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The problem of the exciton states in solid rare gases is studied within the framework of the integral-

equation approach appropriate for intermediate-coupling interaction, The different contributions appearing in

the integral equation are investigated and related to physical quantities by means of an analysis of their

behavior in the two limiting situations in which the effective-mass approximation (EMA) or the atomic
solution holds. An approximate solution is given for the intermediate case using the simplest trial wave

functions having the correct behavior in both limits. Quantitative results, obtained by this simple approach,
are remarkably more accurate than both the EMA hand the atomic values.

I. INTRODUCTION

Solid rare gases are the simplest molecular
solids, hence the importance of the study of their
electronic properties. Rare-gas elements are
closed-shell systems with zero valence; the
atoms are bound in the solid by weak Van der
Waals interactions. The lattice spacings a„
or equivalently the radii of the central cells p
(we define p„asthe radius of a sphere whose
volume Q= —,'a', is that of the primitive cell) are,
consequentiy, large compared to those of other
materials. Under such conditions it is expected
that the valence bands are flat because the over-
laps between atomiclike orbitals centered on
different atoms are small. At the same time the
conduction bands are free-electron-like, w ith an
effective mass p, of the order of unity. ' Because
of these properties of the valence and conduction
bands, it has been possible to find methods and
basis functions giving an adequate picture of these
states. ' For the excitons v e expect similarly an

atomiclike behavior for the tightly bound lowe. st
levels, and a hydrogeniclike behavior for the
spread-out higher-energy states. The parameter
characterizing the former is still p„,while those
appropriate to the latter are p. and the dielectric
constant e„,which is also of the order of unity.
It turns out that this distinction is only approxi-
mate, and some states definitely occur in a region
of intermediate coupling. In Sec. II v e point out
that the formula

EE„~(n) = /. , -B/n = E, —p!2~on

giving the energies of the exciton states in the
effective-mass approximation {EMA), gives a
fit within 0.02 eV to the experimental transition
energies, except for those of the lowest (~& = 1)
states. The defect 6, defined as the difference
between the experimental and the EMA values for
the n=1 states

expt pM

is positive and about 1 and 0.2 eV in solid Ne and

Ar, respectively. The energies of the first
atomic transitions EA are also about 0.9 and 0.4
eV lov er than the corresponding energies L pt

in solid Ne and Ar. Thus we conclude that the
lowe st exc iton levels are neither hydrogeniclike
nor atomiclike. But we still have to understand
in what sense they are intermediately coupled,
because any kind of average between E«„and F.

„

would be lower than F.,„„t.If we consider solid
Kr and Xe the defect 6 becomes 0.06 and 0.00 eV,
respectively. Thus we must understand why 6 is
large in Ne and Ar and small or null in Kr and Xe.

In recent years considerable effort has been
exerted to solve the exciton problem for inter-
mediate coupling. Several authors' ' have pro-
vided the theoretical framework and carried out
quantitative studies for the elements of the se-
quence. We consider here, in particular, the
integral-equation approach. "" Complete cal-
culations within this framework require detailed
knowledge of the band structures and are ad-
dressed to specific examples separately. We
study first the general solution of the integral
equation and establish its connection to the
known exact solutions in the limiting cases of
extended and localized states, namely, the EMA
and the atomic solutions, respectively. In per-
forming such a study, given in Sec. III, we re-
late the terms of the integral equation to well-
defined physical entities, and better understand
the assumptions and approximations of calcula-
tions based on this approach. Subsequently, we
give an approximate solution to the problem by
taking the simplest trial wave functions which
have the proper behavior in both limits. We
thus obtain in a simple fashion a direct quantita-
tive explanation of the meaning and of the trend
of the defect 6 in the rare-gas solids. We report
these results in Sec. IV.
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TABLE I. Experimental transition energies in eV. Data from II', efs. 9 and 10. The notations
are described in the text.

Ne' (8 K) Ar (20 K) Kr (20 K) Xe (20 K)

E~y, n =1
Empt

2
2I

3
3l

4
4i

5

17.59

20.25

20.92

21.18

21.29
16.671

17.79

20.37

21 ~ 02

21.24(?)

