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Standard-basis-operator (SBO) Green's function equations of motion are developed in the

random-phase approximation (RPA) for a general Hamiltonian characterizing interacting systems

having discrete energy levels. It is shown that the RPA equations have the same algebraic struc-

ture as the chain-diagram equations in the perturbation theory of SBO Green's functions. The

earlier problems of redundancy and failure to satisfy the monotopic restrictions in the calculation

of autocorrelation functions are resolved. Ratios of RPA autocorrelation functions can always be

determined from commutator equations from which thermal average energy-level occupation pro-

babilities P& associated with state ~P) are obtained. Using the properties of the SBO, a very sim-

ple derivation of an explicit formula for P& is given for an important class of Hamiltonians, which

includes the Hubbard s-band model and the Heisenberg ferrornagnet. This derivation completely

avoids the use of complicated methods such as the moment generator used to solve equations

coupling average moments of the spin operator Sz in ferromagnetic and antiferromagnetic sys-

tems,

I. INTRODUCTION

The equation-of-motion method using double-time

temperature-dependent Green's functions' has re-
ceived widespread use in various approximations to
predict the thermodynamics of condensed-matter sys-

tems. A linearization scheme often used to decouple
the Green's-function equations is the random-phase
approximation (RPA). The RPA is the simplest ap-

proximation yielding interaction dispersed excitation
energies, and it has been used with notable success in

describing over a large temperature range the
thermal-average properties of interacting systems,

In magnetic insulators with simple single-ion
energy-level structure, early RPA Green's-function
calculations appeared to yield a unique set of equa-
tions which determine the autocorrelation functions,
in particular the thermal-average moments of the Z
component of the single-ion spin operator. " Apply-

ing the RPA to more-complicated systems, for exam-

ple, the Heisenberg ferromagnet with uniaxial single-
ion anisotropy, which has received a great deal of
theoretical attention for spin I,' ' it became apparent
that the RPA may lead to inconsistencies. The exact
nature of the inconsistencies is most clearly manifest-
ed in the operator formalism originally introduced in

the atomic representation by Hubbard to calculate the
excitation spectra of various approximations to his
tight-binding Ham Iltonian, These operators were

later reintroduced and developed by Haley and Erdos
as the standard-basis-operator (SBO) method in the

Green's-function equation-of-motion technque' (re-
ferred to as I). In I it is shown that single-ion terms
can always be treated exactly in any decoupling
scheme when using Green's functions of SBO, thus
solving one of the earlier problems of decoupling the
interaction terms in a manner consistent with the ap-

proximate treatment of single-ion terms. This prob-
lem was first solved for the spin-1 anisotropic fer-
romagnet by Murao and Matsubara' using com-
ponents of the quadrupole-moment operator; but in

contrast to the SBO method their approach is not
readily extended to complicated systems with many
levels. Applying the SBO formalism in the RPA to
the troublesome spin-1 anisotropic ferromagnet, Haley
and Erdos found that, as in the Murao-Matsubara ap-

proach, the SBO Green's-function equations generate
an overcomplete, or redundant, set of equations for
the corresponding autocorrelation functions. It was

demonstrated in I that even when the anisotropy was

set to zero the redundancy prevails, and leads to
nonunique values for (Sz). Furthermore, the RPA
autocorrelation function equations for the spin-1 prob-
lem appeared to violate certain multiplication values of
the SBO, referred to as "monotopic restrictions, "

Diagrammatic techniques have been developed by
B. %estwariski' and by Yang and %'ang" using
temperature-dependent Green's functions of SBO.
The latter authors applied their method to the
spin-1 Heisenberg ferromagnet with single-ion an-

isotropy and showed that by carefully collecting all di-

agrams to first order in their perturbation parameter,
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the reciprocal interaction volume, that the mon'otopic
restrictions were not violated to that order. "However,
they did not solve the redundancy problem, but select-
ed a certain coupled subset of equations to determine
the autocorrelation functions. [This point is discussed
in Sec. III following Eq. (3.20).]

Standard basis operators provide the most detailed
and fundamental matrix representation for Hamiltoni-
ans modelling systems with discrete energy levels.
Since all Hamiltonians expressed in terms of SBO
have identical algebraic structure, and since the SBO
form a closed set under one simple multiplication rule,
these operators are particularly useful in formulating
model-independent approximation schemes for in-
teracting systems. In fact the nature of the SBO is
such that it yields maximum information with
minimum effort.

In view of the recent use of SBO Green's functions
in the RPA for describing the excitations and the ther-
modynamics of transition metals, " "and actinide
compounds, ' "analysis of the general RPA equations
using SBO formalism seems appropriate. In this pa-
per, a systematic procedure for determining solutions
of the RPA equations consistent with the monotopic
restrictions is presented.

II. HAMILTONIAN AND SBO GREEN'S FUNCTIONS

L Lpp=5 pL p (2.2)
Using (2.2) and the basic symmetry properties of the
single-ion wave functions it follows that

[L,Lpp] =5 (5 pL p ~5 pLp ) (2.3)

The plus sign is used if both operators have fermion
character, and the minus sign if one or both operators
have boson character. The SBO L has fe'rmion
character if the difference between the number of
electrons in state {In) and in state {ln') is odd, and it
has boson character if this difference is even. " Thus

The properties of standard basis operators have
been given in detail in Hubbard IV and in Haley and
Erdo (I). In this section I cite for convenience some
of these properties and develop a generalization of the
RPA equations appearing in I for the double-time
temperature-dependent Green's functions formed
from SBO. The SBO are defined by

L =
{ ln) (In'

{

where the complete set of functions {{ln)} for
I = 1, . . . , W and 0, = 1, . . . , p are the state vectors of
the ion I in state a. The set of states chosen is arbi-
trary, but as discussed in Ref. I and shown here, the
best choice is the set of orthonormal effective-field
states, which is assumed throughout the paper.

