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Density matrix and x-ray structure factors in LiH
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Within the first-order density-matrix formalism of Lowdin, we show how to obtain the density matrix in
closed-shell crystals setting up the inverse of the overlap matrix between Bloch sums at a few selected k
vectors. Overlap effects in x-ray structure factors in LiH are taken into account in the calculations avoiding
to perform a spherical average of the charge density with regard to each nucleus. Using hydrogenic wave
functions with optimized screening for LiH, we obtain structure amplitudes in better agreement with

experiment than previous calculations.

I. INTRODUCTION

Since Hylleraas’ pioneering work' on cohesive
energy, solid lithium hydride has attracted con-
siderable interest because of its simplicity from
the point of view of the electronic structure. The
very diffuse nature of hydride-ion wave functions
gave in early theoretical works results conflicting
with experiments and stimulated even more the
investigations in LiH both for their intrinsic inter-
est or/and as a test before considering more com-
plicated crystals.

It is now well established that a proper account
of overlap effects is essential in understanding
physical properties of LiH. Lundqvist et al.? first
pointed out the importance of overlap effects in
calculation of cohesive energy of LiH. Berggren
et al.® have shown that overlap effects are basic
to bring Compton-profile calculations in agree-
ment with experiments®; further theoretical and
experimental investigations®™” have confirmed this
fact. Overlap effects are also very important in
determining crystal charge density and elastic x-
ray scattering as demonstrated by Waller et al.®
and by Kahane et al.®

In this paper, Sec. II, within the first-order
density-matrix formalism of Lowdin,'® we derive
an efficient procedure for obtaining the density ma-
trix in crystals composed by closed-shell units and
we apply it to the case of LiH crystals. Our pro-
cedure, compared with previous ad koc methods®™
developed for the specific case of LiH crystals and
s-like wave functions, turns out to be quite simple
and manageable basically because translational
symmetry is fully exploited from the very begin-
ning. In Sec. III we calculate the x-ray structure
factors, which are primarily related to the crys-
tal charge density. For this purpose we use a
continuous Gaussian transform of Slater-type
orbitals (STO) following the computational tech-
nique introduced by Lafon and Lin'* in their work
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on band structure of lithium. With this technique
we can avoid to perform a spherical average of
the charge density with regard to each nucleus.
Our results are then compared both with experi-
ment of Calder ef al.'? and with previous calcula-
tions.®?

II. DENSITY MATRIX IN CLOSED-SHELL CRYSTALS
A. Expression of density-matrix coefficients

The crystal structure of LiH is fcc with lattice
constant'® @;=7.720 a.u. The fundamental vec-
tors 7, and g, of the direct and reciprocal lattice
are given by 7,=(a,/2)(0,1,1), g,=(2n/ay)(-1,1,1)
and cyclic permutations, respectively. The unit
cell has a basis with hydride and lithium ionsin
the positions d, =0 and d, = (2,/2)(1,0,0).

Following most of the works in the literature,
we adopt the ionic picture for LiH and assume the
simple closed- shell electronic configuration Li*
1s2, H™ 1s%, where 1s functions are STO’s of the
form ¢(r)= (a3/m)/2 ¢™7, For the numerical work
the screening ay, for Li* ions is set equal to the
free ion value a; ;=3 - 2=2.6875 a.u. The screen-
ing ay for hydride ions is taken ay=0.7724, which
is the optimized screening of an hydride ion in the
point charge field for the rest of the lattice'*; this
screening leads to Compton profile®*’ in close
agreement with experiments.’

The problem of the explicit determination of
density matrix in closed-shell crystals is not
satisfactorily settled yet (for a review see, for
instance, Refs. 6 and 15); usually one has to adopt
the series expansion method of Lowdin'® with trun-
cation to second order even when off-diagonal
terms in overlap matrix are not small enough to
justify it; in the particular case of LiH crystals,

.in which there are only s states, ad hoc pro-

cedures have been developed.?*® We present now
a workable procedure for obtaining the density
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matrix in any closed-shell crystal; the applica-
tion to LiH crystals will show the practical con-
venience and simplicity.

