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Isotopic shifts in complex crystals
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We obtain relations between the phonon frequencies of crystals related by isotopic substitution when several
ion types are involved in the mode being probed. Also, when the rigid molecular-ion approximation applies to
extended subunits of the basic lattice cell, we consider the effects of substitution on combined translational
and librational modes, involving more than one type of extended ion. The Teller-Redlich product rule is

obtained for arbitrary wave vector g as are inequalities on the sums of eigenvalues co (pry) associated with
the rth irreducible representation of the little group Gq.

I. INTRODUCTION

The identification of vibrational modes in solids
via Baman scattering, inelastic neutron scattering,
and infrared absorption, in conjunction with group-
theoretical selection rules, is an established pro-
cedure. The high resolution available in the ap-
plication of lasers to the optical techniques allows
ready detection of frequency shifts induced by iso-
topic substitution, often in the form of deuteration
of hydrogeneous samples. Comparison of the
measured shifts with theory can be helpful in sort-
ing out the modes in complex crystals. When the
phonon mode being probed involves predominantly
the substituted ion type, then in first approxima-
tion, the well-known relation

(o =(MjM)'i'u) (I)

holds between the frequency 9 of the phonon in the
substituted lattice (ionic mass M) and its frequen-
cy w in the original lattice (ionic mass M). If the
ion type undergoing substitution is the only one

partaking in the mode being probed, then Eq. (I)
is exact. Similarly, if the extended rigid-molecule
approximation applies to an ion complex of the

type undergoing substitution and if the mode is
Purely librational, then

~ = (Ilf )'" ~ . (2)

(We temporarily assume that the moment-of-in-
ertia ellipisoid is spherical, i.e., Z~q =&q~~E. )
Again, as was the case with Eq. (I), Eq. (2) ap-
plies when only the ion type undergoing isotopic
substitution partakes in the motion of the shifted
mode under experimental investigation.

In this paper we discuss generalizations of these
simple relations under less restrictive assump-
tions. For the case of point ions, we include the
possibility that several atomic species are in-
valved in the irreducible representation r (of the
little group Gq) that is associated with the atomic
type t undergoing substitution. When the extended

rigid-molecule approximation applies, we consider
the effects of isotopic replacement on combined
translational and librational modes involving more
than one molecular type, making no model-depend-
ent assumptions about the force constants. More-
over, we discuss these effects theoretically for
modes at arbitrary wave vector q, even though
present experimental resolution in inelastic neu-
tron scattering is such as to limit the detection of
isotopic shifts away from q= 0 (where the optical
techniques detect multiphonon processes). (Model-
independent selection rules for inelastic neutron
scattering from combined translational and rota-
tional modes have been given by Casella and Tre-
vino. ') We obtain explicit extension to crystalline
solids (for modes having wave vector q) of the Teller-
Redlich molecular product rule relating the fre-
quencies of the vibronics in a molecule under iso-
topic substitution. ' The extension of the Teller-
Redlich rule to crystals is perhaps an obvious one,
especially in the q= 0 limit, where the crystal
point group applies. It has, in fact, been so em-
ployed to aid in the analysis of Raman studies of
isotopic shifts in the solid state, e.g. , in the ben-
zoquinones. ' It is also natural to assume that at
arbitrary q, where the Seitz little group enters,
one is again led to the product rule. We establish
that this is indeed the case.4 It is also clear from
our analysis that |}he Steele-Whiffen' interlacing
inequalities apply at arbitrary q. Moreover, we
derive additional inequalities under isotopic re-
placement between sums over &o' (q, r, y) of modes
which belong to the same irreducible representa-
tion r of Gq. As with the product rule, we do so
both for point ions in a crystal (Appendix A} and
also when the extended rigid-molecule approxima-
tion applies to subunits of the primitive cell (Ap-
pendix B}. To my knowledge, these latter in-
equalities, while intuitively appealing, are new.
When the mass or moment-of-inertia ratios differ
appreciably from unity, they are readily satisfied.
However, when these ratios lie close to unity, the
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inequalities provide tighter constraints on the sym-
metry assignments of the vibronic levels.

