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Effect of surface and nonuniform fields in electroreflectance: Application to Ge
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The effect of crystal termination and nonuniform modulation fields is investigated theoretically in the one-
electron approximation. Beginning with the nonlocal dielectric susceptibility expression previously obtained by
Del Sole, it is shown that under suitable conditions the surface and field inhomogeneity contributions can be
separated. Odd and even line shape components are obtained. The odd component, which at low fields varies
linearly with the modulation field, arises from crystal termination. It depends on the mass difference between
the electron and the hole and vanishes if the electron and hole masses are equal. The even component
includes both crystal termination and field inhomogeneity effects and does not reduce completely to the
Franz-Keldysh theory even in the uniform-field limit. Experimental results are presented for the odd electron
reflectance component for the E, transition of Ge. The results are in good agreement with theory.

I. INTRODUCTION

The Franz-Keldysh'~* effect is an important tool
to obtain information about the band structure of
solids. However, the results of electroreflectance
(ER) and electroabsorption experiments®~® in semi-
conductors do not agree with the simple one-elec-
tron uniform-field theory, even if a phenomeno-
logical broadening parameter is included.'® 1t is
now understood that the Coulomb interaction be-
tween electrons and holes, nonuniform field ef-
fects, and crystal termination effects must be
taken into account to explain data. The first effect
has been studied by many workers''~'® and numer-
ical line shapes have been constructed. It has been
shown that Coulomb effects on the line shape can
be neglected only if excitons are thermally ionized
in absence of the electric field.'* However, the
theory including Coulomb effects alone is not suf-
ficient to explain ER results as function of the
electric field.”

The second effect arises because the electric
field can be strongly nonuniform near a semicon-
ductor surface® due to free-carrier screening.
Evangelisti and Frova® assumed the position-de-
pendent dielectric function to be given by the uni-
form-field formula'® using the local value of the
electric field, that is,

€(w,z) =€ (w, F(2)), (1)

where z is the distance from the surface, and
€yp(w, F) is the dielectric function in a uniform
electric field F. This seems to be a reasonable
assumption for slowly varying fields, but no at-
tempt has been made so far to test its validity.
Aspnes and Frova'” solved the equation for light
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propagation in inhomogeneously perturbed media
and found expressions for the changes in reflection
and transmission coefficients by using the same
assumption. These expressions gave a qualitative
account of ER line shapes at the direct gap of Ge,'®
but they explained absolute values measured by the
electrolyte technique only if excitonic effects were
included.’

Yang and Buckman'® performed quantum-me-
chanical calculations of absorption and reflection
coefficients of a crystal in a position-dependent
electric field in the small-wave-number approxi-
mation. Their theory is valid for rapidly varying
fields, and is complementary to that of Aspnes and
Frova.'”

It has been shown®®?! that the presence of the
crystal termination itself greatly modifies wave-
length-modulated and ER spectra. In particular,
the surface breaks down the field reversal ER in-
variance of Franz-Keldysh! !*?? and excitonic'®*~*¢
theories, so that the field reversal asymmetry
that is observed in ER measurements® could be ex-
plained in terms of surface effects.”® Tyagai and
others®® found that the differential ER signal is not
vanishing at the flat-band position in some cases,
by contrast to bulk-theory predictions. (We neg-
lect here the trivial case of unequal inhomogeneity
effects caused by doping.) This effect can also be
explained in terms of surface-induced field rever-
sal asymmetry. We call these effects crystal-
termination effects or surface effects; however,
it must be emphasized that the microscopic struc-
ture of the surface is not involved. The surface
provides only the boundary condition that electron
wave functions vanish at it. Of course, this is rig-
orously appropriate only to experimental arrange-
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ments where electrons cannot escape from the
crystal, but it represents a better approximation
to actual physical systems than does the usual
periodic boundary condition approach.

A contribution to linear ER could also come from
some noncentrosymmetric surface layer that could
be produced by surface atom rearrangements. We
neglect it here, in the spirit of not taking into ac-
count the microscopic features of the surface.

