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A model has been proposed describing the structural phase transitions in (CH, NH, ),CdC14 perovskite layer-

type compounds as orientational order-disorder transitions of the CH, NH, groups, Each CH, NH, group has

four possible equilibrium orientations in the cavities between the corner-sharing CdC16 octahedra and

interacts with its nearest neighbors via two- and four-particle interactions. The four-particle interactions
describe the fact that the energy of a given configuration of four CH, NH, groups surrounding a CdC16
octahedron depends on the number of N-H- Cl bonds leading to the axial Cl sites of this octahedron,
whereas the two-particle interactions describe the direct coupling between the CH, ends of the
methylammonium groups as well as the indirect coupling via the N—H-Cl bonds leading to the
equatorial Cl sites. In the absence of lattice distortions, the sequence of phase changes is:
I4!mmm ~Cmca~P42l'ncm ~Cmca. Due to nonlinear coupling between the motion of the CH3NH3
groups and the rotation of the CdC16 octahedra, a monoclinic distortion of the lattice sets in as soon as the
orthorhombic order parameter exceeds a critical value. For certain reasonable values of the coupling

parameters one can thus reproduce the experimentally observed sequence of phase changes:
I4!mmm ~ Cmca ~ P42l ncm ~P2,lb.

I. INTRODUCTION

The structural order-disorder phase transitions
in (CH, NH, ),CdC1, and (CH, NH, ),MnC1, have been
investigated in the past three years by several
experimental techniques' "and the knowledge of
the microscopic details is almost complete. The
structure of these compounds consists of infinite
sheets of MC1, octahedra sharing corners. Such
an arrangement closely resembles a plane of the
perovskite structure with the metallic ions (Cd, Mn)

occupying the B sites, whereas the A sites in the
cavities between the octahedra are occupied by the

NH, groups of the methylammonium ions (Fig. l).
There are two chemically inequivalent chlorine
sites, the bonding equatorial sites in the metal
plane and the unbonding axial sites above and be-
low the metal plane. The NH, groups are attached
to the chlorine matrix by weak hydrogen bonds.
Two bonding schemes were observed"'. the "orth-
orhombic configuration" where two N-H ~ ~ Cl
hydrogen bonds lead to two out of the four equator-
ial Cl&z) sites and one hydrogen bond to one out of
the four axial Cl&» sites, and the "monoclinic con-
figuration" where one bond leads to a Cl&» site and
two bonds lead to Cl&» sites. Owing to these coup-
ling schemes the C-N directions of the CH,NH,
groups are tilted with respect to the c axis (per-
pendicular to the octahedral sheets) by an angle

of about 20'. Interlayer bonding is achieved by
Van der %aals forces acting between the CH,
groups of adjacent layers.

For each of the bonding schemes there are four
possibl, e orientations of the CH, NH, groups in the

FIG. 1. Structure of one (CH3NH3)2CdCI4 layer in the
THT phase in a projection along the c axis. Four Cl(;
octahedra are shown without the Cd atoms which have
to be imagined in the centers of the octahedra. For
simplicity the CH3NH3 group above the cavity is shown
in one of the four possible orientations only. For the
same reason the CH3 protons and the CH3NH3 group
below the cavity are not shown.
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cavity. From the experimental investigations we
know that the structural phase transitions in these
and in related compounds"'" are order-disorder
transitions of the NH, CH, groups between the dif-
ferent possible orientations and coupling schemes.
The MCl, planes play the part of stable but elastic
matrices and do affect the phase transitions only
indirectly by both linear Md nonlinear coupbng.
The parent high-symmetry phase [tetragonal high-
temperature (THT) phase) for (CH, NH, ),CdCI, is
the tetragonal space group I4/mmm. For this
phase only the orthorhombic coupling scheme was
observed"' (Fig. 1). The occupation probabibties
n (a =1-4) of the four different orientations of a
CH,NH, group in a given cavity are equal: n, =n, .

=n, =n4= —,', i.e. , the four potential wells corre-
sponding to these orientations are equivalent. ' On
lowering the temperature below T„ the potential
wells become inequivalent so that the system un-
dergoes a second-order phase transition to the
orthorhombic (ORT) phase. Cmca, where n, &n,
=n, &n, . For this phase also only the orthorhom-
bic coupling scheme was observed. At T~ a first-
order phase transition leads to the tetragonal low-
temperature (TLT) phase P4, /ncm which can be de-
described in terms of the probabilities by n, =n,
&n, =n, (Fig. 2). For this phase it was not possible
to decide from the x-ray results' whether it con-
sists only of orthorhombic configurations or of an
admixture of orthorhombic and monoclinic coup-
ling schemes. However, "N NMR investigations9
and Baman study" gave strong hints that no new
coupling scheme occurs at this phase transition.
Although the transition is of first order' ' the Ram-
an as well as the ir" spectrum is almost not af-
fected, whereas below T~ in the monoclinic (MLT)
phase, where only a frozen-in monoclinic config-
uration exists, the spectra are completely differ-
ent. The phase transition TLT-MLT is also of
first order and shows besides a small hysteresis
of 1 K an overlapping of the two phases in a re-
gion of 5 K." The MLT phase cannot be described
in terms of the probabilities n, but it can be un-
derstood as a distortion of a virtual orthorhombic
ground state with n, =l and n, =n, =n, =O due to non-
linear coupling to the lattice (Fig. 2). The dis-
torted configuration of Fig. 3 yields the real ground
state shown on the right bottom Of Fig. 2.