As noted earlier, examples of the application of
the product rule exist in the literature. ' For the
purpose of discussing our general results in terms
of a relatively simple example, we shall on oc-
casion refer to crystalline ammonium perchlorate
in both the hydrogeneous and deuterated forms.
The vibronic spectra of these substances have re-
cently been examined via Raman scattering by Ros-
aco and Prask. ' The deuterated form has also
been investigated with inelastic neutr'on scattering
by Chesser and Prask. ' We work throughout in the
harmonic approximation even though, for the ex-
ample cited, the modes which are predominantly
rotational have appreciable anharmonic couplings.
We also neglect changes in the force constants re-
sulting from the isotopic substitution.

Let the decomposition series for the vibrational
reducible representation Aq in terms of the irre-
ducible representations D~" at q be" "

where L and L' denote cell sites, M, and. '8t. are
masses, and C» the unweighted force constants.
From Eq. (4) the usual relation between the dy-
namical matrices,

CAA'(q) =( if'-'+2'f+tM2') CAA'(q} ~ (5)

C2,2, 2222(q, r}=g (t2""'"')*C ~ (q)t ',""2 .

follows immediately. Employing proj ection opera-
tors, one constructs symmetry-adapted displace-
ments $g'""" belonging to the pth row of the rth
irreducible representation of 6 . These are in-
dependent of the masses. Moreover, since sym-
metry operators always connect like atoms,

g
qrjfttsg g ~qrptjsq (6}tn Xt $

(s; is an additional index distinguishing independ-
ent states belonging to the same qr p,!;.} Using
these symmetry states, one constructs the sym-
metry-reduced (block diagonalized) dynamical
matrix by computing the inner product

N„denotes the number of times the rth irreducible
representation occurs in b. . If iV„=1 for the sym-
metry projected states )~A""' associated with a
pointlike ion of atomic type t undergoing substi-
tution, then the simple relation (1) applies exactly.
Therefore, in Sec. II we shall mainly be concerned
with the case N„+1. Similarly, if N„=1 for the ir-
reducible representation associated with the trans-
lational motion of a rigid molecule having consti-
tuents undergoing substitution in each unit cell,
then Eq. (1}again applies with Mequal to the molec-
cular ion mass. If, moreover, Nr=1 for each
representation x', r, . .. associated with rotations
about inequivalent inertial axes ~', ~", . . . of the
molecular ion type undergoing substitution, then
a simple generalization of Eq. (2) with I replaced
by 1(A} suffices. As remarked earlier, we shall
be concerned mainly with more genera1 conditions.
Isotopic shifts in crystals within the rigid-mole-
cule approximation when N„&1 are discussed in
Sec. III.

II. PHONONS INVOLVING POINTLIKE IONS ONLY

To establish notation (which generally follows
that in Refs. 1 and 11) we recall some well-known
relations involving the mass-weighted force con-
stants CA~. (L —L') and their Fourier transforms,
i.e., the dynamical matrix C~A (q). Here, A
= (l, n„X) is a, triple index where n, labels differ-
ent atoms of the same type t in the unit cell and
A. =1, 2, 3 is a Cartesian index. Thus

C~J (L L') = &2 ' ' -C~A (L —L') «' ',

1 & 2 2(q, r) = — v ™ C & I 2 2(q p)Mtl'~lt2 t s t s

Mt Mt
(6)

between the symmetry reduced dynamical matrices
of the isotypically substituted and the original lat-
tices. Even when N„&1, if only one atom type g„
undergoes isotopic substitution, and if only that

type occurs among the (.V„l„)-symmetry projected
$

"""'t associated with qr, then the matrices
scale,

C =x„C,
where

and Eq. (1) follows trivially. (l, is the dimension
of the rth irreducible representation, B~" of G~,
i.e., u = 1, ... , l„. V„=- M,„.)

For the general case, the eigenmodes (qA' are
linear combinations of the various symmetry pro-
jected states with coefficients which depend upon

the masses as well as the force constants.