16~ 848

12.06

13.57

13.89

13.97

11.624

12.24

13.75

14.07+

11.828

10.17

11.23

11.44

11~ 52

10.033

10.86

11.92

12.21(7)

9.07

9.21

8.437

9.51

~ "+"denotes reflection data. A prime refers to the J=z series.

II. EXPERIMENTAL SITUATION

In Table I we report recent data taken from Saile
et al'. ' on the experimental energies of the lower ex-
citontransitions insolid Ne, Ar, Kr, and Xe. These
results, obtained at Deutsches Elektronen-Synchro-
tron (DE SY) using synchrotron radiation and high-
resolution techniques, are probably the most accu-
rate to date, the probable error being less than or
equal to 0.01 eV (a review of the previous experimen-
tal work canbe found in Ref. 2). Two series are
detected and denoted by —,

' and —,'. They arise from
I » exciton states with s-type envelope functions,
converging, respectively, to the limits F., and

E,'. These limits, which are the onsets of the
interband transitions, correspond to a free
electron-hole pair, with the electron in the mini-

mum of the conduction band and the hole in either
of the maxima of the spin-orbit-split valence
bands I', and I', . In the last two rows of Table I
we reproduce the lowest experimental atomic
transition energies E„andE„'taken from Moore. "
They arise from the lowest P, atomic excited
states. The corresponding series would converge
to the limits E,„orF», the ionization potentials
of the free atom in which the positive ion is left
in either the J= 2 or J =-,' states. The energies
E„andF» are related to E,„~& and E„respec-
tively, in the solid phase.

In Table II we fit the experimental energies of
Table I with the EMA series (1}. The two para-
meters F., and B of the EMA are also given, as
well as the defect b. defined in Eq. (2}.

In Table III we give the central-cell radii p„

TABLE II. Effective-mass approximation energies and other parameters in eV, for the
rare-gas solids. The symbols are defined in the text.

Ne Ar Kr Xe

EEMA n =1
EEMA 1'

2
2/

3
3I

4
4/

5

El
B
Bl

~t

16.51

20.25

20.94

21.18

21.29
21.49

4.98

1.08

16.90

20.37

21.02

21.24

21 ~ 53

4.63

0.89

11.86

13~ 57

13.89

14.14

2.28

0.2

12.04

13.75

14.07

14 ~ 32

2.28

0 ' 2

10.11

11.23

11.44

11.52

11.61

1.50

0.06

8 ~ 37

9.07

9.21

9.31

0.94

0 ~ 00
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TABLE III. Central ce11 and EMA radii in a.u. and dielectric constants taken from Refs.
11-13.

Ne Ar Xe

Pcc
6p

AHA
I

~EMA

3.27
1.24

2.20
2.37

3.918
1.660

3.595
3.595

4.175
1.882

4.820

4.533
2.217

6.529

an~i the dielectric constants 60 p and eo are
derived for solid Ne from the lattice spacing and
the atomic polarizability given in the book by
Kittel. " The Clausius-Mossotti equation is used
to obtain e,. The quantities p for solid Ar, Kr,
and Xe are obtained from data available in the
literature ' for a temperature of 20 K. The di-
electric constants eo are taken from a paper by
Sinnoch and Smith. " The last two rows of Table
III gi.ve the EMA radii pEMA obtained from

III. INTEGRAL EQUATION

The general integral equation for exciton states
with wave vector kexc=0 from singly excited Slater
determinants can be written"" "

e2

(a ~
a

~
e ~ n

~ I
a' R'a ' "' «'")

~12

dr, dr2a,*. r, a,' r1 R'

2

x a,* (r« —R")a,.„,(r, —R")
+12

(6)

dr a,*. (r)a, .(r —R) .

occur in the analysis. In order to evaluate the
relative magnitude of these integrals we use a
method suggested by Kunz" which is suitable for
all localized orbitals. It consists in considering
the integrations over r, and r, as separate,
ignoring the coupling term e'/r». We then clas-
sify the matrix elements according to their order
in terms of the overlap integrals

+Q Q U„,,~„~(k, k', k,x,)A, .„i(k')=0,
c'u'

where

e'+l™ (&c«+«,„,& '«'~ ~ & «4c'«'+«,„,)
~ exc

(5)