The aim of the present work was to investigate
whether a simple model where the basic reorient-
able unit, i.e., the methylammonium group, moves
among four potential wells, is capable of describ-
ing the observed phases in the correct sequence.
Similarly we wanted to see whether the introduc-
tion of the coupling of methylammonium motion
with the CdCl, lattice can account for the large
lattice distortion in the real ground state which
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FIG. 3. Representation of the eigenvector (n& -"1,
s 2 8 3 84 =0) of the degenerated model ground state
which corresponds to the frozen-in OBT domain shown
in Fig. 2. The projection and assignment of the n~ are
like those in Fig. 2. The THT, ORT, and TLT phases
can be constructed by linear combinations of the four
eigenvectors belonging to the orthorhombic model
ground state.

FIG. 2. Schematic representation of the four phases
of (CH3NH3)2CdC14 in the largest primitive unit cell of
the system (TLT phase: Z =4). The N-C directions of
the four CHSNH3 groups between two adjacent layers are
projected on the layer plane. The groups with closed
circles are attached to cavities in the upper layer and
the ones with open circles to cavities in the lower layer.
The assignment of the four different orientations 6 of
the groups (o =1,2, 3,4) is chosen in such a way that the
probabilities N~ —which are represented by the length
of the bars —do not depend on the site of the group in
the unit cell for all the phases.
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is absent in the higher-temperature phases where
the ordering is incomplete. For sake of simpli-
city we used the molecular-field approximation
(MFA).

In Sec. II the free energy of such a system is
calculated in the absence of lattice distortions.
Several assumptions were made in order to keep
the number of coupling constants as small as pos-
sible. In Sec. III the stability conditions of the
THT phase are investigated, whereas in Secs. IV
and V the self-consistency equations for the order
parameters characterizing the ORT and TI.T
phases are derived. In Sec. VI the coupling to the
lattice is taken into account and the real MI T
ground state is obtained.

II. CALCULATION OF THE FREE ENERGY
IN THE ABSENCE OF LATTICE DISTORTIONS

In deriving our model Harniltonian the following
assumptions were made:

(a) The structural phase transitions are mainly
due to the interactions among the CH,NH, groups.
The MCl~ layers within that approach are consid-
ered to be rigid matrices to which the NH, heads
are linked. Any linear coupling between the
CH, NH, group motions and the phonons of the
lattice just renormalizes the coupling constants.
This linear coupling leads to a slight tilting of
the CdCl, octahedra in the ORT and TI.T phases,
which however does not change the hydrogen bond-

ing scheme and can be neglected in our treatment.
Nonlinear coupling which has to be taken into ac-
count in the monoc$inic phase is as well neglect.'ted
in this first approach but will be treated in Sec. VI.

(b) Since the electronic structure of the Cl atoms
depends strongly on the number of the attached
N-H ~ Cl hydrogen bonds, the energy of a given
configuration of CH,NQ, group orientations depends
on this number. Io all the phases, except for the
distorted version of the MLT phase (real ground
state), two hydrogen bonds are on the time aver-
age attached to a single equatorial Cl,» site and

only one N-H «Cl bond is attached to an axial
Cl&» site (Fig. 4).

(c) The first requirement (two bonds to any Cl&»
site) is always fulfilled when the two CH,NH,
groups be1onging to the same cavity of a layer
(one attached from above and the other from be-
low) are related by a center of inversion 1 located
in the middle of the cavity, i.e. , the corresponding
C-N bonds above and below the layer are parallel
(Fig. 4). This center of inversion was found by
means of the x-ray structure deterrninations4'
in all the phases. The energy of states which are
at variance with this requirement is assumed to
be so high that the occupation probabilities of these

o Cd

Cl (1)
0 Ct(, )

'O N

o

FIG. 4. Structure of one (CH3NH3)2CdC14 layer in a
projection along an axis which is tilted about 15 with
respect to the c axis. For simplicity the CH3 groups
and the NH3 protons are not shown. The dashed lines
represent the N-H. ..Cl bonds. The configuration of
the four NHS groups corresponds to the virtual orthor-
hombic ground state. In ca,se of dynamic disorder of
the groups one H bond is leading to an axial CI&ti site
and two H bonds to equatorial C)2~ sites in the time
average. If the two groups belonging to the same cavity
are lined by a center of inversion 1 always two H bonds
are attached to one Cl( 2~ site between successive jumps.

states are very low. These states are not taken
into account in the present model Hamiltonian.

(d) To fulfill the second requirement (one bond
to any Cl&» site) the orientation of the (CH, NH, ),
double groups in the four neighboring cavities
of an octahedron must be correlated. Since each
cavity has also four neighboring octahedra the ef-
fect of this short-range coupling extends through
the whole lattice. This leads to four-particle in-
teraction terms.

(e) Neglecting the Sour-particle interaction, the
remaining states, i.e. , all configurations of the
(CH,NH, ), &Iouble groups differ very little in ener-
gy. The energy depends then only on two-particle
interactions of the intralayer and interlayer type
describing the direct coupling between the CH, ends
of the methylammonium groups as well as the in-
direct coupling via the N-H ~ ~ Cl bonds leading to
the equational C1&z) sites. For a MFA treatment
it is, however, not necessary to distinguish be-
tween these interactions. Together with assump-
tion (c) the model becomes three dimensional.

(f) In the parent THT phase the single-particle
potential for CH,NH, group motion has four equi-
valent potential wells. Any tunneling splittings of
the energy levels are neglected. The undistorted
model ground state shown in Fig. 3 is the one
where the system is frozen in to one of the four
single-particle potential wells, n, =1, n, =n, =n, =O.
This corresponds to the frozen in orthorhombic
phase. All higher phases are linear combinations
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of this ground state (Fig. 2). Lattice distortion of
the virtual orthorhombic ground state results in
the monoclinic MLT phase. These lattice distor-
tions can be assigned to a nonlinear coupling be-
tween the CH3NH3 group motion and the phonons
of the CdC1, lattice which becomes relevant at low
temperatures. Such a coupling will be treated in
Sec. VI.