From (2.1) is follows that the multiplication rule for
SBO is

A

I consider a general Hamiltonian H consisting of
single-site and two-site interaction terms for systems
having a finite number of discrete energy levels. As
in I, Hhas the form

H = ghtAt~
f, /

+ —$ $J„'„"BgBg, with Jg", =0 . (2.5)
g, / g', m

A / A/
The matrix operators AI and Bg are elements of the
set {A&,f = I, . . . , NI ,B~,g =1', . . . , N, } necessary to
form the Hamiltonian. The superscripts denote the
site (ion) l, m =1, . . . , N. The scalars hrt are the
effective-field strengths, and Jgg are the interaction
constants.

In terms of SBO defined in the effective-field states
the Hamiltonian (2.5) takes the form

H= Xa„'L„„+—$ $ W™„„AL„„hL„„
p, / IMp, ', / vv', m

+ (const) (2.6)

where b, L~ „=L„~—5» (L») is the fluctuation
operator introduced for convenience for all operators,
even though we define AL~„=L„„for p, & p, ', .The
single-system effective-field energies are e~ = e„'+ (n„',
with n„' the number of electrons in state {Ip), and g
the chemical potential. The,combined intersystem-
interlevel coupling constants W„'~„, are given by

W' = W' =&1' 8 Bg
p, 'p, , vv' + ~ gg' + v

P /tt
(2.7)

in which double subscripts have been replaced by the
notation p, = (p„p, ') and p,

+ = (p, ', p). Whenever the
subscripts are arbitrary, this compact notation will be
assumed throughout the paper. The constants 8'„are
matrix elements of 8, in the effective-field states.

In the compact subscript notation, the two-operator
retarded SBO Green's function is defined by'

G""' (t t') = ((L (t) { L, (t ') ))—

i ([L.(t),L + (t')] —) for t ) t',

(2.g)
0 for t (t',

where the bracket ( . . ) denotes a thermal average.
The spectral representation of this SBO Green's func-
tion has the equation of motion

A/

the operator L for n ~ o.
' can have either character,

A/

but L is a1ways of boson character. The diagonal
SBO satisfy the normalization condition

(2.4)
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EG" i(E) =(I/27r) ([L,L +] )

+ (([L,H] iL +)) E (2.9)

where

f (E) =(e s ~1) ' (2.1 1)

'(L (1')L (1))

[ Gnm (E i0) Gnm (E + i0)]J —o l nP aP

f~ (E)e iE(( —t )— '

(2.10)

and it is related to the corresponding time-dependent
correlation functions through the relation' Introducing an operator-character parameter q,'"„

defined by the commutator equation

L,L'„=q,'"„I. L, for I & n (2.12)

it follows from Hamiltonian (2.6) that the Green's-
function equation of motion (2.9) is

(E —Ae,')G" +(E) = ([L,Lp+) ) + $ (([V"'» „(v)„'"„)L, „—vl"'„V"' „(71,'"» )L„]AL„~Lp+))e
p„ v, l

+ $ (q"„' —l)(IV„"' „+W,'" ) (L „)((L AL„ iLpi))E
p„ v, l

+g g IV"', (~.".'~."'„'-1)((aL'„,aL'„L".~L;, ))e t

iM, , I v, l
l, l'Wn

(2.13)

where

and (2.14)

1

nnI

(E —Ae") G"„~= bP 8p+ $—V"'~ (-+)G""~
vl

(3.2)

where

hP =P ~P, —with P =(L ) (3.3)

For Hamiltonians of the form (2.5) in which the in-

teraction does not mix operators of diAerent character,
the last two terms in Eq. (2.13) are absent. In these
cases, which include the Hubbard Hamiltonian' and

spin Hamiltonians, the signs of all q,]"„appearing in

Eq. (2.13) will be identical, in agreement with Hub-

bard IV.

III. RPA EQUATION AND SOLUTIONS

The simplest linearization of Eq. (2.13) is the ran-

dorn phase approximation in which thermal fluctua-
tions of the SBO appearing on the left-hand side of
the three-operator Green's functions are neglected,
i.e.,

((L»» AL„~L ~))E =5»» (L»„)G""~(E)

(3.1)
I

noting that (AL„) =0. The assumption that

(L») « (L») is reasonably justified only for SBO
defined in the effective-field states. Applying (3.1) to

' (2.13), and noting that only excitations of the same
character are coupled, yields the RPA equation

Vk (~) $(Jk ~ J k)gg gg (3.5)

The upper or lower sign is chosen according to
whether L has Fermi or Bose character, respective-
ly. The most-general linearization possible for Eq.
(2.13) is easily constructed in terms of SBO by apply-

ing the method of Roth, ' in which the arbitrary
linearization coefficients can be evaluated in principle

by conserving the second moment of the spectral in-

tensity function. ' Unfortunately, the resulting
Green's-function equations of motion cannot be
solved analytically for systems with many levels; In
contrast, analytic solutions can often be constructed
for the RPA equations (3.2). The remainder of the
paper deals with solutions of the RPA equations.