Since it is very difficult to take into account ex-
citonic, nonuniform field, and crystal-termination
effects together, we think that it is worthwhile to
neglect Coulomb effects and to provide a one-elec-
tron theory as exact as possible for comparison to
experiment for conditions for which the Coulomb
interaction is expected to be less important. Fur-
thermore, only by comparing an exact one-elec-
tron theory to experiment can one see how signif-
icant excitonic effects are. One of the objectives
of the present paper is to provide a one-electron
theory as rigorous as possible, with a known
range of validity.

To investigate the validity of the surface-termin-
ation aspects of the theory, we have also mea-
sured the odd (nonvanishing) component of an ER
spectrum of Ge in an aqueous electrolyte, a sys-
tem which has been thoroughly investigated, can
be accurately controlled, and is not subject to in-
terpretational uncertainties due to the presence of
additional dielectric overlayers on the surface of
the semiconductor. The strong weakly broadened
E, structure of the fundamental absorption edge at
0.796 eV at 300 K was used for these measure-
ments. Experimental details are given in Sec. II.
In Sec. III, the theory of surface effects is ex-
tended to that case of a nonuniform electric field
that is most frequent in practice. In Sec. IV we
discuss the comparison of the theory to experi-
ment.

II. EXPERIMENTAL

The general approach and experimental configu-
ration has been described in the literature.”'® Be-
cause a trivial linear ER effect would be observed
in electromodulation of an extrinsic sample, the
sample used in these measurements was cut from
a Ge single crystal with a measured net donor con-
centration of less than 6% of the intrinsic electron
concentration at 300 K. The sample itself was also
checked to be intrinsic to this accuracy by a com-
bination of capacitance and photovoltage measure-
ments as previously described.® '®

The active sample area consisted of a {110} face
of the order of 2 X3 mm?, which was polished flat
with 1-um diamond paste and electrochemically
etched n situ for at least 0.5 h before measure-

ments were taken. The aqueous electrolyte,?® a
0.10M K,SO, solution buffered with 0.025M Na,H PO,
and 0.025M KH,PO,, was purified before use by
gettering with Ge crushed /n sifu. The continued
purity of the electrolyte and the absence of surface
states on the Ge electrode were verified by capac-
itance and photovoltage measurements performed
between measurements of ER spectra.

Both fundamental and first harmonic components
of the ER signal were obtained simultaneously by
modulating the interface potential by means of a
repetitive 52-Hz three-level waveform of equal
duration, separately adjustable voltage levels V,,
Vs V3, and V,. The odd and even ER components
in the reflected intensity were obtained using
phase-sensitive detectors set at 52 and 104 Hz, re-
spectively. Phases were calibrated by direct mea-
surement of the modulation waveform adjusted so
that V, equalled V,. For the odd response, the
spectra correspond to the definition

(AR/R)odd ='lé [R(+ F) =R(-F,)|/R,
=77V(at)/ﬁ Vdc > (2)

where F, is the surface field, V{? is the amplitude
of the 52 Hz component as read by the phase-sens-
itive detector (responding to rectified average,
displaying equivalent rms), and V. is the dc level
of the detector output. The sign convention is such
that (AR/R).qq is positive if R(F) is greater for
electron accumulation than for hole accumulation.
For the 104 Hz even response, we have

(AR/R)even =3 [R(+ F,) + R(=F,) = 2R(0)]/R(0)
=@/2)VE/Vye , 3)

where V@ is the amplitude of the 104 Hz compon-
ent as read by the phase-sensitive detector. Here,
(AR/R) ., is positive if R(|F,|)>R(0).