For the description of the Hamiltonian we used
the largest unit cell of the system, i.e. , the one
of the TLT phase with Z =4 so that all phase trans-
itions can be described by instabilities at the Bril-
louin-zone center (q =0). The configuration of the
system is given by the numbers mf „which can
take the values of one or zero. The indices i, j
stand for the ith or jth unit cell, the indices v, ~

(v, ~ =1,2, 3,4} denote the CH,NH, groups in the
unit cell, whereas the indices a, P (n, P=1,2, 3, 4)
describe the orientation of a given group. mf „
=1 when the vth group in the ith unit cell has the
orientation a. Since each CH, NH, group has to be
in one of the four possible orientations we have

(m, „)=n (3)

1~
U2 a Bn nB,

asB

where

(4)

Q esB f» $s Ps fcs esB'
«s)s&s fC

In view of the symmetry of the parent THT-phase
expression (4) simplifies to

1
U, =

2
a(n', +n,'+n', +n', )

The molecular-field approximation for the treat-
ment of the structural phase transitions in
(CH,NH, ),CdCl, was used for sake of simplicity.
This is justified also by the experimentally de-
termined critical exponent P of the order param-
eter. ' The value P = —,

' indicates a nearly tricritical
transition with a mean-field exponent.

With the help of expression (3}we can rewrite
the internal energy U, [Eq. (2)j as

Pl«1»
The CH, NH, groups interact both via direct (two-
particle) interactions as well as via indirect, 1s,t-
tice mediated four-particle interactions.

The Hamiltonian of the two-particle interactions
in its most general form is

1
2 2 f,f, v, fc, e B f, v, e j

fe Js&s ~eesB

with the constraints

if i =j, then ver;
if v= x, then i wj.

af & „„Bis the interaction energy between the
vth group in the ith unit cell with orientation o,

and the ath group in the unit cell j with orienta-
tion P. Hamiltonian (1) includes interactions among
groups of the same layer as well as intera, ction be-
tween groups of adjacent layers. In the molecular-
field approximation the internal energy can be ex-
pressed as

=1
U, =(X2)=

2 ~ a, q „„
fsSv&s+sOs B

and the corresponding free energy becomes Il = U
—TS, where T is the temperature. In view of the
requirement P»,.,n, =1 we have to minimize the
expression

E*=E—X(n, +n +n, +n —1), (8}

where X is the Lagrange multiplier. In equilibrium
the first derivatives of E* roust vanish with re-
spect to n:

(y =1,2, 3,4,

+b(n, n, +n,n, +n~»+n, n, ) + c(n,n, +n,n, ). (5)

The contribution to the internal energy of the four-
particle interactions which correspond to the states
described in assumption (d) can be taken into ac-
count in the following way (see Appendix A):

U» = d(n, n~3n») +e(n,n~, +n,n,n» +n,n,n, +n»n, n2),

(6)

so that the total internal energy per one CH3NH3

group becomes U= U, + U, . The entropy 8 per one
CH,NH, group is in the same @pproximation given
by

S= b[n, l -(n, )+n, l (n, )+n, ln(n, )+n } (n, )j, (7)

x (m, „)(mq „g. (2)

The occupation probability (m, „)does not depend
on i because the chosen unit cell is the largest
primitive cell observed in our system. The assign-
ment of the orientations ~ is performed in such a
way that (m& „)does not depend on the position v

in the unit cell for all the phases (Figs. 2 and 3)

e.g. ,

=an, +b(n, +n, )+cn, +dn, n,.n,
en,

+e(n3n»+nmn»+nmn3)

+AT[in(n, )+lj- X =0,
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and all the eigenvalues of the matrix of the gener-
alized inverse susceptibilities )(,'~= O'F /Sn &n~

have to be positive.
In Secs. III-VI only those solutions of Eq. (9)

are discussed which have been observed in
(CH,NH, ),CdCl, and in the isomorphous manganese
compound, respectively.

{a)
In2=g

I

n, =;+Sn, . I I.. . n~=~ -Sn)

q(4 0, qp=O 0, g, v0
n~= ~+Snq

C ~

„I a Ji . a In)«y e ~~ s n3=g
I

np = p -Snp

III. STABILITY CONDITIONS FOR THE DISORDERED
THT PHASE

From Eqs. (6)-(8) and the definition n, =n, =n,
=n4 = -,' of the tetragonal-high-temperature phase
the matrix of the second derivatives of the free en-
ergy I' can be obtained as

{b)

I

n, =~+Sn, '.

Inz=4-8n,

I

ny = y -Sn)

In~=g+Sn,

qp&0 = Sn, +0 ~ &0 =an, &0
„ I

np=q -Sn,
P

I J E ~ I
~ „.n~=~+Sn)

I

n, =-, +Sn,

82+
an ans

A B C B

BAB C

C B A B

B C B A

where A=a+4kT, B=b+ —,',d+-,'e, and C=a+ —,',d
+-,'e. The eigenvalues x, of this matrix are given
by

[1,2]: x, =x, =A - C = a + 4k T - c —~6d - —,'e,

[3]: x, =A+ C-28=a+4kT+c —2b —~8d —,'e, (12-)

[4]: x, =A+C+2B=a+4kT+c +2b+~d+,6—
'e, 2

and the corresponding sets of eigenvectors —rep-
resenting deviations irom the THT equilibrium oc-
cupation probabilities —are denoted by [1], [2],
[3], and [4]. The THT phase is stable as long a.s
all these eigenvalues are positive. The two eigen-
vectors belonging to the doubly degenerated eigen-
value x, , are

Ing= y
—Sn)

and is represented in Fig. 5(b}. The instability
with respect to this eigenvector occurs at T„

T, = (2b —c—a+ ~~8d+ —,'e)/4k.