We deduce that the integrals (6) are of zero order
if R' =0 and R"=R", of first order if R'c0 and
R" =R"' or R' =0 and R 4 8 , and of second order
if R' o0 and R"w R'". The factor e'/y» couples
the integrations over r, and r„but is, of course,
of long range, so that it does not change the order
in overlap of the total integral. In our case the
overlap integral (7) is not only a small number
compared to unity when R t 0, but it is exactly
zero, because of the orthogonality of the WF's.
Thus, we consider only the terms with R = 0 and
R"=R". Terms such as

e2

(a,a„«( ~a„-,a, )
+12

and E„(k),E,(k), gg, g,«are the valence- (u) and
conduction- (c) band energies and the corre-
sponding Bloch functions. These can be the solu-
tions of a Hartree-Fock-type calculation. The
integration in Eq. (5) includes summation over the
spin variables. The limit k„,—0 depends on the
orientation of that vector.

Following Altarelli and Bassani' we expand the
kernel (5) in Wannier functions (WF's) a,.(r —R),
where i = g, c and R is a vector of the lattice. The
bielectronic four-center integrals

2

Q(R) = (a,a„-„~
~ a,a;«),

+12
(6)

the electron-hole Coulomb interaction, are ne-
glected for Rt0 in the one site approxima-
tion. ' The reliability of this approximation
does not depend on the localization of the WF's.
In fact, in the care of extremely localized WF's

are sometimes considered, ' but they are of second
order and can be neglected. On the other hand,
terms like
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we get for Rt 0,

q(ff) = e'/ff, (9)

where N is the number of primitive cells and

8 = q(0) —2J(0) —2S

ff h~ eitk -tc') ~

nq(R)
N N

RPO

(10)

which is in our analysis a zero-order long-range
term. We conclude that the terms (8} with Re 0
must generally be considered, unless the exten-
sion of the envelope function is much smaller
than p~.

%e use a model involving two simple s-like
bands and singlet excitons. This simplifies the
formalism and the discussion. The final results
apply also to the case of solid rare gases, in
which p-type valence bands and spin mixing occur,
provided that we neglect the interaction between
the partners of each spin-orbit doublet and con-
sider the —,

' and 2 series to be independent. The
proper generalization to 2 x2 matrices to include
these effects, which is not carried out here, is,
however, straightforward. "

With the previous assumptions the kernel (5) is
given by

in Eq. (11),
2

Z(R} = &a,a„-,[ ~u„n,-„)
+12

(12)

is the electron-hole exchange interaction, and

Sl r = Hm g e exc cl(R) (13)
1C pe W 0 R 40

F(R) g e'" RA(k},
k

results, having nontrivial solutions when

(14)

is the dipole-dipole interaction term, representing
a charge transfer between different atoms and
responsible for the longitudinal-transverse
splitting. ""

Taking now Eq. (4} with kernel (10), multiplying
by e ~"'", dividing by Z, (k) —Z„(k) Zand s—um-

ming over k, a set of linear equations for the un-
known

eA'R ea.(R-R')
det 5-„,—N 5q8 Q (@ Z (k) Z

—N (1 —5q)q(-R) Q (k) Z (k)
R

C 0 C

=0. (15)

However, if we suppose in the derivation that the
envelope function F(R} is null for Ro0, the third
term in Eq. (15) does not appear, and we obtain

1
1 Nh z(k-) Z (k)

0. (16)

This is called the one-site approximation, be-
cause the electron and the hole are both confined
to the central cell. Equation (16) has been sol-
ved" for solid Ar and Ne making use of WF's,
h 'and p k [g(k) —Z„(k)-Z ]

' having been obtained
from previous band structure calculations.