For systems fixed on a translationally invariant lat-

tice, Eq. (3.2) is simplified by Fourier transforming to
the momentum representation. Using the transforma-
tions defined in I gjves the RPA interlevel matrix
equation in k space

1

(E —Ae ) G" + = AP Ski+ $ Vk+ —(~)Gk +
k

v

(3.4)
where explicitly
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gk (g&) g Bg 'Gk (3.6)

arid operating on Eq. (3.4) with g B" (E —he ) '

yields the coupling-constant matrix equation

pig, , —&"(g',g) j 9"+ (g') = Z +(g) . (3.7)

Generalization of Eq. (3.4) to the case of multiple
sublattices, such as in antiferromagnets, is straightfor-
ward, and is found in I. For the lower sign case, the
RPA equation (3.4) is algebraically analogous to the
equation for the SBO Green's functions obtained in
the diagram technique of Yang and Wang by summing
over the chainlike diagrams. " If the averages I' are
replaced by D = (L )o, where D is an ensemble
average taken with respect to the eA'ective field Hamil-
tonian, Eq. (3.4) becomes identical with their chain
formula.

In general, for systems having p levels, Eq. (3.4)
couples p(p —1) Green's functions together. An ana-
lytic solution of this RPA equation by inversion of the
interlevel matrix of dimension p (p —1) is only feasi-
ble for systems with p very small, ' ' or when many of
the coupling constants V'+ are zero. " A muchA, V

simpler approach is to make use of the explicit form
of the coupling constants in terms of the matrix ele-
ments B„'.

Introducing an interlevel-averaged Green's function
defined by

treated. In the Hubbard model quasihole excitations
are mainly determined by"

(3.12)

where e~t creates an electron in atomic orbital g,
characterized by some appropriate set of quantum
numbers. For example, g = (I, m, o.) for a single-
electron orbital, where l is the angular momentum, m
is the orbital projection, and o- are the electron-spin
quantum numbers. Similarly for quasielectron excita-
tions

(3.13)

For the Hubbard s-band model, V + = ~T, and thetx, Cl

matrix X" is diagonal. In other cases, a reasonable ap-
proximation of the hopping matrix elements T,', can
sometimes be made, which greatly reduces the prob-
lem of inverting the matrix I"."

As an illustration of the problems arising in the
solutions of the RPA equation'(3. 4), I consider the
class of Hamiltonians for which the matrix A' is diag-
onal, i.e. , X (g,g') = 5«X (g), and for which each
given set of level indices (a, n') has at most one
nonzero matrix element B" ' associated with it.
This class includes the anisotropic Heisenberg fer-
romagnet and the Hubbard s-band Harniltonians.

For the cases under consideration, the solution of
Eq. (3.7) is given by

The inhomogeneous term is given by

Z +(g) = B~p 6 Pp (E —Aep)—

and I' is a matrix with elements

(3.8)
g~+ = ga+ (g) = Za+(g)

1

1

x 1 —$ Y +(g)B', AP (E —A~ ) '—
rx

X"(g',g) = g Y"+(g')B"hP (E —he )—
(3.9)

with

Y",(g') = —$(J,", ~ J;,")B',
,f

(3.10)

The functions g "+ (g) are determined by inversion

of a matrix of dimension N, . Substituting the result-
ing expressions for g"+ into Eq. (3.4) gives the com-

plete solution of the RPA equations for all G~ +. The

advantage of this approach is that often
W„((p (p —1), or X" is a diagonal matrix. In either
case, Eq. (3,7) is easily solved. For example, in the
Heisenberg ferromagnet the coupling constants that
determine the RPA quasiparticle excitations are

(3.14)

where g =g(p, p'). Since there is only one g associat-
ed with each (p, p') the g designation will be
suppressed in the sequel, but it should be remem-
bered that g(P, P') restricts the sum over n in the
denominator of Eq. (3.14).

Clearing fractions in Eq. (3.14) gives 8"+ as the ra-
P

tio of polynomials in E, the numerator being of one
degree less than the denominator. The roots cuk of
the denominator are quasiparticle excitation energies
between states in the bands formed from the interac-
tion dispersed eftective-field levels ~ . Assuming that
these roots are distinct, or at worst degenerate at a
few isolated points in k space, Eq. (3.14) may be ex-
panded in partial fractions. " This expansion gives

(3.11)

and the matrix X" is of dimension one. The parame-
ters in Eq. (3.11) are given in the Appendix, where
the Heisenberg ferromagnet with arbitrary spin S is

Q "+ =(2rr) 'B&hP& QBa—(k, r)(E —cok) ' . (3.15)
p

The excitation energies col,
' are determined from the

characteristic equation
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—$ Y' [g(P)]B"@b.P-

(3.16)

where g, ~ (E —Ae„) is the product necessary to

clear fractions in Eq. (3.14), excluding the term
E —Ae . The functions Rp- (k, r) are defined by

R p- (k, r) = g (rpl,'. —Ae„)
vip

t

X QJk —
Qjir

r Wf

(3.17)

They satisfy the normalization

XRp (k, r) =1 for any P (3.18)

Substituting expression (3.15) for 8 "+ into (3.4)

yields the interlevel Green's function
t

G" += 5 p(E —he) '+V"+ bPp

—(E —Ae ) '] . (3.19)

When V"+ =0, the only nonzero Green's function
p

is Gk + which has an effective-field pole Ae . The

reason is that the RPA equation of motion (3.4) con-
tains only terms to linear order in the matrix elements
8 of the interaction Hamiltonian, which does not
directly connect levels n and a' if 8 =0 . To
disperse such an excitation, a higher decoupling in-

volving powers of the interaction Hamiltonian would
have to be used. Effective-field excitations, also
present in diagrammatic methods, "' are due to ap-
proximations.