The order parameter g, for this solution is de-
fined as

(18)q, =2n, +2n, -1=1-2n, —2n, .

It also can take on values between +1 and -1. The
eigenvector [4] is the trivial solution 5n =0 and
thus all possible phases must be linear combina-
tions of the eigenvectors [1], [2], and [3]. The
free energy of the THT phase is equal to

FIG. 5. (a) Schematic representation of the eigen-
vectors [1] (left) and [2] (right) according to Eq. (13) and
the corresponding order parameters g =2n& —2n3 and

g =2n2 —2n4. {b) Schematic representation of the eigen-
vector [3] according to Eq. (16) and the corresponding
order parameter g3=2n&+2n3 —1 which can be either
positive {left) or negative (right).

and

[1]: 5n, = 5n„5n, —= 5n, = 0,

(13)

ET„r= -kT ln(4}+K,

K= SQ+ 5+ SC+ 256d+ ~pe.
(19)

[2]: 5n, =-5n„5n, = 5n, =0.

They are represented in Fig. 5(a).
Below the tea.pgrature T„

T, =(c —a+ ~d+ ~e)/4k, (14)

This energy has to be compared with the free en-
ergy of the low-temperature phases.

IV. SELPXONSISTENT EQUATION

FOR THE ORDER PARAMETER OF THE TLT PHASE
the system becomes unstable with respect to the
eigenvectors [1,2]. The corresponding order pa-
rameters g, and g, can be defined as

g, = 2n, —2n„g, = 2n, —2n, (15)

and can take on values between +1 and -1.
The eigenvector corresponding to the eigenvalue

x, is given by

By comparing Figs. 2 and 5 one can see that the
TLT phase n, = n, &n, =n, is a frozen in linear com-
bination of the eigenvectors [1]and [2] with q, = q, .
Rewriting the expression for the free energy by
using Eqs. (14) and (15) and by introducing the re-
duced temperature t,

(20)

[3]: 5n =5n =-5n =-5n (16) and the new parameter
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FIG. 6. (a) Solutions of the self-consistent equation
(23) for the order parameter q 2 of the TLT phase for
different values of the parameter E. q &

is plotted as a
function of the reduced temperature T/T&. For 4 & —~1,

the transition is of first order. (b) Comparison of the
free energies of the THT and TLT phases for different
values of 4. (F~Hg -Fg~g)/k Tg is plotted as a function
of T/T& ~ The free-energy differences for the meta-
stable THT phase below the first-order transition are
also shown.

ition is of second order and for 4&-—,
' of first

order, respectively. A comparison of the free
energies E»r-Er„r [Fig. 6(b)] yields the trans-
ition temperatures for the first-order transitions.
For 4» --,' the transition temperature is T,= T, .

V. SELF4 ONSISTENT EQUATIONS

FOR THE ORDER PARAMETERS OF THE ORT PHASE

By again comparing Figs. 2 and 5 one can con-
struct the ORT phase n, &n, =n4&n, by a linear
combination of the frozen in eigenvector [1]with

q, )0, 0, =0 and the eigenvector [3]with q, &0.
Changing the sign of g, leads to the antiphase

domain ny &pl2=n4&n, which can be obtained also
by a shift in the direction of both orthorhombic
layer axes by half a lattice constant. The 90' do-
mains n, &n, =n, &n4 which are observed also in
(CH,NH, ),CdCI~ are a linear combination of the
eigenvector [2] with q, )0, q, =0 and the eigenvec-
tor [3]with rt, &0. The combination of [1]and [3)
with rI, &0 as well as the combination of [2] and [3]
with g, &0 have not been observed so far and in ad-
dition do not lead to the virtual orthorhombic
ground state shown in Fig. 3. These combinations
will not be considered in the following treatment.
A phase corresponding to the pure eigenvector [3]
was also not observed and will not be taken into
account. This can be realized by choosing the
parameters so that T, & T, . By using Eqs. (14) and

(16) this requirement leads to the inequality c &b.
Due to the fact that an increase of g, results in

an increase of n, and n, by Sg, = —,'g„ the limits of
g, are increased

one finds -(I+q, } ~rI, c (I+@,), (24)

Er„r- -,kT, (-2g, ,(1 ——,hq', ,)

+ 2t((1+ rI, ,) in[-,'(1+q») ]

+ (1 —rI, ,) ln[—,'(1 —q»)]))+A. (22)

(23)

The self-consistent equation for g»—resulting
from the requirement that the SE~/Bn =0,
0, = 1,2, 3,4, which for this case is identical to
BE»r/Sq, , = 0—becomes

q, , = tanh[(l/t) q, ,(I —nrI', ,)].

and g, can thus take on values between + 2 and —2.
Any violation of inequality (24) implies a violation
of the requirement 0 ~n «1. In the following
only the domain?ly &n, =n4&n, will be considered
and instead of g, a normalized order parameter
will be used

1
z'Q& -Pl& —Pl3. (26)

In order to simplify the following expressions two
new parameters are introduced

In Fig. 6(a} the solution of Eq. (23) is shown for
different values of the parameter &. For 4=--,'
the phase transition from the THT phase to the
TI T phase is tricritical, i.e. , for 4&-3 the trans-

I

r= T,/T,

6= (d+4e)/64kT,

(26)

(27)

The free energy of the QRT phase then reads

Eonr bTl( II 2 rl)3+ 4n(RB 40 dg) + 266 r)p+ 2t [2 In(R)+ [2(n.+ 1) + n] In[2(4+ 1) + n]

+ [2(n. +1) n] In[2(n, +1)——0]+ (1 —0,) h H(I - n.}]))+A.