Multiplying Eq. (4) with kernel (10) by e '"'
and summing over k yields

g [Z.(f) -Z„(k)je-'"'"A(k)- 5-,8F(0)

—(1 —5-, )q(-R)F(R) = zF(R) . (17)

)d,'(K) —z„(k)= z, +(1/2q)k', (18)

Let us suppose that the envelope function F(R}
extends aver several cells, and therefore that
A(k) is sharply peaked in k space. We now develop
Z, (k) —Z,(k) near its minimum in k space in the
form

2

Z~F(r) — V F(r) — F(r) =ZF(r)
60T

(20)

for the envelope function F(r). The eigenvalues
of Eq. (20) are given by Eq. (1). The extension
of F(r) can be regarded as the mean value of r,

(r) = '- p,„„[3n'- l(f+ 1)j, (21)

with pE„~given by Eq. (3}. From Eq. (21) and the
data of Table IH we conclude that (r) is large com-
pared to p„for n &1, and therefore the EMA must
work reasonably well.

Let us now consider the opposite situation, in
which the envelope function F(R) is concentrated
in the central cell. Such a situation can be im-
agined as arising from an expansion of the lattice
spacing a, . The third term in Eq. (17) disappears.
Szr in Eq. (13) vanishes and h, from Eq. (11),
becomes the atomic binding energy 4'„afthe

and use the approximation

q(z)=e'/~~, f1~0 (19)

for the screened Coulomb interaction. Letting R
become the continuous variable r and neglecting
the short-range second term in Eq. (17), we find
the effective mass equation
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EEA ~A ' (22)

In principle more conduction bands should have
been included in the model, within a total width
of the order of 8„.But Eq. (22}, giving the ex-
perimental atomic limit, iq, of course, gener-
ally valid, provided that we consistently ap-
proximate g„with the eigenvalue of a Tamm-
Dancoff' matrix including all the conduction bands
of the model.

Now, substituting in Eq. (17) the inverse trans-
form

A(k) — g e ()( R F(g))
N

(23}
Rf

multiplying by E*(R) and summing over R, we are
led to

E, k -Z. k

xP '"'(R-'"F (R) y(R) )

R.R'

t)(-R)la'(Ã)I*- () I) (o)I')
R 40

excitation with respect to the ionization potential

EEA as given in the single -transition approxim a-
tion. " The factor E,(k) —E„(K)can be developed
in powers of k, but as p increases, the diameter
of the 9rillouin zone decreases as p J. In this
limit E,(k) —E„(k)reduces to E». Then Eq. (17)
becomes

IV. APPROXIMATE SOLUTIONS

OF THE INTERMEOIATE4:OUPLING EQUATION

Let us return to Eq. (24). An approximate ex-
pression of it having the same behavior in the
two limiting cases discussed here is

~ = Q (~, l)"()t)I*~ &)"(R)l~l)"(R)&- '~ I)"t)t&l )
R150

~ ~*l)"(0)l' (ZI)'(R)i') ', (26)

where the second term in the first large paren-
theses is the mean value. of the kinetic energy
outside the central cell. Of course, the diffi-
culty with Eqs. (24) and (26) is that we do not
know the function F(R) in the intermediate case.
We use a trial function f(r) of the continuous
va.riable r of the simplest possible form and having
the behavior of E(R) in the limiting cases, i.e. ,

f (r) must be constant for r ~ p and hydrogenic
for r ~ p . We require that it be continuous at
r = p, [the continuity of the derivative is not
necessary because Eq. (26) involves only inte-
grated quantities]. Then we have, for the lowest
state,

for r ~p„,
exp(p„/p)exp(-r/p) for r ~ p„,

where p is a parameter giving the extension of
f(r) and to be specified later. Replacing sum-
mations by integrals of the form

&(Q IP(R)l') '.

The one-site approximation yields

E = —g [E,(k) -E„(k)]-g.

(24)

(25)

dr,3
4w p3„

R

we obtain, using Eqs. (26) and (27), the result

E„+a E, + P(1/p p'„)-ye'/e, p„
l+6'

In Eq. (29) the quantities ot, P, and y are

Like Eq. (16}, Eq. (25) is based on the approxi-
mation that F(R) =0 outside the central cell, but
also has the advantage of greater simphcity.
T.he observed values of E„@,which are higher
than E„,are approximated by the solutions of
Eq. (16), and also by those of Eq. (25), because
atomic-type binding energies 4 ~e substantially
subtracted from the mean value over the Brillouin
zone of E,(k) -E„(k),which iS lttiher than E, and

SEA. This is one of the important solid state
effects. The other, the screened Coulomb inter-
action between the electron and the hole on that
part of the envelope function gufside the central
cell, is not included. In Sec. IV we introduce
this effect in a simple but meaningful way.

