Landau-Ginzburg theory of order-disorder transition in semi-infinite systems

Alba Theumann* and K. H. Bennemann

Institute for Theoretical Physics, Freie Universitat Berlin, 1000 Berlin 33, West Germany (Received 1 July 1977)

The parameters of the Landau-Ginzburg functional for atomic order-disorder transitions are calculated from a microscopic Ising-like Hamiltonian. It is shown that the surface force λ^{-1} and the transition depend . crucially. on segregation at the surface. It is shown that the surface may order before ordering in the bulk occurs.

I. INTRODUCTION

Surface effects on the order-disorder transition in A_3B type of alloys have been studied recently¹ by means of Bragg-Williams theory. One finds that the bulk and the surface will both order at temperatures $T < T_c$, where T_c is a common critical temperature, but the order parameter is reduced at the surface due to. segregation. These results are in fair agreement with experimental data for $Cu₃Au²$ However, the following problem has not been studied: The critical temperature of the order-disorder transition depends on the concentration x of one of the components as $T_c \propto x(1-x)$. Thus one would expect that if segregation oc-Thus one would expect that if segregation oc-
curs,³ such that $x_s \neq x_b$, there should be two different critical temperatures for bulk and surface. As a consequence the surface may order while the bulk is still completely disordered.

The purpose of this paper is to investigate this point in the context of the Landau-Ginzburg theory for order-disorder transitions in the presence of a surface. We obtain that the order at the surface may be reduced or enhanced due to segregation. In the last case, there exists a characteristic temperature T_s > T_b such that for T_b < T_s the surface is ordered while the bulk remains disordered. We call T_b the bulk-transition temperature.

The order-disorder transition can be studied by

eans of an Ising-like model Hamiltonian.^{3,4} Star means of an Ising-like model Hamiltonian.^{3,4} Starting from this microscopic formulation we derive in Sec. II a Landau-Qinzburg expression for the free-energy functional. We consider here a simple model that can describe an order-disorder transition in $A_x B_{1-x}$ alloys including surface segregation. We assume a lattice that can be decomposed in two equal interpenetrating sublattices and the interactions are taken only between nearest neighbors. As a consequence of these two assumptions we obtain only a second-order transition and not we obtain omy a second-order transition and no
a first-order transition as it is the case in A_3B
alloys.^{1,2} alloys.^{1,2}

In Sec. III, we derive the Landau-Ginzburg (LG) equations for the order parameter. The main dif-

ference between our. problem and the case of magnetic systems' is that we have additional constraints due to the requirement of a fixed number of atoms of either kind. Once these contraints are introduced in the theory, the LQ equations are the same as those obtained in magnetic^{5,8} systems, but the parameters are concentration dependent. We find that the surface force λ^{-1} depends not only on the interactions at the surface, but also on the ratio between the bulk and surface concentrations. The solution of the LQ equations in semi-infinite magnetic systems is known and discussed in great detail by Lubensky et $al.^6$ The following results are found. Calling $x_b(x_s)$ the bulk (surface) concentration we obtain $\lambda^{-1} \gtrless 0$, if $x_b(1-x_b) \gtrless x_s(1-x_s)\nu_s^2$, where ν_s is concentration independent and depends only on the surface interactions. For $\lambda^{-1} > 0$, bulk and surface order is at the same temperature T $= T_b$ and the order parameter is reduced at the surface. When λ^{-1} < 0, then there exists a surface critical temperature $T_s > T_b$ such that for $T_b < T$ $\leq T_s$ a surface transition occurs and the order parameter vanishes exponentially away from the surface. For lower temperatures $T < T_b$ the bulk is ordered, but the order parameter remains enhanced at the surface. We recall that if the interactions are such that $\nu_s = 1$, then $\lambda^{-1} \ge 0$ if $x_s(1 - x_s) \ge x_b(1 - x_b)$ and we have confirmed the initial hypothesis that originated this work.

