,r) = Q e' '~m Q„(r-d„-r ), (4)
'm

where N, is the number of unit cells of the crys-
tal. At a generical. k vector, we consider the
overlap matrix S(k) with elements

S (k) = (C „(k,r)
~
4„(k,r)), (6)

and rank equal to the number of occupied orbitals.
The matrix S(k) can be easily inverted by standard
programs because of its (usually} small rank and
we indicate by T(k) its inverse. At any k vector,
the contribution to the crystal density matrix from
the Bloch sums (4) is [regardless of the fact that
the basis functions (4) are not normalized]

~(r, r') = 2 g 4 ~ (k, r) T„„(k)4„(k,r') .

Summing up this expression over k and using Eq.
(4), we obtain Eq. (1) for the crystal density ma-
trix with

T T (k)e -ik (0 i)-
f' Tng~ "~n

Equation (7) shows that matrix elements T„;

and thus obtain

S =Eo. (10)

As in Ref. 18, we consider the set of N1N2N3
mesh points k„defined by

PPlg & 7223
k = —g+ —g+ —'

g O~m &N —1
1 1 3

where N„N„N,are arbitrary (and small} positive
numbers. If we consider the sum over the mesh
points (11),

mesh

(12)

we obtain

(13)S h= Fo+ Q'F„,
~sr

where &~ is a generical vector of the "super-
lattice" with fundamental vectors N, 7„N,T„N373.
Comparing Eq. (10) with Eq. (13), we see that
S „„differsfrom the exact sum S because of the
appearance of the Fourier coefficients F~ cor-
responding to the superlattice vectors 7„.If

We can expand F(k} in Fourier series with transla-
tion vectors T'„

F(k)= g F„e''I
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1S= M F(k)e' '~.

if T„=nyTy+ pl27'2+6373 has indices n,. much smaller
than N, , we can evaluate Eq. (14) using the mesh
points (11).

In the specific case of LiH crystals, we have two
Bloch sums corresponding to ls STO's of Li'
and H ions. At a generical k vector, the 2 & 2

overlap matrix S„„(k)is inverted by hand and the
sum over k to obtain T „P„)is performed on the
mesh points (11) with N, = ~n, ~+N and N=5, after
testing the very good reliability of the results as

(14)

function F(k) is reasonably smooth in k space, or
equivalently if F(T) is reasonably peaked in direct
zpppe (and this is certainly true for the density
matrix coefficients) we can replace with negligible
errors Eq. (8) by Eq. (12).

The same reasoning can be applied to perform a
sum of the type

X is varied and after comparison with the cluster
inversion method of Ref. 6; this means that a
mesh of about 125 points was more than sufficient
for our case. The density-matrix coefficients
T,„(r) are reported in Table I; T (T) have been
neglected only for ~T

~

larger than
~

7', + T, + T,
~

= ~12 (a, i2), i.e. , besides the 13th shell (13 shells
include 179 ions), because a large number of
neighbors is essential for this kind of crystal. To
show in a more transparent way the simplification
achieved with the above described procedure, let
us suppose to neglect the overlap between Li' and
H wave functions; in this case we have, say, for
the hydride- ions sublattice

1
THH~k~- ~

~t' So

where the sum over v extends in our calculations
to the first 87 H neighbor ions; using the relation
g, T,. = 2mb„. and the mesh points (11) we obtain

1 cos2vIm, (n, i'N, ) + m, (n, i'N, ) + m, (n, !N,) ]
Q„S,„cos2n[m,(v, , 'N, ) + m, (v, !'N,) + m, (v, !N,) ]

Only slightly more involved expressions have to
be considered for taking into account Li and H

wave functions mixing, which is small but not
negligible, as can be seen. from Table I.

Before concluding this section, we note that
in most closed-shell crystals {which include solid
rare gases, alkali halides, several molecul. ar
crystals) the density-matrix coefficients are more
localized in direct lattice and the number of mesh
points (11) sufficient for their evaluation is ex-
pected to become smaller. Of course, one can
exploit the symmetry operations of the crystal
point group for a further reduction of the number
of independent k vectors in the mesh (11). In

non-closed- shell crystals or also in closed- shell
crystals when other localized orbital. s are added
to the minimal basis set, the sum procedure of
Sec. IIB can again be applied but the coefficients
T„„(k)appearing in Eq. (6) require a detailed band-
structure calculation; T I%) can be obtained if
the expansion coefficients of the occupied crystal
states on the basis functions (4) are known.

IH. X-RAY STRUCTURE FACTORS IN LiH

The structure amplitudes for scattering of suf-
ficiently hard x rays" are primarily related to the
Fourier transforms p(g) of the crystal charge

TABLE I. Density-matI". ix coefficients for LiH crystals. Screening parameters for 1s functions are +Li ——2.6875 and
eH-—0.7724. Two-center distances are in units of ao/2.