(26)
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As one could expect from the symmetry of the ORT phase, the free energy is symmetric in g but not with

respect to g, . The requirement that in equilibrium all first derivatives with respect to the n must vanish,
BE*/Bn =0, is equivalent to the requirement that both BE/Bq =0 and BE/Bq, =0:

QF ,+1 g~+ 1—=kT -2q- 2~qq2+ —'t ln ' +q —ln —' —q =0
gg l 3'. 2 2

8F 3 2 2 I ~3+1 q, +1 1-g, ~

=at, rq, +.(g, 2„'q,)+wyp+ ,t ~ '-+q +in ' q 2~ -') =o
3

(29)

(30)

(31)

(32)

%e are thus left with only three parameters 7, 6, and ~. Only those solutions of the coupled equations
(29) and (30) are stable for which the determinant of the second derivatives of F with respect to q and q,
is positive definite.

Let us first consider the simple case where only two particle interactions are taken into account, i.e. ,
d =0 and 6=0. By some algebraic manipulations one obtains for the seU-consistent equations

ri = sinh(2q/t)/[cosh(2q/t)+ exp(-2', /f)],

q, = [cosh(2r}/f) —exp(-277},/f)]/[cosh(2q/f) + exp(-27vh/t)].

With the help of Eq. (32) it is possible to eliminate one of the parameters

cosh(2r}/f) = [(1+r4)/(I —q, ) ]exp(-2T'g, /t),

and the equation for g, becomes

1+q~ 2r 2(1 —[(1—g, )/(I +@,)]' exp(477},/f)/~2

(33)

(34)

Expanding Eq. (34) for smail values of q, results
in

g, = [3/(1 —4r)](1- t). (35)

Eliminating g, in Eq. (31) by Eq. (35) and expand-
ing it for small values of g leads to

phase and not the TLT phase is stable below T, .
The computer calculations yield for the critical
exponents P and P, of the two order parameters
[q~ (T, —T)~, q, ~(T, —T)~3], P =-„P,=l for 7'& —,

and P 4 P3 —,
' for v = 4, respective ly . They show

also that the assumption made in Eq. (3) of Ref. 3

r}= [3(1—r)/(I - 4r)]' ~'(I —f)'~' (36) n, -n, =c(n, ——,'),
up to first order terms in (1 —f)'~' Since .x&1
(T, &T,), one sees from Eq. (36) that for (i) 7&-,',
a real solution exists only for t &1, i.e. , the phase
transition is of second order, whereas for (ii)
7 & —,', a real solution exists for t& 1, i.e. , the
phase transition is of first order.

Introducing into Eq. (35) the conditions for the
existence of real solutions of Eq. (36), one always
finds g3&0. This is consistent with the choice of
the orthorhombic domain at the beginning of Sec.
V.

In Figs. V(a) and V(b) the solutions of the coupled
equations (29) and (30) are shown for different
values of 7 and 4= ~=0. The corresponding dif-
ference in the free energy with respect to the THT

yHy FQRy and F~T FTLT are plotted in
Fig. 6(c) as a function of reduced temperature.
Comparing the free energies of the ORT and TLT
phases one can see that for n = 5 =0 (i.e. , only two-
particle interactions are taken into account), the
free energy of the ORT phase is lower than the
one of the TLT phase for 0~t ~1. Thus, the ORT

which was based on one order parameter only
does not hold since the "constant" c varies from
c=2 at T, to c=+ for complete order (n, =1). In
fact it is not possible to deduce the temperature
dependence of- q, from the macroscopic treatment'
of the high-temperature phases only without the
corresponding microscopic picture of all phase
transitions occurring in this system. The order
parameter used in Ref. 16 corresponds to our q.

To obtain the TLT phase one has to take into
account in the free energy of the ORT phase [Eq.
(28)], the previously neglected third-order term
26g'q, . The fourth-order term is always negative
for positive values of 4, since the calculations
yielded g, (q for all temperatures in the ORT
phase. For example, if &=0, &=0.15, and v ~0.25
the TLT pha, se is favored just below T, but a sec-
ond phase transition to the ORT phase occurs at
a temperature well below Ty i.e. , the phase se-
quence for this set of parameters is THT- TLT
-ORT on lowering the temperature. The trans-
ition THT-TLT is of second order since 4&- —,',



3416 R. BLINC, B. ZEKS, AND R. KIND 17

10—
x-0.0

~ 025
I Tr)critical Transitions

c

THT
Phase bcundarIes

T. = I-3(S- T)'
QRT TLT

0.I—

0.2— ta)

IO

09—
08—
07—
06—

0 I I

ll3 0.4 Il5 I 0.7 tlS 03 13 1.1 12 Ti T,

0.4—

05—
04

03—
OZ-

OI

b * -OI5 d= -005 b*0 'y b ~ 005 d*OI5

d*-QIO b, = -002 d '002 d 0IO

I

040
I I I I I

025 030 035 045 050 8

I

03 OJ

FtN-F

kTI
0.5—

x.0.0
04-

x 0.25 'K& 0.90

E5 66 0.7 (l8 03 1.0 1.1 1.2

tb)