II. 4.ANDAU-GINZBURG PARTITION FUNCTION

The order-disorder transition in an alloy $A_x B_{y-x}$ can be studied by writing an Ising-like partition function.^{2,4} The model we consider here is an alloy with $N_A = xN$ and $N_B = (1 - x)N$ atoms of type A and B , respectively, distributed on the N sites of a semi-infinite crystal with a sc lattice structure. Interactions are considered to take place. only be-'tween nearest neighbors and we call $w_{b}^{\lambda\nu'}$ the potential energy between a neighboring pair of λ , ν^1 atoms (ν , $\lambda^1 = A$ or B) in the bulk, and $w_s^{\lambda \nu'}$ the analogous potential energy when both atoms are on the surface. For simplicity, we consider that the interaction between one atom λ on the surface and one atom ν' in the bulk is also $w_h^{\lambda \nu'}$. We denote by \vec{R} =(\vec{r} , z) the position of a given lattice site, where the z axis is perpendicular to the surface and \vec{r} denotes the position of sites on planes parallel to the surface. The surface is a (1 0 0) plane of the crystal and it has $z = 0$. We start by considering a finite crystal with L layers parallel to the surface, with M sites per layer, then $N=ML$.

By introducing the "spin" variables

$$
\sigma(\vec{R}) = \begin{cases} 1 & \text{for an atom } A, \\ 1 & \text{for an atom } B, \end{cases}
$$
 (2.1)

the potential energy between two neighboring atoms at \vec{R} , \vec{R}' can be written

$$
W_{b(s)}(\vec{\mathbf{R}}, \vec{\mathbf{R}}') = \frac{1}{2} U_{b(s)} \sigma(\vec{\mathbf{R}}) \sigma(\vec{\mathbf{R}}') + \frac{1}{2} V_{b(s)}
$$

$$
\times \left[\sigma(\vec{\mathbf{R}}) + \sigma(\vec{\mathbf{R}}') \right] + \frac{1}{2} C_{b(s)}, \tag{2.2}
$$

where

$$
\begin{split} U_{b(s)} &= W^{AA}_{b(s)} + W^{BB}_{b(s)} - 2\,W^{AB}_{b(s)}\,,\quad V_{b(s)} = W^{AA}_{b(s)} - W^{BB}_{b(s)}\,,\\ C_{b(s)} &= W^{AA}_{b(s)} + W^{BB}_{b(s)} + 2\,W^{AB}_{b(s)}\,. \end{split}
$$

The suffix b applies if both \vec{R} , \vec{R}' or one of them refer to the bulk, while the suffix s applies if \vec{R} , \vec{R}' are both on the surface. The total energy for a given configuration $\{\sigma\}$ of A and B atoms in the crystal can then be written

$$
E(\{\sigma\}) = \sum_{\vec{R}, \vec{R}'} j(\vec{R} - \vec{R}')W(\vec{R}, \vec{R}'), \qquad (2.3)
$$

with $W(\vec{R}, \vec{R}')$ given by Eq. (2.2) when $z, z' \ge 0$ and equal to zero otherwise, and.

$$
j(\vec{R} - \vec{R}') = 1 \quad \text{if } |\vec{R} - \vec{R}'| = a
$$

(a is the lattice constant). (2.4)

It follows from the definition of the interactions in Eq. (2.2) that all the surface effects are contained in $W(\vec{R}, \vec{R}')$ while $j(\vec{R} - \vec{R}')$ assumes that only nearest neighbors interact and is independent of the surface, i.e. , translational invariant. We obtain from Eqs. (2.3) and (2.2),

$$
E({\sigma}) = \frac{1}{2}U_b \sum_{\vec{R}, \vec{R}} j(\vec{R} - \vec{R})\sigma(\vec{R})\sigma(\vec{R}') + 6V_b \sum_{\vec{R}} \sigma(\vec{R})
$$