According to a general result of Léwdin,' the
spinless density matrix for crystals composed
by closed-shell units (ions, atoms, or molecules)
is given by

p(F, =23 ; 5 (F-d,- T Tt iy
124 min

x¢,(F" -4d,-7,), (1)

where ? and ? are translation vectors, u and v
label all occup1ed orbltals in the unit cell in the
appropriate centers d and d,, matrix 7T is the in-
verse of the overlap matrlx S, whose elements

su?m.v?"= <¢u(;"’ au“?m)lqbu T- &,-—- ?n» , (2)

are two-center integrals between atomic (or
molecular) orbitals. The overlap integrals (2) can

be expressed in terms of independent parameters'®

and computed with standard programs. The basic
relation

; Sut vty Doty uede = Ouur 03 20 3)

n

is known as the Léwdin theorem.®

Equation (3) determines in principle the matrix
elements Tz b but we provide here a more
convenient expressxon for them starting from the
standard Bloch sums

2 et g ((-3,-7,), @
\/}\70 ;m B (3 m

where N, is the number of unit cells of the crys-
tal. Ata generwal Kk vector, we consider the

overlap matrix S(k) with elemeénts
S (®)=(2,k,7)|8,E&7D), )

and rank equal to the number of occupied orbitals.
The matrix S(k) can be easily inverted by standard
programs because of its (usually) small rank and
we indicate by T(k) its inverse. At any k vector,
the contribution to the crystal density matrix from
the Bloch sums (4) is [regardless of the fact that
the basis functions (4) are not normalized]

o,(k,T)=

e, F)=2) o4k, DT, 0e,KT). (6
uv
Summing up this expression over k and using Eq.

(4), we obtain Eq. (1) for the crystal density ma-
trix with

1 iR -7
Tn ?m,v;" - Z T ' (1 1") . (7)

Equation (7) shows that matrix elements T ,;
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fwhich can be indicated at T, (F) with 7=7,- 7]
are the Fourier transforms in direct space of the
matrix elements T, (k), which are periodic func-
tions in the reciprocal lattice. It is important to
notice that Eq. (3) is automatically satisfied when
elements 7,7 7 are given by Eq. (7), as it can
be easily ver1f1ed Eq. (7) thus constitutes an
important stage toward the explicit inversion of
the overlap matrix (2).

B. Computation of density-matrix coefficients

The crucial point to compute the density- matrlx
coefficients Tu,(*) is to perform the sum over k
in Eq. (7). The problem of optimized choices of k
vectors has been considered in the literature'™'®
and we discuss here the application to our specific
problem.

Given a generical function F(k) periodic in Kk
space, consider first the sum over the Brillouin
zone

S=— 2 F@. ®)

We can expand F(l'z) in Fourier series with transla-
tion vectors T, |

F®)=2 F, % | )
;"
and thus obtain

S=F,. (10)

As in Ref. 18, we consider the set of NN, N,
mesh points k,,, defined by

Em _1
N
(11)

where N,,N,,N, are arbitrary (and small) positive
numbers. If we consider the sum over the mesh
points (11),

1 mesh
Sm&ah= N1N2N3 % F(ku), (12)
we obtain
Spesn= Fo+ E,FN’ (13)
™

where ?,, is a generical vector of the super-
lattice” with fundamental vectors N,T,,N,T,, N,T,.
Comparing Eq. (10) with Eq. (13), we see that

S mesn differs from the exact sum S because of the
appearance of the Fourier coefficients F, cor-
responding to the superlattice vectors ?,,. If
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function F(E) is reasonably smooth in k space, ov
equivalently if F(T)is veasonably peaked in divect
space (and this is certainly true for the density
matrix coefficients) we can replace with negligible
errors Eq. (8) by Eq. (12).

The same reasoning can be applied to perform a
sum of the type

1
N

c

S=

? F(E)e‘;';n; (14)

if ¥,=n,7, +n,7,+n,T, has indices n; much smaller
than N;, we can evaluate Eq. (14) using the mesh
points (11).

In the specific case of LiH crystals, we have two
Bloch sums corresponding to 1s STO’s of Li*
and H™ ions. At a generical Kk vector, the 2X 2
overlap mgtrix SW(E) is inverted by hand and the
sum over Kk to obtain Tw(?,,) is performed on the
mesh points (11) with N, = |, |+ N and N=5, after
testing the very good reliability of the results as

0"'(”"1)
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N is varied and after comparison with the cluster
inversion method of Ref. 6; this means that a
mesh of about 125 points was more than sufficient
for our case. The density-matrix coefficients
T,,(7) are reported in Table I; T, (7) have been
neglected only for |7 | larger than |7,+7,+7,]
=V12 (a,/2), i.e., besides the 13th shell (13 shells
include 179 ions), because a large number of
neighbors is essential for this kind of crystal. To
show in a more transparent way the simplification
achieved with the above described procedure, let
us suppose to neglect the overlap between Li* and
H™ wave functions; in this case we have, say, for
the hydride-ions sublattice

- 1
Ty n(k)= Z/ S pikT,
vYou

where the sum over v extends in our calculations
to the first 87 H™ neighbor ions; using the relation
g, +T,=2m6,;,; and the mesh points (11) we obtain

cos2n[m, (n,/Ny) + my(n,/N,) + my(ny/N,) |

Tanl)= NN,

mymom3

Only slightly more involved expressions have to
be considered for taking into account Li and H™
wave functions mixing, which is small but not
negligible, as can be seen from Table I.