FlHr FORr

kTI

FIG. 8. Phase boundaries between the THT, ORT, and

TLT phases for tricritical transitians at T& [7 =1 —3(6
-~) ]. The four-particle interaction i,s introduced by
the parameters 6 and b, . The phase sequence THT-ORT-
TLT-ORT is achieved only if 5 exceeds a critical value
which is strongly influenced by the value of the param-
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cal transition from THT to ORT at t =1 for 6 WO

and 4 x0. By some algebraic manipulation of Eqs.
(29) and (30) and by a similar expansion, as in
the case 6= 4=0 for small g and q„one obtains
the condition

r, = 1 —3(6- —,')', (37)

01 I I I I I I I I I

03 0.4 6.5 M 02 08 0.9 1j 11 1.2

FIG. 7. Solution of the self-consistent equationrIr (29)
and (30) for the order parameters g and qg of the ORT
phase for two-particle interactions only (4 =6 0). The
order parameters q (6a), t73 (6b) and the differences in

the free energies (I" THY -E0RT)/kT& and (9'THT -ETLT)/
k T& (6c) are plotted vs the reduced temperature T/T&
for different values of 7 = T3/T&. The free energy of
the ORT phase is always lower than the free energy of
the TLT phase so that the ORT phase is stable below T, .
Note that the critical exponents of the two order par-
ameters are different P3= 2P for 7~0.25.

but the transition TLT-ORT is of first order be-
cause it is connected with a sudden change in the
n . Let us recall that we are looking for a phase
sequence THT-ORT- TLT-ORT with reduced trans-
ition temperatures t„=1, t„=0.58, t„=0.36 for
the case of (CH,NH, ),CdC1, and t„=l, t~=0.64,
t„=0.25 for the case of (CH,NH, ),MnCI„respec-
tively. '"' The transitions at t„are of second
order and in case of (CH,ND, ),MnC1, the critical
exponent p of the order parameter g was mea-
sured by means of deuteron magnetic resonance'2
to be P = 4. This corresponds to a tricritical trans-
ition.

Let us first look for the condition for a tricriti-

which contains the solution r, = 4 for ~= 0 already
obtained from Eq. (36). For r c v, the phase trans-
ition at t =1 is of second order. For the tricritical
transitions we are left with only two parameters
6 and 4. The computer calculations show that
the correct phase sequence (THT-ORT-TLT-ORT)
can be reached for 0.36 & 5&0.5 if 4 is positive.
For 6» 0.5 the free energy of the TLT phase is
always lower than the free energy of the ORT
phase. In Fig. 8 the phase boundaries between
the ORT and TLT phases are shown for different
values of &. The phase boundary between the THT
and the ORT phase is the line at t =1. One can
see that the observed transition temperatures t~
and t„can not be reached by any set of the param-
eters & and ~. In addition to this the critical ex-
ponent P has a value of 0.25 only exactly at t =1.
At t =0.96 where the experimental value is still
0.25, the calculated value is already P =0.34.
Since a molecular field approximation does usual-
ly not yield exact values of critical exponents we
decided to fit only the transition temperatures to
the experimental values by means of all three
parameters 7', 6, and 4.

The best fit was obtaided for 7=0.25, 4=0.4
and &=0.45 for the Mo compound Md v=0.30,
b =0.4, and 6=0.45 for the Cd compound, re-
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FIG. 9. Solution of the self-consistent equations for
the order parameters g and 7b of the ORT phase for the
set of parameters v, 5, 6 which yields approximately
the transition temperatures observed in (CH3NH3)2CdC14
(v =0.30, b, =0.40, 6 =0.45). The order parameters
q and 7b of the ORT phase and q &

of the TLT phase
with 6 =0.40 (Sa) and the difference in the free energies

(+gay FpRy)/kT& (Sb) are plotted vs the reduced tem-
perature t = T/T&.

spectively. In Fig. 9(a} the order parameters
q and g, are plotted versus reduced temperature
t for the case of the Cd compound. The correspon-
ding difference in the free energies of the ORT
and TLT phases Eo„r Er„r is g-iven in Fig. 9(b).
For 7=0.35 and the same values of & and & as
used in Fig. 9 the system remains in the ORT
phase for all the values of t&1, i.e. , an increase
in ~ lowers the value of t,2 and raises the value of

t„. A similar behavior was observed experiment-
ally by Knorr and Jahn" by application of hydro-
static pressure to a single crystal of
(CH,NH, ),MnCl, . Hydrostatic pressure could
thus act on the parameter r= T,/T, . From the
obtained values of the parameters v, 6, & one
can calculate the coupling constants of Eqs. (5)
and (6) as

a = -0.6kT» b =0, c = 1.4AT»

d = 25.AT» e = 0.8kT, .

The value 5 =0 fixes just the energy scale for the
two-pa. rticle interactions (a, b, c). Also a or c
could be chosen to be zero which would just lead
to a corresponding shift in the values of both re-
maining interaction constants. However, the val-
ues of d and e pre not affected by such a shift in
the energy scale.