The flat-band or zero-field reference condition
is of minor importance in the even spectrum. But
since the odd response is a small-amplitude sub-
harmonic of the main signal, the zero-field condi-
tion is of critical importance in the odd term. A
slight offset of V, from the flat-band position, or
an inequality of the surface field magnitudes in the
V, and V, segments of the operating cycle, will re-
sult in the admixture of the even spectrum into the
odd spectrum. As in previous work,® we found that
the “electrical flat-band” position did not corres-
pond exactly to the “ER flat-band” position, which
occurred at about F,=260 Vem™'. The “ER flat-
band” position was obtained by establishing equal
surface-field differences between the V, and V, and
V, and V, levels of the operating cycle, and then
performing small adjustments of V, to minimize
the peak-to-peak amplitude of the odd signal. The
resulting odd spectra were observed to scale lin-
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early with field difference from the difference-in-
dependent “ER flat-band” surface field of approxi-
mately 260 Vem™' which was measured electrically
at the V, portion of the cycle. This linearity, as
well as the line-shape uniformity observed for dif-
ferent field differences, agrees with theoretical
predictions to be discussed in Secs. III and IV and
shows that these odd spectra indeed contain a neg-
ligible admixture of even spectra.

III. THEORY

A. Wave functions

We solve the Schrddinger equation for electrons
and holes in a nonuniform electric field in the limit
of slow spatial field variation. Let V(z) be the
potential energy of electrons in the electrostatic
field. We assume it to be everywhere negative and
increasing in magnitude with increasing z. The
effective-mass-approximation (EMA) wave func-
tions for electrons in a conduction band with iso-
tropic effective mass, m¥* are

F(T)=A-1/2" Ry 0y(2) (4)
where y(z) obeys the wave equation
7 ac
~om¥ Bt ¥(2)+V(2)¥(2)=Ey(2), (5)

where E is measured from E;, the conduction-
band edge.

The appropriate boundary conditions of the prob-
lem are®®2!

$(0)=y(L)=0. (6)

We assume that there is a negligible charge trans-
port through the surface, which is true in some
ER experimental arrangements,®*® and that elec-
trons are specularly reflected from the surface.
The potential and boundary conditions produce dis-
crete energy levels in the conduction band for E
<0 in addition to continuous states for E >0. The
discrete levels are responsible for light absorption
at energies smaller than E,. Only continuum
states are present in the valence band.

Equation (5) can be solved by the WKB method.
However, this is not valid in a range centered on
2., the classical turning point, defined by

V(z,)=E (for electrons).

We assume in this range that the electric field is
constant in order to solve Eq. (5) with Airy func-
tions.?® The wave functions are matched with an
analytic form that simplifies to an Airy function
for small |z —z.|, and to a WKB wave function
otherwise.

We consider first the discrete-level wave func-
tions

Fop =A™ explilix + by 9)] 4n(2); @)
E,,,,:hy=E, +(R2/2m¥) K+ I2) + E,; (8)

Ua(2) =N k() 722

X | pa(2)M4 A Pn(2)), (9)

where
ko(z)={(@m3¥/h?)|E, - V(2)]}'/?, (10)
P(2)= [zdzlky(2)l, (11)
V(z,)=E,, (12)
ba(2)=[(2 —2,)/| 2 = 2,][3 P,(2)]??, (13)

where N, is the normalization factor. These are
the correct wave functions if

1 dF(z,) F(z,)
F(z,) | dz, 6.(z,) ’

where F(z)=dV/dz is the force acting on the elec-
trons, and

0,(z) = B2P*F3(z)/(2m*)'/3, (15)

(14)

Boundary conditions give the quantization rule
(2P, 0)]*=aq,, (16)

where £ = —a, are the zeroes of Ai(£).
For large |z, ~z|, N,y, approaches the WKB
wave function

‘PWKB: [”kn(z)]-l/z Sin(Pn+%”)e(z"_z)’ ()

as can be seen using the following asymptotic ex-
pansion of Ai,*

Ai(-§)= (m%) Y sin(3£¥2 +47m) £~ —o (18)

where ©(z) is the step function.
For small |z —z,|, we use the linear approxima-
tion
V(z)=E,+F@k,)e-2,), (19)

and find that N,3, approaches the function yq,
where

s (2)=[0,(2,)/F(z,)]*
X Ai((z -z,)F(2,)/0.(z,)). (20)

Since ¥y can be simplified in the same way for
Z near z,, we obtain a new function