Before concluding this section, we note that
in most closed-shell crystals (which include solid
rare gases, alkali halides, several molecular
crystals) the density- matrix coefficients are more
localized in direct lattice and the number of mesh
points (11) sufficient for their evaluation is ex-
pected to become smaller. Of course, one can
exploit the symmetry operations of the crystal
point group for a further reduction of the number
of independent k vectors in the mesh (11). In

27, S0y €0S21[m (v, /N ) + my(v,/Np) + my(v /Ny ]

f

non-closed- shell crystals or also in closed- shell
crystals when other localized orbitals are added

to the minimal basis set, the sum procedure of
Sec. IIB can again be applied but the coefficients
T,,,(E) appearing in Eq. (6) require a detailed band-
structure calculation; TW(E) can be obtained if

the expansion coefficients of the occupied crystal
states on the basis functions (4) are known.

III. X-RAY STRUCTURE FACTORS IN LiH

The structure amplitudes for scattering of suf-
ficiently hard x rays'® are primarily related to the
Fourier transforms p(g) of the crystal charge

TABLE 1. Density-matrix coefficients for LiH crystals. Screening parameters for 1s functions are «p; =2.6875 and

ay =0.7724. Two-center distances are in units of a(/2.

Two-center

distance 0 V2 Vi V6 V8 V10 V12
Tun 1.2447 -1.217x 107" 1.782x 1077 1.793x 107  7.088x 107 _2.929x 107 _5.647x 1073
Trivn 1.0175 4.822x 1070 2.009x107° _6.43 x10* -3.79 x10% _1.80 x10* 1.26 x107
Two-center
distance 1 V3 V5 “9) V9), Vil
Tpig=Tur  —4.700x1077  1.123x 1077 4.135x1073  _-1.293x107° _1.49 x10* _6.81 x107™
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density. In LiH crystals we write
- 1 - s,
@)= fp(r,re dr

c

=PL‘(§)+PH (é)v (15)

where we have divided py, (&) into two contribu-
tions corresponding to the pseudoions

PLi (§)=22 TLlyf¢£{(F)¢y(F" —ﬁp)
x e!®F gy ) (16a)
pu@=2e%% > Ty, [oaDe.F-R,)

X el®f gy, (16b)
the sum over p,v runs over all neighbors of H
and Li up to a given distance (to include in our
calculations 179 ions). The phase factor
exp(i§°az) corresponding to the reciprocal-lattice
vector & =(2n1/a,)(h, k, 1) is + 1(=1) when k, k, [ are
all even (odd) integers.

We have here to consider certain one- and two-
center integrals involving both plane waves and
STO’s. One-center integrals are immediate. The
evaluation of two-center integrals is a technical
but not trivial problem. Waller ef al.® simplified
calculations by performing a spherical average of
the charge density with regard to each nucleus;
this corresponds to expand the plane wave el
into spherical harmonics keeping only the zero-
order Bessel function j,(g7). Kahane et al.® took
into account higher-order spherical harmonics with
a quite laborious procedure. In this paper we
have found it very convenient to adopt the techni-
que of Lafon and Lin'! for the calculation of the
matrix elements of e'¥¥, This technique uses con-
tinuous Gaussian transforms of STO’s and ex-

ploits the fact that a two-center product of Gaussians

is a simple Gaussian on a third center; it is ap-
plicable! to s,p,d,..., STO’s, and allows straight-
forward calculations without performing spherical
average of the charge density. The possibility of
carrying out calculations without any spherical
average is found to be important in LiH even if
the pseudoions structure factors, Eqs. (16a) and
(16b), are rather different; in the case, for in-
stance, of diamond this possibility is even more
important and allows the calculation of the struc-
ture amplitudes of “forbidden reflexions.”

In Table II, we give the Fourier transforms
pm“(é) including the neglecting overlap effects
for comparison. The importance of overlap ef-
fects is evident.