The surprising feature of Eq. (3.19) is that when
V +" A 0, the Green's function 6" + may have

poles not only at the dispersed excitation energies cok

. but also simultaneously at the effective-field excitation
energy Ae . It can be shown using the character'istic

equation (3.16) that this mixing of dispersed and non-

dispersed poles in 6" + occurs whenever there exists

degeneracy in the effective-field excitations appearing
in Eq. (3.16). Such degeneracy occurs in the isotropic
Heisenberg ferromagnet, and in the Hubbard s-band
model in the limit of vanishing electron-electron in-

teraction I for electrons on the same site. In the ab-

sence of effective field excitation degeneracy, for ex-
ample the Heisenberg ferromagnet with single-ion an-

isotropy [see (A13)l, the poles of G' + and gk+ are

identical and dispersed. However, the numerators are
quite different; thus these two Green's functions gen-
erate different correlation functions.

In inhomogeneous media one might expect poles of
the single-ion type to represent an approximation to a

localized excitation due to scattering of a wavelike ex-
citation. However in the homogeneous media con-
sidered here, these poles appear to be spurious. They
should be present only in the limit as the interaction
goes to zero. In this limit the dispersed excitations
reduce directly to the corresponding single-ion excita-
tions.

In contrast to the spurious pole situation in 6" +

when V'+ WO, the averaged Green "s function g'+
given by (3.15), which is a linear combination of only

the interlevel Green"s functions for which 8 + &0, con-

tains only dispersed poles col', . These averaged Green's
functions play an important role in calculating correla-
tion functions in Sec. IV, but first I consider what

happens when Eq. (3.19) is used to determine such
functions.

Thermal averages of single-ion operators are deter-
mined from the correlation functions associated with
G""'. Substituting (3.19) into (2.10) and transforming
back to coordinate representation, the time-
independent correlation functions are determined in

RPA by the interlevel equations

V"+ R p(k, r)
(L +L ) =b,P 8" g f—(bte ) +bPp N' $ [f—(«—)k) f (Ae )]e'"—-

~k
(3.20)

Examination of Eq. (3.20) shows that it gives an over-
complete set of nonlinear algebraic equations for the
autocorrelation functions (L +Lp) which determine

p
the set (Pp] of thermal-average occupation probabili-
ties. The source of this redundancy is that Pp= (Lpp)
can be calculated from any autocorrelation function
(Lp L p) for n =1, . . . , P, except n =P. This
redundancy exists in any order of approximation, in-
cluding an exact calculation; however, in the latter

case any complete set of (Lp L p), with the normali-
zation condition (2.4), gives a unique value for all Pp
This is easily demonstrated by neglecting the interac-
tion part of Hamiltonian (2.6), in which case the first
term in (3.20) represents an exact solution for the
effective-field Hamiltonian.

In approximations of higher order than the
effective-field approximation, the equation-of-motion
method and the diagrammatic-expansion method can
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treat different interlevel excitations to different orders
of approximation. For example, in the Heisenberg
ferromagnet Bp & p %0, but Bp =0 for ~P

—
n~ & I;

thus Eq. (3.20) has a completely dift'erent algebraic
form in determining P&

——(I.p L p) for ~P
—n~ & I

from its form in determining Pp = (Lp p, Lp ~ p).
One obtains different results if P& is used instead of
Pp in calculating thermodynamic parameters. This
lack of uniqueness also prevails in the diagrammatic
technique of Yang and Wang. " In their treatment of
the spin-1 Heisenberg ferromagnet" in complete set
(P~, P ,OP~I where 1,0, 1 label th'e projection states of
Sz, w'as calculated, but Pp = (L~ ~L" t~) was ignored
because the Green's function which determines P'i is
not linked with the set of Green's functions which
determine (P~,P ,0P~j. It remains to be shown in the
diagrammatic method that P& can be calculated equal
to Pp. Also in the RPA equation (3.20), the Pp are
not linked to the P& when the Hamiltonian does not
contain matrix elements between nonadjacent states,
i.e., when Bp =0 for ~P

—n~ & l.
In addition to the autocorrelation functions

(Lp L ~) which determine IPp)t, Eq. (3.20) contains
(L p pL ) with a A P. In accordance with the multi-
plication rule (2.2), referred to as the "monotopic res-
triction" in I, all functions (LppL ) =0 for n AP.
However, applying the multiplication rule to Eq.
(3.20) shows that this equation is not satisfied for
a AP, unless hP =0. This is no-t only physically
unreasonable, but it is in contradiction with the
nonzero values of AP —which also follow from Eq.
(3.20) when n=P.

This lack of internal consistency occurs in the chain-
like diagram formula given by Yang and Wang. "'
These authors show in an explicit calculation on the
spin-1 Heisenberg ferromagnet that the chainlike di-

agrams for the autocorrelation functions do not in-
clude all terms to first order in their expansion-
parameter reciprocal interaction volume. They prove,
however, that when all diagrams to first order are
summed, the functions (LppL ) =0 for n A p.