F=F„+E (39)

F, must also contain the symmetry of the THT
phase. Because of the change in the NH, coupling
scheme the transition to the MLT phase is of first
order even for a supposed direct transition from
ORT to MLT. This leads to the following ansatz
for E up to sixth-order terms:

E = ~f('go —'93)q, + ~ gq, + s hq,

+ 2f(no+ ns}qa+ 'gq2+ shq'-
=

2 f(go+ I —2n„—2n, )q', + —,'gq, + +~hq',

+ 2f(go+ I —2n, 2n, }q2 + ——,'gq,'+ ~hq,'. (39)

For a first-order transition, g must be negative,
whereas f and h are positive. We ean safely as-
sume that the contribution of the displacements
q,. can be neglected in the entropy compared with
the order-disorder contributions. For both the

Since any attempt to construct the THT, ORT,
and TLT phases by linear combinations of the real
monoclinic ground state failed, "' we had to find
a way leading from our orthorhombic model ground
state to the monoclinic low-temperature MLT
phase. The idea for the solution came just from
a structural argument. If one considers a single
sheet of CdCl, octahedra without any attached
hydrogen bonds one can imagine that the restor-
ing forces for bending of the sheet or for tilting
of octahedra are very weak. Thus the restoring
forces for these deformations in our crystals are
mainly due to the N-H ~ Cl bonds. In view of the
disorder in the orientations of the CH3NH3 groups
there are enough N-H Clz, hydrogen bonds
partly occupied in the THT, TLT, and ORT phases
to provide for a restoring force against the tilting
or rotation of the octahedra and to make the layers
rather stiff. In the virtual orthorhombic ground
state, however, there are no hydrogen bonds left
which would restore a "monoclinic" tilting of octa-
hedra, because n, and n, are zero. In fact the
lattice can become unstable against "monoclinic"
deformations as soon as n2 (=n, ) becomes smaller
than a critical value, i.e. , as soon as the order
parameter q, exceeds a threshold value 74. Now

we introduce two new order parameters q, and q,
corresponding to a tilting or small rotation of
octahedra around an axis perpendicular to the
layers. For q, c0, q, =0, the Cl octahedra with
centers at 000 and —,'0-,' are rotated in phase around
the c axis, whereas for q, 0, q, =0 they are ro-
tated in antiphase. " The free energy of the total
system then becomes the sum of the order-dis-
order term E„and a displacive term F, due to
lattice distortions:
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THT and TLT phases we have n, +n3 =n2+m, = 2

and E, becomes

THT, TLT nf%(ql qn) ng(ql qn)

+ +h(q', + q', ). (40)

For gp)0 the minimum of E, is obtained for q,
=q, =0, i.e. , E =E„. For the ORT and MLT
phases, we have

ORT MLT n( I& qn) nf(qn qn)ql + 4gql 8 Nl

+ af(%+ l4)qn + ngqn+ nhqn ~ (41)

The first derivatives with respect to the order
parameters become

8E 8En

8g 8g
(42)

8En
8'g3 8'g 3

nfq +kfqn=0

8E
f('go —'qn)ql+gql +hql = 0,

8q~
(44)

=f(l), + Tl, )q, +gq,'+ hq,
' = 0.0 3 2

If we choose the domain where q3&0, the solutions
of Eq. (44)—which correspond to stable minima
in the free energy —are

q, = 0 for lb & Tln - ~lng /hf

ql=(lgl/2hH1+~1 —(4hf/g )(~ —& )1 I ]
for TI, )T), -~lng'/hf. (46)

8En 3 g
n n o 16hf'

"=0 forq &q =g ———,
sE sFn fig I 1 1 4hf

)
'~'

STI, Sl)n 4h g

for l4&TI, . (4V)

Thus neither t„nor t~ are affected if ere choose,
e.g. , q, =0.4 and the parameter set used for the
calculations of the curves shorn in Fig. 9. Using
expression (46) for q, the free energy of the MLT
phase becomes

These results correspond to the treatment of first-
order phase transitions given in Ref. 19 if gp Q3

is replaced by T —T, From Ell. (.45) we then ob-
tain q, =0 for all positive values of g3. Equation
(43) now reads

f Ig I

FMLT FORT n(qo 18) n

2 4hfx 1+ —1—,(l), —l), )3 g

Ig I' 4hf1+ 1—,(T)n- l), )24 h „g
For the special cases g3 =g, and g3= gp one obtains

MLT ORT ~ MLT FORT ln lg I
'/h', «spec-

tively. The corresponding values of the order
parameter are q, = 0, t(-,' lg l

/h)' ~' and q, = a( lg l/
h)' '. A direct transition from OHT to MLT would
occur exactly at g3 = g„whereas the TLT-MLT
transition occurs at a higher value of g3 because
ETLT &E~» and thus the MLT phase is metastable
until E«T becomes smaller than ET„T.

An estimate of the values T)„f, g, and h can be
obtained in the following way:

First q, is normalized so that q, =1 for g3=1.
Since a strong first-order character of the trans-
ition is required, q, should take on a value near
1 but at least 0.75 for q3 = g, . This is fulfilled for
g/h =-0.8 and leads to (4hf/g')(1 —l),) = 1.25 for the
normalization of q, . This yields f(1 —l4)/g = -0.25
from the multiplication of the two expressions.
The phase transition should occur just above T,3
in order to have a transition TLT-MLT at approx-
imately the same temperature. For the metastable
ORT phase of the Cd compound just above T„ the
calculations of Sec. V yield q3 =0.4 and thus g,
= gp-, ~g'/hf =0.4. This leads to the following
equation for qp:

l)n —5 (1 —T)n) = 0.4 -T4 = 0.625,

and we get f/g=--', . Thus, the ratio f:g:h is
-,':-1:1.25. An estimate of the values can be ob-
tained from the difference in free energy E~»

=+ lgl /h =0053lgl for T) ='%
amount should be a considerable contribution to
the total free energy in- order to obtain also a dis-
continuous change in g and q3 at the phase trans-
ition (TI-1, T)z-1) via the coupled equations (29)
and (4V). In view of the free-energy values shown
in Figs. 6 and V, a range of hT, & lg l&10hT, should
be suitable for this purpose.