In order to compare our calculations with ex-
periment, we take into account the thermal ef-
fects in the usual way through the Debye-Waller

factors. The structure factors are given by

- - B 2
FL;H@) =p 4(8) exp <—175'1;L§£">

+oﬂ<§)exp<~—~——‘ﬁ;;ﬁ ) : (an

with B, =1.1 A® and B, =1.8 A? as measured by
Calder et al.'? by x-ray and neutron diffraction.
The results are reported in Table II together with
the experimental results of Calder et al.; these
measurements were put on absolute scale'? by
comparing reflexions from LiH with reflexions
from NaCl. In order to check the agreement be-
tween theory and experiments we calculate the
ratio

e 2] Fass 1= 1 Fenrel] 19)

25 | F poas |

and we obtain for the 21 independent reflexions
measured by Calder et al.'? the value R, =0.0171;
for even and odd reflexions we have R}, =0.0130
and R;,=0.0251, respectively; these are indeed
good values for this kind of experiments.

To compare our results with previous calcula-
tions®® (and also to obtain a check independent
from the precision of the absolute scale of Calder
et al.'®) we have normalized our calculated struc-
ture factors in such a way that F,(calc) = F,y,
(meas), which is the strongest reflexion. Indica-
ting by R, the ratio, Eq. (18), after normalization,
we obtain R, ,,=0.0188, R}, =0.0151, R} ,,
=0.0256, which confirm the better agreement of
our results with experiment with respect to pre-
vious calculations.®®

For sake of completeness we have calculated
structure factors in LiH with other values of the
screening @y, namely, a,=0.7208 (Lundqvist’s
calculation?®), a=0.837 (cluster approach®), and ay
=0.5715 and a,;=1.0074 for spin-up and spin-
down electrons (Hurst’s unrestricted Hartree-Fock
calculation'®). In Table III we report the ratio R
of Eq. (18) and the ratio R, after normalization
for our calculations and those available in the
literature. From Table III we see that the values
of ayof Hurst'* and Lundqvist® give closer agree-
ment with x-ray elastic scattering.

A rather subtle but interesting point is the com-
parison of the structure factor F,;; with F;,

(or similarly F,,,, Fg, and Fg,, F;,). Ina
spherical averaged charge-density approximation
we would have F,;,=F,,, since the corresponding
| € | are equal; thus the difference between Fg,
and F;,, is sensitive to the deviations of charge
density from spherical symmetry in the cubic

fcc crystals. In the calculations of Kahane ef al.®
using Kunz®® functions, the structure factors for
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TABLE III. Values of R and Ry for several choices of the screening parameter ay; the val-
ue ay, is 2.6875. All calculations include overlap effects; in the calculations reported in the
last two columns the spherical average of charge density has been performed.

Kahane Waller

ay=0.5715 et al. et al.
@y=0.7208 ay=0.7724 «y=0.837 «@yz=1.0074 (Ref.9) (Ref.8) ay=0.7724

Ry 0.0181 0.0171 0.0274 0.0225 .. e 0.0213
R3y 0.0158 0.0130 0.0216 0.0181 tet e 0.0178
R34 0.0223 0.0251 0.0383 0.0307 e e 0.0279
R”21 0.0150 0.0188 0.0402 0.0232 0.0769 cee 0.0248
R;,21 0.0091 0.0151 0.0247 0.0144 0.0303 tee 0.0196
R;,,21 0.0262 0.0256 0.0694 0.0397 0.1645 v 0.0345
R; 0.1833
Ry 0.1057

Fay and Fgy, (Fu,, Feoo and Fyy, F,;) were not in
the same trend as experiments. In our calcula-
tions of Table II we have a difference which is
much smaller than that of experiments; also using
the unrestricted Hartree- Fock screenings we do
not obtain a substantial improvement under this
aspect, despite the increase of the overlap be-
tween Li* and H™ wave functions when ag=0.5715.
Were the experimental values at same |g | con-
firmed, it would be necessary for their explana-
tion to improve the ionic picture for LiH allow-
ing some mixing of 2s functions of lithium.

The main results and conclusions of this paper
can be summarized as follows. (i) The density
matrix in closed-shell crystals can be efficiently
calculated setting up at a few selected k vectors

the inverse of the overlap matrix between Bloch
sums. In non-closed-shell crystals the sampling
procedure of k vectors can be adopted, combined
with a band- structure calculation. (ii) The compu-
tational technique of Lafon and Lin then allows
simple calculations of x-ray structure factors,
without spherical average of the charge density. It
is thus possible to calculate differences in structure
factors for independent reflexions with the same
|€ | and/or “forbidden reflexions,” which are
particularly sensitive to electronic wave functions
responsible of crystal binding. (iii) In the case of
LiH we have shown that screened hydrogenic wave
functions, which explain Compton profile, are also
in very good agreement with x-ray elastic scat-
tering.
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