Can the RPA equations be used in some way to
give a unique and reasonable value for the set (Pp) of
occupation probabilities without violating basic opera-
tor rules? In the many previous papers utilizing
Green's functions of angular momentum operators,
RPA decoupling results in equations for autocorrela-
tion functions which are linear combinations of the
SBO autocorrelation function equations. These equa-
tions involving thermal averages of products of
angular-momentum operators are solved by introduc-
ing exact relationships among the operators. This pro-
cedure using exact operator relations in conjunction
with the approximate RPA equations produces
different results depending on which linear combina-
tion of SBO Green's functions is used. The reason is
that the errors inherent in the RPA are propagated
with different weighting factors in different linear

combinations. In.Sec. IV it is shown that there is one
a particular linear combination of SBO Green's func-
tions which does not lead to any inconsistancies.

IV. CORRELATION FUNCTIONS

The RPA equations do, in fact, have a solution
which yields unique values for the set IPp) of thermal
average occupation probabilities, and which does not
violate the basic operator multiplication rules. The
particular linear combination of SBO Green's func-
tions that accomplishes this is Q "+ defined by Eq.

P
(3.6). Using 8 "+ given by Eq. (3.15), or operating

on Eq. (3.20) with g B, leads to the correlation-
function equation

gB I(L +L ) —5 phP 4& (n —m)) =0
a

(4.1)

(3 B ) =QApBphPp C&p (n —m—)-
P

(4.3)

"m
where A is an arbitrary operator, associated with site
m having matrix elements A&. Usualiy the only corre-
lation functions of physical interest are those for
which 3 = (B )t For example, i. n the Heisenberg
ferromagnet, Eq. (4.3) gives an expression for
(S'"S+), and in the Hubbard s-band model it yields
((c ) "c ). In order to calculate the correlation func-
tions (A B ), the occupation probabilities need to be
determined. This is accomplished from Eq. (4.1) by
setting m =n.

When m = n in Eq. (4.1), application of multiplica-
tion rule (2.2) and the assumption (L p) ((P
reduces Eq. (4.1) to an equation involving only occu-
pation probabilities. Reintroducing the expanded sub-
script notation, the result is

Pp/P = r p= 4& ~p(0) [I -+ 4 *p(—0)]

for all n and P

such thatB PAO (4.4)

For the class of Hamiltonians leading to Eq. (3.14),
the function 4 is give, n by

with

(n —m—) =& ' $B (k, r)f (cok)e'" "— . (4.2)
k, r

This linear combination of SBO correlation func-
tions is that formed from matrix elements of the
operator B which appears in the interaction Hamil-
tonian. Equation (4.1) has the unique feature that it
is the only linear combination containing only
dispersed excitation energies as arguments of the dis-
tribution function f-.

Multiplying Eq. (4.1) by an arbitrary scalar Ap and
summing over P gives
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@*p(0)=X ' Y g (0),'. —i),e„)
w, f V, V A Ck, P

1

~1

For other Hamiltonians for which the matrix X"
defined by Eq. (3.9) is not diagonal, Eq. (4.1) and
hence Eq. (4.4) have the same form as presented here
in the diagonal case. The only modification is that
some coeEcients aI', appear in 4.

Equation (4.4) defines the ratio r & of occupation
probabilities between levels n and P which are directly
connected by nonzero matrix elements B'& of the in-

teraction Hamiltonian. It is shown, as an example, in
the Appendix that the application of Eq. (4.4) to the
isotf'opic Heisenberg ferromagnet of arbitrary spin
leads very quickly to the same thermodynamics as
results from complicated procedures based on spin
angular-momentum operator Green's functions in the
RPA. '4 In addition, under the condition that thermal
averages of nondiagonal operators are neglected, Eq.
(4.4) is the solution of any autocorrelation function
commutator equation having the form

(AB) = ([C,A] )
A

where 3 is an arbitrary operator, and Band Care
defined by

B=QB L and C=QB 4 L-
(4.6)

(4.7)

The usual procedure for solving an equation having
the form (4.6) is to choose A to be members of some
complete set (A } of operators A such that Eq. (4.6)
forms a closed set of equations. The solution of these
equations can be used to determine any thermal aver-
age (A' B). Although this procedure is possible, in

principle, for any system with discrete levels, the
selection of the set (A } may be diIIicult and it is not

e f
unique. There may be several sets (A }, used in con-
junction with exact relationships among the operators
A, B, and C to close Eq. (4.6), which give the same
values of thermal averages (see the Appendix). As-
suming that the operators B and C are fixed, it is evi-
dent that the solution [Eq. (4.6)] cannot depend on
the arbitrary operator 3 if exact operations are used.
Solving Eq. (4.6) is simply a matter of making the
judicious choice for 3 to minimize algebra. Choosing
A = L + and applying the multiplication rule equation

P
(2.2), with the assumption (L &) « P& for n A P,
yields the solution of Eq. (4.6) in the form of
occupation-probability ratios r &given by Eq. (4.4). -

Even when Eq. (4.4) gives enough ratios to deter-
mine the complete set (P&}, it may not represent all

the ratios generated by the RPA equations. Equation
(3.20) also yields, consistent with the SBO multiplica-
tion rule, the ratios

Pp/P. = rI.-p = f =(~'~.p) [I ~f(&, ~.p) l
'

—4e /ka T=e ]' 8 for all B ~=0 (4.8)

$ P,„=1 (4.9)

In the effective-field approximation all occupation
probability ratios are given by Eq. (4.8), and it is
readily shown using q &=q,q» that of the
—,p (p —1) ratio equations only p —1 are independent.