Two-center
distance F10

TH H

TLi Li

1.2447
1.0175

1.217 x 10 1.782 x 10
4.822 x 10 3 2.009 x 10 3

1.793 x 10 '
-6.43 x 10 4

7.088 x 10+
—3.79 x 10 4

—2.929 x 10
-1.80 x 10 4

-5.647 x 10
1.26 x 10

Two-center
distance

TLi H TH Li -4.700 x 10 1.123 x 10 ~ 4.135 x 10 3 -1.293 x 10 3 1.49 x 10 4 —6.81 x 10 4
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density. In LiH crystal. s we write factors. The structure factors are given by

p„,„(g)= f p(r, r)e "'dr
C

PLi(g) + PH {g) I

where we have divided pL, gg} into two contribu-
tions corresponding to the pseudoions

p, {g)=2+ T,
„ fP*„,(r)P„(r-R„)

x e"'dr, (16a)

x e'~'dr {16b)

the sum over p. , v runs over all neighbors of H

and I i up to a given distance (to include in our
calculations 1 IB ions). The phase factor
exp(fg d, ) corresponding to the reciprocal-lattice
vector g = (2n/a, )(h, k, I) is + 1(-1) when h, k, I are
all even (odd) integers.

We have here to consider certain one- and tseo-
center integralsinvolving both plane u~aves and
STO's. One- center integrals are immediate. The
evaluation of two-center integrals is a technical
but not trivial problem. %aller et al. ' simplified
calculations by performing a spherical average of
the charge density with regard to each nucleus;
this corresponds to expand the pla~e wave e'~')

into spherical harmonics keeping only the zero-
order Bessei function j,(gr). Kahane et al. ' took
into account higher-order spherical harmonics with
a quite laborious procedure. In this paper we
have found it very convenient to adopt the techni-
que of Lafon and Lin" for the calculation of the
matrix elements of e'~'~. This technique uses con-
tinuous Gaussian transforms of STO's and ex-
ploits the fact that a two-center product of Gaussians
is a simple Gaussian on a third center; it is ap-
plicable" to s, P, d, . . . , 3TO's, and allows straight-
forward calculations without performing spherical
average of the charge density. The possibility of
carrying out calculations without any spherical
average is found to be important in. LiH even if
the pseudoions structure factors, Eqs. (16a) and
(16b), are rather different; in the case, for in-
stance, of diamond this possibility is even more
important and allows the calcul. ation of the struc-
ture amplitudes of "forbidden ref lexions. "

In Table II, we give the Fourier transforms
PL,s(g} including the neglecting overlap effects
for comparison. The importance of overlap ef-
fects is evident.

In order to compare our calculations with ex-
periment, we take into account the thermal ef-
fects in the usual way through the Debye-%aller

+ p„(g)exp

with BL, = 1.1 A' and B„=1.8 A' as measured by
Calder et al."by x-ray and neutron diffraction.
The results are reported in Table II together with
the experimental results of Calder et al. ; these
measurements were put on absolute scale" by
comparing ref lexions from LiH with ref lexions
from NaCl. In order to check the agreement be-
tween theory and experiments we calculate the
ratio

(18)

and we obtain for the 21 independent ref lexions
measured by Calder et al."the value R» = 0.0171;
for even and odd ref lexions we have R2g 0,0130
and R,, = 0.0251, respectively; these are indeed
good values for this kind of experiments.

To compare our results with previous calcula-
tions" (and also to obtain a check independent
from the precision of the absolute scale of Calder
et aL "}we have normalized our calculated struc-
ture factors in such a way that E,«(calc) E2pp

(meas), which is the strongest reflexion. Indica-
ting by R„the ratio, Eq. (18), after normalization,
we obtain R„3,=0.0188, R „'3,=0.0151, R~

„

=0.0256, which confirm the better agreement of
our results with experiment with respect to pre-
vious calculations. "

For sake of completeness we have calculated
structure factors in LiH with other values of the
screening as, namely, o.„=0.7208 (I undqvist's
calculation' ), o.„=0.83'I (cluster approach'}, and o„
= 0.5715 and n„=1.0074 for spin-up and spin-
down electrons (Hurst's unrestricted Hartree-Fock
calculation" ). In Table III we report the ratio If
of Eq. (18) and the ratio R„after normalization
for our calculations and those available in the
literature. From Table III we see that the values
of n„ofHurst" and Lundqvist' give closer agree-
ment with x-ray elastic scattering.

A rather subtle but interesting point is the com-
parison of the structure factor F333 with E5g1
(or similarly E44„E,«and F55' E7$$). In a
spher ical averaged charge-density approximation
we would have E333 E $ since the corresponding

~ g ~
are equal; thus the difference between E»,

and F5yy is sensitive to the deviations of charge
density from spherical. symmetry in the cubic
fcc crystals. In the calculations of Kahane et al. '
using Kunz" functions, the structure factors for



DEN SIT Y MATRIX AN D X-RAY STRUCTURE FACTORS IN Li H 3425

I

G4

hG

~IW

t
Q
Q4
Q
M

3
Q

P

a
~H

ed

0

at

0
Q)

cd

0
0

cd

0
t M M QO cO
CD C!0 t

CD

Cg

00 W CD ~ CO
QO

00 CO ~ t
CD W t CO

Q Q O Q Q

CO CD 00 CD ~ t
CO ~ M W t

CD W CO t M CD
CO

0 O 0 0 0 0

lQ 0
CD CD t CO 00
00 LA

CD 0 CD 0 0

cd

Q
Q
0
E
4
QP

t0
Q
tD

0

Q

Q

'a

Q

cd

eS

Q
cd
Q
'a
cd

~+ ~

cO 0

a!