(Warren and Whorlten have provided computer-
generated symmetry reduced dynamical matrices
for many well-known lattice structures. " An al-
gorithm for determining the number of inde™
pendent real matrix parameters, including the ef-
fects of time-reversal symmetry has been de-
rived by this author" a.nd applied in Ref. 12 to
selected cases among those studied by Warren
and Whorlton. ) From the property (6) it follows
that the sums on l and t' implied in Eq. (7) reduce
to a single term, leading via Eq. (5) to the rela-
tion
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where N» N». .. are the numbers of times the
isotopicall. y substituted types t» t». .. are re-
presented among the (q"«" for fixed q, r, and p.
From the eigenvalue equation

C grP}'=~'(qryP)'
and Eq. (11), the product rule

(12)

7=1
(13)

follows directly [since the determinant of C (or C}
equals the product of its eigenvalues].

In most cases of interest only one atom type, say
t„, undergoes isotopic substitution (e.g. , in the
deuteration of hydrogeneous samples), even though
several atomic sPecies (including tg are repre
sented among the symmetry projected states,
( '~'i'i associated uith a given q, r, p, . For this
important special case, lettering x„-=x [cf., Eq.
(10)], Eq. (13) reduces to a particularly sitnple
form: the products of the frequencies of the sub-
stituted and original lattices are related by the
factor x ".

It is also possible to derive inequalities on the
sums of eigenvalues ttt2(qry). Consider the case
x&1, which can always be realized by suitably re-
defining which isotope one associates with M vs
M, if necessary. Then as demonstrated in Ap-
pendix A.

x 'g td2(qry) = P tn2(qry) & P et2(qry)
7

(x&1) . !14}

[j = (rpy.) where y is a "principal quantum number"
labeling different eigenmodes belonging to the same
q, r, p..] Nevertheless, from Eq. (8) one obtains

det ) C [
= x '""x 2"tt ~ ~ ~ det ( C ),

The obvious generalization of Eq. (5) is

where

Mt, when y =T,

(16)

I(t, X), when X
= 8.

I(t, X) denotes the Xth principal mOment of inertia
of the molecular type t. The inner product is de-
fined as in Eq. (7) and, using Eq. (15) and Eq. (16),
one finds

III. VIBRONICS OF EXTENDED IONS IN THE RIGID-

MOLECULE APPROXIMATION

%e restrict attention to the case when isotopic
substitution does not alter the symmetry group of
the molecular inertial tensors. As mentioned in
Sec. I we allow for the possibility of combined
translational and rotational modes, involving more
than one ion type, including one or more of the
types with constituents undergoing isotopic re-
placement. To simplify the discussion and mini-
mize the proliferation of indices, we first con-
sider the case vrhere the inertial tensors of the
molecules are isotropic before and after replace-
ment. Later, we relax this constraint, obtaining
the crystal product rule for general inertial ten-
sors ~

In component form, the generalized projected
symmetry states can be written as $

'"'i i'i. Now,
A = (t, n„X, &) where X is a dichotomous variable,
employed in Ref. 1, which designates either a
translation (X =T) or a rotation (X = 8). X =1, 2, 3
designates a principal moment axis for each mole-
cule in the unit cell when X

= 6) and a common Car-
tesian axis (fixed with respect to the crystalline
axes) when X =T." From the properties of the
projected symmetry states (cf. Rao and Trevino's)
it follows that

~qr jt ti X - si g g gqrjft, - X. s.
+ tntX)~ t ti XX; ~ ti niX

i

C 1tX 1st ~ t2X 2 s2(Q) g ~ (((tttt t
]I

121)1+ +(t IX1 } (t2X2 ( )P r2 tts~X 2s 2
t1 PZ B(t X X}8(t X

Xt ) tls1X1 12 2X2 2 2 2
(18)

When X, and X, are both translations, B(t„T,X)
=Mi, the mass of the molecular ion of type t„and
the result (8) follows straightforwardly from Eq.
(18), the only difference being that Mt now repre-
sents the mass of the extended molecular ion
rather than that of the point ion (atom). For ro-
tations, BI, depends on X in general. For the
special case (presently under consideration) of
molecules with spherical inertial ellipsoids,

I(t, A.) equals t(t) independent of X, whence it is
again straightforward to obtain the result

Ct, es,t, t2es2(qr) ~ . ~ 2 Ct, es, t, es2(qr) .I!t,)I!t )
'"

f (t, ).t (t,)

The off-diagonal components (e.g. , X, =8, X, =T)
also factor. Next, define
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II &(q r) = "y " "y ' "II (e'r) ~ (21)