E =E„+a(E, —e'/2&op}
1++ (31)

c(= -', (x+x "+—,
' x'),

ii=-.'[1 -(I/. ) —.
* l,

y = —,'(x+-,'x'),
where x=p/p„. Furthermore, we can introduce
in Eq. (29) a different effective mass p, ', related
to p by the hydrogenic relation

p = ~o/p

Under such condition the kinetic and potential en-
ergies are no longer independent and Eq. (29)
further simplifies to
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TABLE IV. Energies obtained using Eqs. (31) and (29) in eV.

E (31)
Z'(31)
E (29)
E'(29)

17.83

17.65
17.90

11.96

11.93
12.14

12.12

8.378

It is easy to verify that both Kq. (29) and (31) have
the previously discussed behavior for p «p- pE«and p «p„and that, for instance, in Eq.
(31), E lies between E„andthe hydrogenic en-
ergy Z, - e'/2c, p.

It is now necessl, ry to decide what is p in the
actual infermediate case. 'The appropriate choice
is between p md p~„,depending on whether
we wish to give the envelope function a pre-
dominantly EMA or atomic-type behavior. As we
see in Table HI, p~& is Larger than p, in Kr
and Xe, while it is smaller in Ne and Ar. %'e

therefore suppose the EMA behavior to adequately
describe the situation in Kr and Xe, while the
atomiclike characteristics predominate in Ne and
Ar. In the first case, Eqs. (31) and (29}coincide
and have the meaning of an EMA solution weakly
perturbed in the central cell. We do not see this
effect at the present. stage of approximation be-
cause the EMA fits exactly the three data in Xe
within their accuracy, and it is a few hundredths
of an eV below E.„~,in Kr Then th. e values given
by Eq. (31), and exhibited in Table 1V, have the
same accuracy as the EMA. The situation is
rather different in Ne and Ar, where the EMA
fails significantly. Choosing p= p, Eqs. (29} and
(31) assume the meaning of an atomic solution
perturbed by a hydrogenie effective Hamiltonian
outside the central cell. Equation (31), in parti-
cular, becomes also independent of p, . We see
in Table PF that it proyfdes an IIprovem'ent by
one order of magnitude in the values of EE„„
and 8„in Ne, and by factors of 2 and 4 for EKM+
and E„,respectively, in Ar. Equation (29} pro-
vides even more accurate results io solid Ne, a
few hundredths of an eP from g,~. Of course,
the failure of the EMA, particularly in Ne, is due
to the fact that pE„„is small compared to p„,
and to the artificial concentration of the EMA
so]ation inside the atom. Conversely, E„lies
belo~ E„,because in the solid the interaction
between the electron and the hole is screened by

e, outside the central cell, We conclude that p
„

would be appropriate if corrections to higher com-
ponents of the series wyre considered, but p is
the correct value for p for the Lowest statg. Fin-
ally we mention that, even though we are not
using semiempirica& parameters, choices slightly
different from those rnonde would be possible
leading te the same limiting situations. We could,
for instance, choose p =0.6d, where d is the near-
est-neighbor distance (p =0.9p„in this case) or
some intermediate value between 0.5d and p . In
the case of Ne the results of Eq. (31) or (29) re-
main well concentrated around E,„~,, while 'in Ar
they move toward E«„,because p becomes more
comparable to p«A.

A blue shift of the order of 1 eV with respect to
the vapor-phase values E„is also found in other
molecular solids, such as solid H, and H~O (see,
for instance, Refs. 18 and 19). Equation (31) can
then provide a quantitative evaluation of it, with-
out a direct. knowledge of the EMA parameters
(E, can be obtained from photoconductivity experi-
ments, or, if not available, from a reasonable
estimate from the optical data and band calcula-
tions). Equation (31), or its generalizations, can
also be useful in the study of core-excitons and
impurities states.
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In this paper we use the atomic system of units, in

which h, e, and m are unity. However, the numerical
values of the energies will be given in eV.
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