00
+J ~

0
3

6 e
0
R at

R

0

0

0

CQ ~
Q
6
'4

C4
~t+I

cd

0
C
Cl

CO

0
Q
cd

Q

Q

M

R

0
at

~~

g u

X

4
at
V
0

rh
Me

'Q cd

QQ e~

~ 0~

G4
cd

0

~E
g R4

"Ct at
-(

Qj
bS4
cd

0

G4
cd

S
0

0

0 N

0

Q
Q

cd

cO
CD M C!0
CD ~ ~ LQ
CD CD

CD CO CD LQ

00 t
00 CD t LQ

O O Q 0 O

CD cO
LQ

Q O Q O O

Cb 00 Qo
00 CD LQ CD
00 ~ ~ 0 oO QO

Cg
~ ~ ~ ~ ~0 0 0 0 0 0

CO m ~ CD CO oO ~ QO 0
00 & W cO CD 00 t CO 00 0 ~ CD 0 QO CO t- CO

Q~QQOQ

CO
CD

0
00

LQ ~ CO M 00
Q Q CD + 00

0

CO t 00
CD 00 QO CD

QQ
CO

0 O Q O

0 CD 00
CD CD

co
Q 0 0 Q 0

CDWCDOCOCO
CD ~ ~ M QO 00

O Q Q Q O O

CD
00 ~ t CO

CO
CO

~ ~ ~ ~

0
O N 00

CO
CD

~ ~ ~

O

QO
CD A CD 00 0
CD 00 W H O

00 t t
Q 0 Q O

QO CD QO
CD CD CD CD0 CV H CO CD

CO CO CO LQ

0 0 Q O O

CD Cb
C'1

O 0 0 O

CD CO M CD0 00 LQ

0 0 Q CD

LQ 00
00
00

~ ~

LQ ~ ~ ~ t
t

CO

0 0 0 0

CD CO
00 00 00 LQ t

CD

Q O Q O O
N N

~ ~ ~ 0
O Q CD Q

0 O
~1 00
A A

C4

Q
A A A0 C!Q

A A A

A A A

0
0 A 0 0

CO

O H N
~I

C!0
A % A

CO ~ CO

A A A
LQ

A A A
LQ t

CD CD CD 00 0 CD
t t ~ W ~ W CD ~ W 0 00 t

CQ

0 0 Q Q 0 Q O Q Q 0 0 0



G. GROSSO AND G. PASTORI PARRA VICINI

TABLE III. Values of R and RN for several choices of the screening parameter G. H, the val-
ue 0.&& is 2.6875. All calculations include overlap effects; in the calculations reported in the
last two columns the spherical average of charge density has been performed.

& H
= 0.7208 O.'8 ——0.7724 QH= 0.837

O.'H = 0.5715
uH = 1.0074

Kahane
et al.

(Ref. 9)

Wailer
et al.

(Ref. 8) n H
——0.7724

R2g

R2g

0.0181

0.0158

0.0223

0.0171

0.0130

0.0251

0.0274

0.0216

0.0383

0.0225

0.0181

0.0307

0.0213

0.0178

0.0279

Rg
+

0.0150

0.0091

0.0262

0.0188

0.0151

0.0256

0.0402

0.0247

0.0694

0.0232

0.0144

O.Q397

0.0769

0.0303

0.1645

0.1833
0.1057

0.0248

0.0196

0.0345

F», and F», (F442, Fgoo and F»„F7|,) were not in
the same trend as experiments. In our calcula-
tions of Table II we have a difference which is
much smaller than that of experiments; also using
the unrestricted Hartree- Fock screenings we do
not obtain a substantial improvement under this
aspect, despite the increase of the overlap be-
tween Li' and H wave functions when a„=0.5715.
Were the experimental values at same

~ g ~

con-
firmed, it would be necessary for their explana-
tion. to improve the ionic picture for LiH allow-
ing some mixing of 2s functions of lithium.

The main results and conclusi6ns of this paper
can be summarized as follows. (i) The density
matrix in closed-shell crystals can be efficiently
calculated setting up at a few selected k vectors

the inverse of the overlap matrix between Bloch
sums. In non- closed- shell crystals the sampling
procedure of k vectors can be adopted, combined
with a band-structure calculation. (ii) The compu-
tational technique of Lafon and Lip then allows
simple calculations of x-ray structure factors,
without spherical average of the charge density. It
is thus possible to calculate differences in structure
factors for independent ref lexions with the same

~g ~
and/or "forbidden ref lexions, "which are

particularly sensitive to electronic wave functions
responsible of crystal binding. (iii) In the case of
LiH we have shown that screened hydrogenic wave
functions, which explain Compton profile, are also
in very good agreement with x-ray elastic scat-
tering.
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