When isotopic substitution occurs in a crystal
with molecular subunits having nonspherical in-
ertial ellipsoids, I(t, X) depends nontrivially on

However, since symmetry operators always
carry rotations about a given principal axis to ro-
tations about an equivalent principal axis, the $'s
are such' that nonvanishing contributions to the
sums on X and X' appearing in Eq. (16) are re-
stricted when X

= 8 to values for which the ratio
I(t, X)/I(t, X) is invariant. For example, for an
inertial ellipsoid of revolution, each sum reduces
to one extending over either the two equivalent
axes or only the third. For the most general case,
the result is

y =[I(t„)/J(t„)1
and let P„,P». .. and Q» Q». .. be the number
of times translational and rotational states, re-
spectively, associated with molecular types t„,
t~, ... are represented among the g

"" «»'» for a
given q, r, and p. . Then, the appropriate general-
ization of Eq. (13) becomes

fixed q, r, and p. . As mentioned earlier, Rosasco
and Prask have examined shifts in the Raman
spectra between both isotopic forms. ' For modes
havingA~ symmetry (IV =6, P=2, and @=1},
these authors find that experimentally Eq. (24} is
satisfied only approximately. They attribute the
discrepancy (= 20)o) to a breakdown of the harmonic
approximation in conneCtion with the rotations of
the ammonium ions. " Their work will be reported
more completely elsewhere. '

Finally, we remark generally that whenever the
inertial tensor is isotropic and only one ion type
undergoes isotopic substitution, i.e., when Eq. (24)
applies, ine can also obtain the following inequali-
ties (Appendix 8):

x'Q (u'(qry)
min " & g 2'(qry) & g uF(qry),

7 y

«'Z ~'(q~y)

(25}

where x& 1 and y & 1. [As in the case of point
ions, it can always be arranged for the condition
x& 1 to be satisfied by redefining. V vs M if nec-
essary. This, in turn, implies «&1. (The case
y =1 occurs when the isotopically substituted nu-
cleus lies only at the center of the extended ion. )]"

x Q3 qry
7 =1

where A. runs over inequivalent principal moment
axes. Here,

y„,=[I(t„,~)!I(t x)] '" (23)

For this example x= (18/22)' ' and y =(-,)' '.
and Q are the numbers of g

""' " ", with t» =NH,
(or ND ) having g&

= T and y, = 8, respectively, for

and Q„q is the number of times a rotational mode
associated with molecular type t„about an axis
equivalent to the 1th axis occurs among the sym-
metry projected states with a given q, r, and p..

As an example of the product rule we consider
its application to crystalline ammonium perchlor-
ate in the hydrogeneous versus deuterated forms,
treating each ammonium and perchlorate complex
as rigid. In this example only one ion type (am-
monium) partakes in the isotopic substitution.
Moreover, the moment-of-inertia ellipsoids are
spherical before and after the substitution. Hence,
Eq. (22) reduces to Eq. (21), which simplifies
further to the following relation:

N

(v(qry) =xryoiI (u(qry) . (24)
7-1 7=1

IV. CONCLUSIONS

Under isotopic substitution of one or more atom
types t„, t~, . .. in a crystal lattice, the phonon
frequencies and w of the substituted and original
lattices are related by the product rule (13) where

x„, xs, . . . are defined as in Eq. (10). Eq. (13) in-
volves only frequencies belonging to the sa,me ir-
reducible representation r of the little group Q' at
wave vector q. Vfhen some atom complexes canbe
treated as approximately rigid, the frequencies of
the combined translational and hbrational modes
before and after substitution are related by Eq.
(22). «„», ye~, . . .are defined by Eq. (23) and, as
in the case of point ions, x» x». .. are defined
by Eq. (10), except that M„, Nt„, .. . now signify the
masses of the entire molecular ious. Expressions
(13) and (22} are completely general. When the
inertial tensors asseciated with the rigid ions are
isotropic, Eq. (22} reduces to the simpler form
(21). When, in addition, only one molecular type
has constituents undergoing substitution (but other
ion types belong to the same irreducible repre-
sentation), Eq. (22) reduces still further to the
form (24). At this level, the inequalities (26) apply
to sums over (d' for combined translational and
rotational modes before and after substitution. For
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point ions, when only one ion type undergoes sub-
stitution, (but other types belong to the same re-
presentation), the inequalities (14) relate sums
over ~' of the modes before and after isotopic re-
placement. Under still more restrictive assump-
tions, discussed in Sec. I, the simple relations
(1) and (2) are recovered. Further generalizations
of the inequalities (14) and (25) are possible, but
will not be considered here.