Yivks = ["kn(z)]-l/z
Xsin| P$(z) +371]6(2,-2), (17a)

where kj and P} are calculated from Eq. (19).
These auxiliary functions are useful in evaluating
the normalization factor,
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Ni= [ dzN2y(z)

0

= [ dzdixo(a)+ [ dz (WEE-dimw) . (2D)
V] 0

Since the last integrand is different from zero
only for z close to z,, ¥ and ¥ ,,, can be replaced
there by ¢° and Yyxp. By rearranging terms one
obtains

2=if‘n (s‘mz(Per%n)
N, ), dz %.(2) -

Ty L e (G

The first integrand vanishes when z approaches
2,. Otherwise the WKB approximation is valid,
and the two sines are strongly oscillating functions
of z. No significant error is made if they are re-
placed by their mean values 3, as is usually done
in WKB normalization.?” Finally we get

sin®(P $ + %11))
kn(2)

z —z,,)) . (22)

1 [%n 1 1 63%z,)
2 = 1/2
Na 21rf d Pa(z m Fslz(z)
02 |: F_ z F, z ( F z )
n~n n*~n 12 - n-n
"R A‘( a2r)+ gt ar(-k)],

(23)

where 6,,=6,(z,) and F,=F(z,), and where we
have used®®

f‘ dE AP2(E) = t Ai%(t) - Ai"2(D) .

For large n, N? is simplified to the usual WKB
normalization factor

l_f‘n dz
2w J,

Ra(2)
Actually, Eq. (24) is valid for »n= 3.
Positive energy conduction states have no turning
points, so the WKB approximation can be directly
applied and we get

Ni= (24)

Fyu . =A™ explillx + by y)] ¥s,(2) (25)
_ V2 pnp? dp \"V2

09 () (mr i) oo,
(26)

ko(z)={(@m3/H?)[E, - V(2)]}"2, (27)

Po)= [ ax k() (28)

where
an _ m¥ ' dz
aE "Rt ) R(2) (29)

is the density of states found by deriving with re-
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spect to E, the boundary condition P,(L)=nn(n>0).
The energy is given by
EkkEe=E,+Ee+(ﬁ2/2m:)(kf+k§). (30)
%y

The hole wave functions satisfy the Schrodinger
equation

e S W) -VEN@ R 6D
with m¥ and E,>0. The solution is
Fip 5, =A™ explihex + by )45, (2) ; (32)
()= (2 ) () | e
X [A Ai@¥,) -B Bi{yn)]; (33)
ky(2) = {@m3/H)[E, + V(2)]}2; (34)
V(z,) = -E,; (35)
P,,(z)=f‘ dx |l ; (36)
£p
6= (24/124)) [3P4(0)]2%; 37
¥y(2) = [(2a=2)/| 2 = 2| 1 [3Pa(2)])*°; (38)
A= Bi(6) B= Ai(5? )
[Ai2(6) + Bi%(5)] /2 ; [Ai2(6) + Bi*(3)] /2
(39)

From scattering theory,?® the normalization factor
is proportional to the density of states. z, is al-
lowed to be negative in order to describe states
with E,>-V(0). For large and positive 8, that is
for | E,+ V(0)| >6,(0)/F(0), where ©,(z)

= [#?F*(z)/2m,]*?, B vanishes and A becomes
equal to 1. If E,+V(0)>6,(0)/F(0), then the WKB
functions can be used for any z. Equation (33) is
a good approximation to the exact wave function if

1 |dF F(z)
7(2) XOR (14a)
From now on, we assume that
1 |dF F(z)
F(z) < o(z) ’ (14b)

where O(z) = /#F*(z) /21 and pt =mx! + mp-!, sat-
isfying in this way both Egs. (14a) and (14b).
In the two following cases Eq. (33) assumes sim-
pler forms
( _2m3}0,(2,)
n%F(z,) dn/dE,, )

(2Zp—=2 _ (2n—%2
xI:AAl( A= 6;.) BBl( "

for z near z,, and

e,,)]

(40)
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_< 2m¥ 1/2‘<P+l—>
Ve~ nﬁzk,,(z)dn/dE,,) si\Fat g ma)s

(41)
where o =tan™'[Ai(6)/Bi(6)], for z >z,.