Combining these (p —1)-independent equations with

the normalization condition (4.9) yields a unique set

(Pp, /3 =1, . . . , p}. In the RPA the situation is com-
plicated by the presence of two types of excitations,
resulting in diAerent functional forms q & and r -& f'or
the ratios pp/p = Q p depending on the levels a and

P, and one is faced with the problem of selecting p —1

ratios from —,p(p —1). Since the RPA values of Q p

may not be equal to Q, Q», where y is some inter-
mediate state, selecting different ratio equations could
give different results for (Pii}

In accordance with the normalization Eq. (4.9), the
set of occupation probabilities is given by

P = I+QQp for a= 1, . . . , p (4.10)

Equations (4.10) are internally consistent only if all

the values used for the Q p's satisfy a product rule

Q &
——Q,Q», appropriate to transition probabilities.

The true Q„&'s, which are defined as probability ra-

tios, satisfy such a product rule and hence there are
only (p —1)-independent ratios. The RPA values for
the ratios do not satisfy this product rule and one
must select p —1 values for the ratios to obtain inter-
nal consistency in Eqs. (4.10). Once an appropriate
set of RPA values for p —1 ratios Q & is chosen, the
remaining ratios are given in terms of products of the
chosen values. These various products are readily
determined from an eA'ective-field energy-level di-

agram, or more laboriously they can be found by in-

serting the p —1 chosen values for ratios in Eqs.
(4.10), replacing the remaining Q ii's by p&/p and
solving self-consistently for p&/p .

Equation (4.8) defines the ratio q p for all levels not
directly connected by matrix elements in the interac-
tion Hamiltonian, and as such these ratios are func-
tions of the eft'ective-field excitations Ae &

= e&
—~„.

Equations (4.4) and (4.8) together represent the
complete solution of the RPA autocorrelation-function
equation (3.20) consistent with the SBO multiplication
rule. For a system with p levels, Eq. (4.4) and (4.8)
constitute a redundant set of —,p (p —1) equations for

the ratios Pp/P with n, P =1, . . . , p, corresponding
to all possible interlevel excitations. In addition to
these ratio equations, the constraint (2.4) requires the
normalization
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(o) = Xo..p. , (4.11)

with P defined in the RPA by Eq. (4.10). For nonlo-
calized electron excitations, the chemical potential f,
implicit in A~ p, is determined by the additional con-
straint n, = X n P The number of.electrons in

each system I is n„and n is the number per state
Ii~)

The same prescription which led from the RPA
equation (3.14) to the probability formula (4.10) may

It is worth mentioning that the use of averaging
procedures to involve more than p —1 of the RPA ra-
tio equations in the determination of the set (p&) leads
to inconsistencies.

The problem of selecting p —1 RPA values for pro-
bability ratios is often resolved by the following physi-
cal arguments. Assume

~
fa) and ~IP) are localized

eigenstates of a sing. le-ion system at site l. If neither
of these states is linked by an interaction to states of
other ions, ~ln) and ~IP) are eigenstates of the Ham-
iltonian, and the occupation probability ratio Pa/P is

correctly given by q„a in Eq. (4.8). However, if ei-
ther one of the states ~Ia) or ~IP) is connected in the
interaction Hamiltonian to states of ions on other sites
n A I, it is no longer an eigenstate of H and a direct
thermal transition of the type q & is not appropriate.
In this latter case, transitions are more correctly
described by dispersed quasiparticle excitations, which

in the RPA are manifested by the mean-mode excita-
tion probabilities r pin Eq. (4.4-). In general transi-

tions are characterized in the RPA by a combination
of quasiparticle excitations occuring through various
paths dictated by some set of nonzero matrix elements
of 8. For example, in the Heisenberg ferromagnet of
spin S the only nonzero matrix elements of 8 are
those connecting adjacent energy states, which in the
RPA leads to p —1 =2S independent ratios

Q ~
——r, . Transitions between nonadjacent

states are described by a series of independent quasi-
particle excitations (see the Appendix). In the Hub-

bard s-band model the above reasoning can be used to
select a set of p —1 =3 values of Q &.——r+p, which

gives very reasonable thermodynamics.
For cases in which the selection of Q p=r &when-

either
~
I a) or

~ IP) is not an eigenstate of H or

Q &
= q p when both states are eigenstates of H does

not reduce the number of independent RPA values
for Q p to p —1, one must rely on other physical cri-

teria. Such is the case of electron excitations in the
two-band Hubbard model, where known limits of
weak and strong interactions can be used to eliminate
certain r +p's. 2'

The thermodynamics of single-ion systems is com-
pletely determined by Eq. (4.10). Assuming that

(L p) « Pp, the thermal average of a single-ion
operator 0 with matrix elements 0 p in the effective
field states is given by

also be applied to the general RPA equation (3.7).
One obtains a commutator equation of the form of
Eq. (4.6), whose solution gives equations for the ra-
tios r & associated with dispersed excitations. Using
these ratios together with those associated with un-
dispersed excitations, the occupation probabilities are
calculated from Eq. (4.10).