To summarize, we have demonstrated that the
Teller-Redlich product rule applies at arbitrary
wave vector q between the frequencies of states
belonging to the same irreducible representation
r of the Seitz little group G . From our method
of analysis, it also follows that the Steele-Whiffen
inequalities apply at arbitrary q.' ' ln addition we
obtain the sum-rule inequalities (14) and (25). Ap-
plication to ammoniumperchlorate, currently under
active experimental investigation, ' ' has been dis-
cussed.
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TrC„=Q g (qrpt, s, ~qrp, y)(qrp, y[C ~qrp. y')
Sg

t]S ~

(A5)

whence, for more than one atom type associated
with qr p. ,

Pl(qrtj. t,s, ~qrp. y)) & 1, (A6)

for each y. From Eqs. (A4) and (A6),

TrC)~ + (dy ~ (A I)

Substituting in Eq. (A3) and recalling that, by defi-
nition, x' & 1, we obtain

x(qr py' ,
I qrpt, s, ,)

=2 I ( qr 0I s
I qr p y) I ~q ~ (A4

S~f

The second equality follows from the fact that the
basis [qr p.y) diagonalizes the dynamical matrix
[Cf. Eq. (12) and recall j =(rpy). ] By complete-
ness, for each value of y,

APPENDIX A

%e derive inequalities between the sums of
eigenvalues ~'(qry) -=~2 for the case of point ions.
The symmetry reduced dynamical matrix C can
be written in the form

0)& )X (d&

y T

Also, from Eq. (A4) it follows that Tr C„&0,
whence from Eq. (A3),

+2 ) +2

(A8)

(A9)

Combining (A8) and (A9) one obtains the inequali-
ties (14) of the text.

C2i C22

where the C;& are themselves matrices. The index
1 is associated with the atom type t„ that under-
goes isotopic substitution and the index 2 with all
other atom types associated with the same irre-
ducible representation r as is the type I;„. From
the discussion on Sec. Il of the text, it follows that

2&- C)~ &C~2

APPENDIX 8

%e obtain inequalities in the rigid molecule ap-
proximation when the inertial ellipsoid is spheri-
caL The appropriate generalization of Eq. (A2)
1s

x C„x/C, ~ xC

xC2,
(A2) C = yxC2,

xC3,

X C22 &C23

yC» C»

Q (uP„—(3'„)=(1-x')TrC„, (A3)

where in obvious Dirac notation

where, by appropriate definition of K vs M, one
can always arrange that x& 1. Then

where C» is a P&& P matrix associated with pure
translations of the molecular type I,„involved in
the isotopic substitution and C» is a Qx Q matrix
associated with pure rotations of the same mole-
cular type (NH, in the example discussed in Sec.
III). C» is a square matrix of dimension
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(N„P-—Q) associated with the translations and the
rotations of the remaining unsubstituted species
(C10, in the cited example). The meanings of the
off-diagonal matrices are obvious from context.
Then, from Eq. (Bl) and Eci. (12) of the text,

Substituting in Eg. (B2), we find

0&

&(1-y'}Q(o2y +(y'- x') Trc„. (B5)

g(&u~z —&i'„}= (1 —x') TrC» + (1 —y'}TrC». (B2)

Since we can always arrange the definitions of C
vs C such thatM„&M„, it follows that I & I, i.e.,
that 1-x'&0 and 1-y'& 0. Moreover, as in Ap-
pendix A, one can show that Trc«&0 for i=1, 2, 3,
from which it follows that

Assume that x'&y' (as in our example). Then
(B5) implies

hay & QPy (B6)

Similarly, when y'& x', one can demonstrate that

(B3)
QP & X GO (B'f)

TXC2s& Q GPSS
—TrC ~) .

y

(B4)
The inequalities (B3), (B6), and (BV) can be re-
stated in the form (25) given in the text.
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