B. Surface and bulk contributions to the reflectance

The imaginary part, €”(z,2’, w), of the nonlocal
dielectric susceptibility?®*?® can be computed near
an M, edge in the EMA using

€"(z,2', w) = (1n®e?/m*w?)| P |?
X 2 4y (2)9% (242 (2)
E,Ey ¢

X lth(zl)e(h_w“Ee -Ey), (42)

where E, and E, label electron and hole states,
P, is the momentum matrix element between val-
ence and condudtion states, and © is the unit-step
function. The real part €’(z,z’, w) can be computed
using Kramers-Kronig relations.

In this section, we show that the dielectric sus-
ceptibility tends to the uniform-field local-field
bulk value as both z and z’ become larger than
O,/F,. Thus, surface effects are generated within
a distance ©,/F, of the surface, where the electric
field is nearly equal to the surface field Fy if Eq.
(14b) is fulfilled. Henceforth, the surface effects
are determined uniquely by the surface field and
can be computed in the constant field scheme.

Equation (42) can be written as

€"(2,2',0)= D ¥, (2)¥s,(2)(2,2", w = E.) , (43)

where

hw-E,

I(z,z’,hw—Ee)=f dE, E%%h(z)%h(z')‘
0

(44)
Let us consider the case that z,z’ »6,/F; and

|z —z'| <©(Z), where Z=(z+z’)/2. The product
of wave functions in Eq. (44) can be written

2my 6,
n® F

€"(z,z2',w)=

1 ,f dE Ai<£—)Ai<
z-2' ). 8,
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Ve, (2)Us,(2) =45, (2) UE¥P(2")
+ [¢Eh(z)¢sh(z') —wgf“(Z)wng(Z’)] .
(45)

The square-bracketed term is different from zero
only for z near z,. In this case, it can be com-
puted using a constant value of the electric field
F(z,)=F(Z). Then, we obtain
Vg, (2) g, (2") = Uk, (2) Y%, (2")+ Y EP(2) Y RNB(2")
- 45, S (2)YEKBS (27) .

(46)

The last two terms cancel for Z~z, and otherwise
produce rapid oscillations around zero. Conse-
quently, they can be neglected. Thus, we get for
I, using Eq. (40) and the properties of the Airy

functions,
[Ai’ (__ fiw-E, + V(z))

Nz,2',iw -E,)=

z -z 8,
><Ai< fiw —E,+V(2' >
. 6,

—Ai(— ﬁw—fie+V(z)>

' (47)

This equation shows that only electron states with
E, =< hw+V(Z) contribute to the sum Eq. (43), in
order not to have vanishing Airy functions in Eq.
(45). Equations with ~ are understood to be satis-
fied within certain ranges of © or 6/F. On the
other hand, electron states have nonvanishing wave
functions near Z only if E, < V(Z). Thus, the only
electron states contributing to Eq. (43) are in the
range

V(2) S E,= V(%) +hw. (48)

If Z is deep enough inside the crystal, only higher
levels are singled out by Eq. (48) and the sum over
discrete electron levels can be replaced by an in-
tegral over E,. The same type of argument as for
the sum over E, holds for such integrals, so that
the result is, for z,z’' <©,/F,

+F(z' ~2)

5 )

x[Ai’(—ﬁcf+E>Ai(— hw+ E+ F(z’ —z)>
5 i

h

O

—Ai<— ﬁ%+E>Ai,<_ ﬁ\.u+Ei-F(z’—z)>] ’

5, (49)
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where F=F(Z)and ©, ,=6, ,(2).