V. CONCLUSIONS

A prescription for determining the thermodynamics
of interacting many-level systems from random-
phase-approximated Green's functions has been
presented using standard-basis operators. The general
RPA equations of motion for SBO Green's functions
are analogous to the chain-diagram equations of SBO
perturbation theory. Solution of the set of coupled
equations for the SBO interlevel Green's functions is

greatly facilitated for systems with many levels by con-
structing a particular linear combination of the inter-
level Green's functions using matrix elements of the
transition operators in the interaction Hamiltonian.
This linear, combination is essential in determining the
solution of the corresponding autocorrelation function
equations consisten't with the monotopic restrictions.
An explicit formula is given for calculating internally

consistent values of the set (PpI of level occupation
probabilities from the over complete set of RPA
values for the ratios P&/P .

It is worth emphasizing that calculation of auto-
correlation functions from any other linear combina-
tion of SBO Green's functions leads to violations of
the monotopic restrictions. There have been a
number of previous RPA calculations on magnetic
systems using spin angular-momentum operators in
which the equations chosen to calculate autocorrela-
tion functions were not equivalent to the particular
linear combination of SBO functions which satisfies
the monotopic restrictions. Such choices, which are in

direct contradiction with the basic multiplication rules
of the SBO are hardly justifiable.

In the Appendix it is shown that the method
presented here gives almost trivially the RPA thermo-
dynamics of the Heisenberg ferromagnet of general
spin S, which has been previously determined only
after lengthy calculation. Application of this method
to the Hubbard s-band Hamiltonian also yields quickly
the thermodynamics, which exhibits the correct
behavior in the fully itinerant and fully localized elec-
tron limits. "
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g+p =Bp =b 5p

(AS)

APPENDIX' HEISENBERG FERROMAGNET

——g J"'[SzSz + —(S S +S S,)]
I, m

(Al)

The parameters are anisotropy strength D, external
field h, and exchange J™.The operators S are the

raising and lowering angular-momentum operators.
Using the transformations

(Sz)"=X~"L.. .

The Heisenberg ferromagnnet is chosen to illustrate

the theory presented in this paper, because its thermo-

dynamics has been studied extensively, particularly us-

ing Green's functions decoupled in the RPA. ' 8 The
Hamiltonian of the Heisenberg ferromagnet with

uniaxial single-ion anisotropy, represented in the
eigenstates of the Z component of the spin angular-

momentum operator in terms of Sz, S+, and S is

given by

H = g [D (Sz) + hSz]

where inversion symmetry was assumed, i.e., J =J ".

To clarify the connection between the SBO
autocorrelation-correlation function equations in Sec.
IV and previous calculations using spin angular-

mornentum operators, the isotropic case D =0 will be

considered first. Using expressions (A4) and (AS) in

equations (3.16) and (4.5) gives for the commutator

equation (4.6) the form

(AS+) = ([S+,A] ) d1 (A6)

The function 4& = N ' X„f (&ok) is the average occu-

pation number of the dispersed excitation modes
cok = h + (J —J") (Sz). To solve (A6) the arbitrary

operator 1 can be chosen successively from the set of-

spin operators ((Sz)"S,n =0, . . . , 2S —1}',or from
the set ((S ) "(S+)" ', 12 =0, . . . , 2S —I} . The set of
25 equations is used in conjunction with the constraint
equation g (Sz —cx) =0 (Refs. 2 and 4) to deter-

mine the thermal average moments ((Sz)"). An al-

ternate procedure is to set A =exp(aSz)S and to
solve the resultant differential equation in the variable
a.' All of these choices for 3 give the same formula
for (Sz} first derived for arbitrary S by Callen. '6 It is

and

S+= Xb,L

S =gbL

(A2)
(Sz) = [S —(5+1)r +(5+ I —Sr)r +']

x (I )
—1(1 2s+1) —1

where

=r(dI a+)-' .

(A7)

(Ag)

where

b =[(S+n)(S—a+I)]'i'

for n= —S, —S+1, . . . , S

the Hamiltonian in SBO representation is

H=xe L„„——XQJ'
p I 2

p I um

x [vvhL„„EL„„+, , b„b, —

x(L„„1L,1, +L„1„L„„1)] (A3)

The effective-field energies e~ are given by

y (D p + h +J (Sz) ) (A4)

with J the k =0 component of the Fourier
transform J"of J™.

Comparing (A3) with the general Hamiltonian (2.6)
and using (2.7) and (3.5) gives

In contrast to the complicated derivations of (A7)
from (A6) using angular-momentum operators, "'6
the derivation using SBO is simple. The matrix ele-
ments of S+ are 8+p = b 5p ]; hence in accordance
with (4.4), which solves any commutator equation of
the type (4.6), Eq. (A6) gives the ratios

P, /P = r for n =—S + I, . . . , S (A9)

(A 10)

with r defined in (Ag). Equation (A9) is a recursion
relation for a system with 2S +1 equally spaced ener-

gy levels. Iterating (A9) gives the ratio

Pp/P =r &=r P for P=—S, . . . , S. Since there are

no matrix elements 8 p connecting nonadjacent states,
the only excitation mode in the RPA is a series of
quasiparticle excitations each having mean-mode occu-
pancy CI and excitation probability r. Noting that
there are no isolated states, we set Q &

= r P in for-
mula (4.10) giving

P p.s —a(I r) (I r2s+1) —1 foi
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A