For g = -kT, the computer calculations yielded
discontinuous changes of q, from 0 to 0.96, of q,
from 0.4 to 0.84 and of q from 0.7 to 0.91 at the
TLT- MLT transition (Fig. 10). The static rota-
tion of the octahedra around the c axis about an
angle of 5.6' favors the monoclinic bonding scheme
of the HH3 group. ' This angle corresponds to qy 1
The rotation angle of the real ground-state vector
shown in Fig. 2 on the lower right-hand side does
not depend linearly on q, . For the undistorted lat-
tice the angle between the monoclinic and the or-
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FIG. 10. Solution of the self-consistent equations
(29) and (47) for the order parameters p, g, andq&
of the MLT pi'ase just below the transition temperature
as a function of the coefficient g. The set of coefficients
used for the calculations was 7=0.30, 4 =0.40, 6=0.45,
g =0.625, f:g:h =3.—1:1.25. The dashed lines cor-
respond to the values of q and y of the GBT phase for
the same temperature.

octahedra, a monoclinic distortion of the lattice
sets in as soon as the orthorhombic order param-
eter q, exceeds a critical value. In the high-temp-
erature phases there are —in view of the disorder
in the orientations of the CH,NH, groups —enough
N-H ~ Clz, hydrogen bonds partly occupied to
make the layers stiff and to ensure the stability
of the lattice against the "monoclinic" tilting of
the octahedra. The orthorhombic ground state
is, however, ordered and there are no N-H ~ Cl&»
bonds to restore the tilting of the octahedra. Thus
it is unstable against a monoclinic tilting of the
octahedra, and a corresponding change in the
N-H ~ Cl bonding scheme. Very recently a group
theoretical analysis was performed for the whole
phase sequence in (CH,NH, ),CdCl, in order to check
the present order-disorder model. " It was shown
that this model is in accordance with the symmetry
of the lattice modes which condense at the trans-
ition points.

thorhombic coupling schemes would be in this pro-
jection 45'. Due to the monoclinic distortion (q,) this
angle is reduced to 33'. Thus by nonlinear coup-
ling between the CH,'NH, -group motion and a tilting
mode of octahedra we were able to introduce the
real monoclinic ground state in our model.

VII. CONCLUSIONS

From the above results the following conclusions
can be reached.

(i) The structural phase transitions in
(CHPlH, ),CdCl, -type compounds can be basically
described as order-disorder transitions of the
CH,NH, groups each pf which has four possible
equilibrium orientations in the cavities between
the CdC1, octahedra.

(ii) In the absence of lattice distortions, the
correct sequence of phase changes is
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APPENDIX:
FOUR-PARTICLE INTERACTION HAMILTONIAN

As already mentioned in Sec. II(d) the energy of
a given configuration of four CH,NH, groups
surrounding one octahedron depends on the number
of N-H ~ Cl bonds leading to the Cl&» site of this
octahedron. This number can take on the values

This sequence is obtained only if four-particle
interaction terms are added to the two-particle
interactions.

The four-particle interactions describe the fact
that the energy of a gives configuration of four
CH, NH, groups surrounding a CdCI,, octahedron
depends on the number of N-H ~ "Cl bonds leading
to the axial C1.,» sites of this octahedron, whereas
the two-particle interactions describe the direct
coupling between the CH, ends of the methylammon-
ium groups as well as the UMhrect coupling via
the N-H ~ Cl bonds leading to the equatorial Cl,»
sites.

(iii) Due to nonlinear coupling between the motion
of the CH, NH, groups and the tilting of the CdC1,

FIG. 11. Schematic representation of an arrangement
of the four neighboring CH&NH3 groups of an octahedron
where four N-H-"Cl bonds are leading to the same C1~2~
site. The arrows indicate the N-Q directions of the
groups and are thus pointing to the opposite side of the
N-8" CI& S bond (eee Fig. I).
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0, 1,2, 3,4, and we can assign to the corresponding configurations of the four CH,NH, groups the energies
E„E„.. . ,E, The number m, (o =1,2, 3,4; a=1,2, 3,4} denotes whether the &rth group is in the
orientation a. With the assignments used in Fig. 11 the corresponding Hamiltonian K, can be written

4 4 13 22 31m 44 3 [( 13)m22 31 44 m13( m22)m31 44 ™1322( m31)m44 m13m22 31(™44}]
+E2[(1-m»)(l —m»)m»m44+m»(1 —m22)(1 —m»}m«+m»m»(1 —m»}(l —m«)+ (1 —m»)m»m»(l —m«)

+ (1 —m „)m„(l—m „)m44+ m, 3(1 —m2, }m„(1—m44) ]
+E,[(1—m») (1 —m22)(l —m»)m«+ m»(l —m») (1 —m»)(l —m«) + (1—m»)m»(1 —m»)(1 —m«)

(Al)+ (1-m„)(l —m„}m„(l—m„)]+E,(l -m„)(l —m„)(1—m„)(1—m„).
In the molecular-field approximation we obtain from the relation (m, ) =n, [Eq. (3)], the expression for
the internal energy

(Kg = d(n, n~3n4} + e(n,n2n, +n2n3n, +n@4n, +n4n, n2) + f1 '(n,n2+ n~3+ n~4+n4n, ) + c'(n,n, +n,n4) + const. ,

where

d=E -4E +6E, —4E, +E, e =E,-3E,+3E,-E, 5'=c'=E -2E, +E . (A3)

The coefficients I3' and c' just reuormalize the coefficients b and c of E1I. (5) so that the relevant part one

has to add to the two-particle interaction energy U, is

U, = d(n, n~ n 3)+4e(n,n~ +n3,n,n, +n@4n, +n~,n2}. (A4)
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