This result is the same as that obtained in a con-
stant electric field equal to F. Thus, we have
shown that

€(z,2', w)=€ye(2,2", 0, F) (50)
for z,z' 2 ©,/F,, where €, is that given by Franz-
Keldysh theory. Now, we can write

e(z,2’, w)= [e(z,z’, w) —EUF(Z,Z',UJ,F)]

+eyp(z,2", w0, F) . (51)
The term in square brackets vanishes as z and 2z’
exceed a length ©,/F, so it is determined only by
the surface field Fy;. Therefore,

G(Z,Z’, w)=€s(z:zly w, Fs) _elll-(zjz'7 w, Fs)

+€UF(Z)Z’7w,ﬁ)y (52)
where €, is the dielectric susceptibility computed
in a constant electric field equal to F and taking
into account surface effects.

When the effective dielectric function (e (w)) de-
scribing reflectivity® is considered, we obtain for
the change due to the electric field

<A€ (w» = Ae;(w) Fs) +A€bulk(w) 1) (53)

where

Mepnlw)=-2iq [ dz exp(2igz)aeqilw, F(2))
(54

is just the result of Aspnes and Frova.'” It has
been derived neglecting nonlocal effects on the
bulk term

£ @ r
f dzf dz' expliq(z +z’)]€UF(z,z’,w,F<z +22 ))
(V] o

L] + o0
=f dz exp(ZiqZ)f dz'eUF('z,z’,w,F(-Z)).
’ (55)

Therefore, we have decoupled the ER response of
a semi-infinite semiconductor in a nonuniform
electric field into two terms. The first one de-
scribes surface effects and can be computed within
the constant-field approach of Ref. 21. The second
one is given by the averaging procedure of Ref. 17.
Both the decoupling and the Aspnes-Frova result
are valid if the condition

1 dF F(z)
Fz) Dz ©(z)

is fulfilled at any z.

IV. RESULTS AND DISCUSSION

Figure 1 shows an example of calculated nonuni-
form-field ER line shapes taking into account sur-

—— Buk

=-== Light" holes
Heavy holes F >0

= = = Heavy holes f <0

| F =11 kV/em

-2110°)

~2110 - =t hor-Eglfbig——2

FIG. 1. Computed line-shape function S(w), propor-
tional to AR/R, is plotted vs n= (iw — Eg)/O; at the
E, edge of Ge for F =11 kV/cm, The field nonuniformity
of intrinsic Ge at room temperature is taken into ac-
count, together with a small broadening I'=1 meV.

face effects. The line-shape function®* S(n), pro-
portional to AR/R, is computed for parameters
appropriate to the direct gap of intrinsic Ge, tak-
ing into account the spatial variation of the field
at room temperature. The surface field is 11 kV/
cm. Since light holes and electrons have nearly
equal masses, the light-hole band contribution is
weakly depending on field orientation and is shown
only once. The importance of surface effects is
clearly recognized in the heavy-hole spectrum.
The field reversal asymmetry, namely, the differ-
ence between the dotted and dash-dotted curves,
is generated by the heavy-hole band contribution
and cannot be neglected with respect to the total
signal even at this relatively high-field value.

In order to compare theory and experiment, we
have computed the odd ER line shape at fixed
broadening I'=2 meV for a number of field values
ranging from 0.9 to 2.3 kV/cm. Two of these line
shapes are shown in Fig. 2 as functions of (Zw
- E,)/©,. Peak positions are the same in the two
curves, showing that line shapes depend on (7w
- E.)/6,. The main features of the odd spectrum
do not change in this electric field range, in agree-
ment with experiment. Minor changes affect only
high-energy-side negative peaks, which are more
sensitive to the ratio 6,/T'. The results are that
line shapes scale almost linearly with the electric
field for F values ranging from 900 to 2300 V/cm,
as seen in Fig. 3. Measured peak-to-peak values
of the odd ER signal are also reported in Fig. 3 as
function of Fg. It can be seen that the dependence
is linear within 10%, in good agreement with the
theoretical results also shown in Fig. 3. The the-
oretical prediction of linear scaling of line shapes
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T T T T

Fs =115 kV/cm
fiw (meV)
5 ° 3

T T T T —

Fg=2.3 Kv/cm

hw (mev)
-10 (o} 10
1 1 1 T \) T

AR/R (ARBITRARY UNITS)

1 1 1 1
-2 0

Z(hw - Eg)IG:

FIG. 2. Theoretical odd ER lineshapes are plotted vs
(fw— Eg)/© for two values of the surface field. O is
computed using the electron heavy-hole reduced mass
©=0.033 m, (Ref. 21). A realistic value of the broaden-
ing, I'=2 meV, is included.

was necessary, as described in Sec. II, to verify
that the “ER flat-band” position was correct for
these spectra.