The thermal average moments of Sz,follow immedi-
ately from (A2) and (A10). They are

S

(CSz) ") = r (1 —r) (1 —r"+') ' X n"r (A11)

where

Ae„= h + Jo(Sz) + (2i —1)D

The probability-ratio equations for D A 0 are given by
a=—S

P i/P =r (A14)

Noting that

n —rx —1

dr '

gives the moment formula

((S ) n) rs(1 r) (1 r2s+i) —i r —i . d
dr '

i

x[(r —r +'))1 —r) 'j (A12)

with r =r i defined by Eq. (4.4). Due to the term
—o.'D in the effective-field energy e, the ratio r

depends on u in ip i(k, r) defined in Eq. (4.5).
Hence one cannot make an Ansatz of the form
P&/P = e ' P'~, as was possible in the isotropic case,
and the Callen-Shtrikman common probability argu-
ments2i are not valid, except in the limit D/J « 1.

Equation (A14) can be solved by iteration to find

Q a=r a in the formula (4.10) for P . The result is
/

P =r +i rs(1+rs+rs irs-

x g (E —&~,)) (A13)

For n =1, Eq. (A12) reduces to the Callen result
(A7).

, In the presence of single-ion anisotropy D &0, the
single-ion energy levels are not evenly spaced, result-

ing in a set of 2S diA'erent RPA quasipartiele excita-
tions &ok defined from Eq. (3.16) by

S Jk S

g(E —~„")= g (E —s~,)+—x &.'(P. —P.-i)
I' v=—S 2 a=—S

I

+ ' ' ' +r-s+i ' ' ' rs-irs)

for n= —S, . . . , S . (A15)

At this point is is seen that the determination of the
set {P j is reduced by the method presented here to
the resolution to the characteristic equation (Al'3) for
the roots ~k, followed by self-consistent solution of
Eq. (A15). Such a calculation will be presented else-
where.

'Work supported by the Swiss National Science Foundation
Grant No. 2.403-0.75

'D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [Sov, Phys.
Usp. 3, 320 (1960)].

S. C. Tyablikov, Methods in the Quantum Theory of Magnetisrn

(Plenum, New York, 1967).
N. N. Bogolyubov and S. V. Tyablikov, Dokl. Akad. Nauk

SSSR 126, 53 {1959) [Sov. Phys. Dokl. 4, 589 (1959)].
4R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88

(1962).
5M. E. Lines, Phys. Rev. 156, 534 (1967); J. F. Devlin,

Phys. Rev, 8 4, 136 {1971);M. Tanaka and Y. Kondo,
Prog. Theor. Phys. 48, 1815 (1972); N. A. Potopkov,
Teor. Mat. Fiz. 8, 381 (1971).

T. Murao and T. Matsubara, J. Phys. Soc. Jpn. 25, 352
(1968).

7S. B. Haley and P. Erdos, Phys. Rev. B 5, 1106 (1972).
"A. A. Kazakov, Teor. Mat. Fiz. 23, 281 (1975); T. Ishikawa

and Y. Endo, Prog. Theor. Phys. ' 55, 650 (1976).
'j. Hubbard, Proc. R. Soc. A 277, 237 (1964); J. Hubbard IV,

ibi(7. 285, 542 (1965).
'"8. Westwanski, Commun. Joint Inst. Nucl, Res. E4-7624,

. «nd E4-7625, Dubna (1973) (unpublished).
''D. H.-Y. Yang and Y.-L. Wang, Phys. Rev. B 10, 4714

(1974).
' D. H. -Y. Yang and Y.-L. Wang, Phys. Rev. B 12, 1057

(1975).
' K. A. Kikoin and L. A. Maksimov Zh. Eksp. Teor. Fiz

58, 2184 {1970) [Sov. Phys. JETP 31, 1179 (1970)];Fiz.
Tverd. Tela 13, 802 (1970) [Sov. Phys. Solid State 13, 662
(1971)].

' Y. P. Irkin, Zh. Eksp. Teor. Fiz. 66, 1005 (1974) [ Sov.
Phys. JETP 39, 490 (1974)].

'5E. V. Kuz'min and S. Sandalov. Zh. Eksp. Teor. Fiz. 68,
1388 (1975) [Sov. Phys. JETP 41, 691 (1976)],

' J. M. Roibinson, AIP Conf, Proc. 29, 319 (1976).
'7J. M. Robinson, AIP Conf. Proc. 34, 189 (1976).
'8L. M. Roth, Phys. Rev. Lett. 20, 1431 (1968).
' R. A. Young, Phys. Rev. 184, 601 (1969).
OR. A. Tahir-Kheli and H. S. Jarrett, Phys. Rev. 180, 544

(1969).
~'C; Vettier, J. Phys. C 7, 3583 (1974).

J. Hubbard, Proc. R, Soc. A 276, 238 (1963).
F. B. Hildebrand, Advanced Calculus with. Applications

(Prentice-Hall, Englewood Clips, N. J., 1963), p. 67.
V. G. Vaks, A. I. Larkin, and S. A. Pikin, Zh. Eksp. Teor.
Fiz. 53, 281 (1967) [Sov. Phys. JETP 26, 188 (1968)].

25J. M. Robinson (private communication).
H. B. Callen, Phys. Rev. 130, 890 (1963).
H. B. Callen and S. Shtrikman, Solid State Commun. 3, 5

(1965).