Comparison between theory and experiment is
made in Fig. 4. The odd ER component taken at
F,=1.15 kV/cm is well fitted by the theory of sur-

T T T T 4}
e EXPERIMENTAL

wr O THEORETICAL
@
210t 1
< .
)
Q

o
5 I L) 7
0 1 1 1 1
o] 05 10 15 20
Fs (kV/cm)

FIG. 3. Comparison of experimental and theoretical
peak-to-peak values of the odd ER spectrum as a func-
tion of the surface field Fy at the E, edge of Ge. The
theoretical results were computed as in Fig. 2. Theore-
tical and experimental values match at Fg=1.15 kV/cm,
since theoretical calculations use P, =0.50 %/ap as
determined by fitting the experimental odd spectrum at
this field value (see Fig. 4). The straight line has been
drawn from the F¢=1.15 kV/cm point to zero to aid
in visualizing the linear field dependence of the peak-
to-peak values.

| - v/ .
| F =115 kV/cm =18 mev
— %‘050 h/ay |
ex. even Eg=793 meV |
lineshape
2
| T=300 %
expenmental
- odd_Ineshepe
o
B [ ‘v\/
- theoretical
odd lineshape
20+ ;
iy —» ;
(eVi I
Il |
07% 0.800

FIG. 4. Experimental even and odd ER components
of intrinsic Ge at room temperature. The theoretical
odd line shape has been obtained by the present theory
of surface effects using the quoted values of parameters.

face effects, using as fitting parameters only the
broadening I', the gap energy E,, and the heavy-
hole matrix element P,,. We get E, =793 meV,
I'=1.8 meV, and P,,=0.50%/ay. Discrepancies

at the high-energy side can be produced by the
small energy range used in performing numerical
Kramers-Kronig transforms. Since both theoret-
ical and experimental line shapes are only weakly
dependent on the electric field, and peak-to-peak
values agree (see Fig. 3), our fit covers the whole
range of measured field values. The values E,,
I', and P,, all agree very well with the values E,
=793 meV, I'=1.65 meV, and P,,=0.56%/ag ob-
tained by fitting with the present theory?! Jasper-
son, Koeppen, and Handler’s ER data®?° taken with
F,=4.6 X10" V/cm. We conclude that the present
theory of ER including surface effects, though
neglecting the Coulomb interaction, is able to give
an account of experimental results as a function of
the electric field. Furthermore our odd ER mea-
surements allow P, to be measured independently,
since only the heavy-hole band contributes to the
odd signal.

The above results provide a good correlation be-
tween theory and experiment in the well-controlled
case of the E, structure of the fundamental ab-
sorption edge of Ge, where the broadening is
small and the light penetration depth is relatively
large. It is of interest to indicate what effects
might be expected under other conditions. The
similarity of bulk and surface spectra with respect
to the period of the Franz-Keldysh oscillations
suggests that both even and odd electroreflectance
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components will be affected similarly by increas-
ing the broadening parameter. Because higher
threshold fields would then be necessary to observe.
a signal, more broadening would be observed to
enhance the even component at the expense of the
odd component. But, since larger broadening is
typically seen only at higher interband transitions
where the light penetration depth is less and sur-
face effects more important, it is possible that the
odd term is still significant at these higher-energy
transitions, especially since the electron and hole
effective masses for higher interband transitions
are substantially different, a prerequisite for the

observation of an odd term. The odd component
would also be enhanced at nearly two-dimensional
critical points, as those underlying E, transitions
in Si, since the relative weight of crystal termina-
tion effects, which affect motion in one direction,
is increased. It would be of interest to examine
these cases experimentally.
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