+
$$
\sum_{\vec{R}_0, \vec{R}} j(\vec{R}_0 - \vec{R}) [U(z) - U_b] \sigma(\vec{R}_0)\sigma(\vec{R})
$$

-
$$
\Delta \sum_{\vec{R}_0} \sigma(\vec{R}_0),
$$
 (2.5)

where we neglected the constant term. $\vec{R}_0 = (\vec{r}, 0)$. is a vector on the surface and

$$
\Delta = 5V_b - 4V_s, \tag{2.6}
$$

$$
U(z) = \begin{cases} \delta(z)U_s + (1 - \delta(z))U_b, & z \ge 0, \\ 0 & \text{if } z < 0. \end{cases}
$$
\n
$$
(2.7)
$$

The first two terms in Eq. (2. 5) are the bulk contribution to the total energy while the last two terms are surface corrections. According to Eq. $(2.1), \sum_{\vec{R}} \sigma(\vec{R}) = N_A - N_B$. This term just adds a constant to the total energy. We relax this constraint by the introduction of a chemical potential and by requiring this relation to be valid on the average.

It is convenient at this point to introduce two interpenetrating sublattices. We call $\bar{\delta}$ a vector joining any two nearest-neighbor sites and \bar{q} a vector such that $\overline{\dot{q}} \cdot \overline{\dot{\delta}} = \pi$. Then we define α and β sublattices by the requirement

$$
e^{i\vec{\mathfrak{q}}\cdot\vec{\tilde{k}}_{\alpha}}=1\,,\quad e^{i\vec{\mathfrak{q}}\cdot\vec{\tilde{k}}_{\beta}}=1\,.
$$

The energy in Eq. (2.5) can then be written

$$
E(\lbrace \sigma \rbrace) = -\frac{1}{2}U_b \sum_{\vec{R}, \vec{R}'} j(\vec{R} - \vec{R}')m(\vec{R})m(\vec{R}')
$$

$$
- \sum_{z, \vec{r}_0} \mu(z)\sigma(\vec{r}^\circ, z)
$$

$$
- \sum_{\vec{R}_0, \vec{R}} j(\vec{R}_b - \vec{R})[U(z) - U_b]m(\vec{R}_0)m(\vec{R})
$$

$$
- \Delta \sum_{\vec{R}_0} \sigma(\vec{R}_0),
$$
 (2.9)

where

$$
m(\vec{R}) = e^{i\vec{q}\cdot\vec{R}}\sigma(\vec{R}).
$$
\n(2.10)

The chemical potential $\mu(z)$ is determined by

$$
\frac{1}{M} \left\langle \sum_{\vec{r}} \sigma(\vec{r}, z) \right\rangle = 2x - 1 \quad \text{if } z \neq 0 \,.
$$
 (2.11)

We impose this condition only in the bulk, while the concentration at the surface $z = 0$ is allowed to fluctuate and will be determined by the parameter Δ in Eq. (2.9). If we call $x_s[M_A(s)/M]$ the concentration of A atoms on the surface, then

$$
\frac{1}{M} \left\langle \sum_{\vec{r}} \sigma(\vec{r}, 0) \right\rangle = 2x_s - 1. \tag{2.12}
$$

The value of $\mu(0)$ is left undetermined, but in the continuous limit we will consider

 $\mu(0) = \lim \mu(z)$. $z\rightarrow$

From Eqs. (2.11) and (2.12) we obtain

$$
\left(\frac{1}{ML}\right)\left\langle \sum_{\mathbf{R}} \sigma(\mathbf{R}) \right\rangle = 2x - 1 + \frac{2}{L}(x_s - x)
$$

and in the limit $L \rightarrow \infty$ we obtain the correct average number of particles.

'The partition function is

$$
Z = \mathrm{Tr}_{\{\sigma\}} e^{-E(\{\sigma\})/T}, \qquad (2.13)
$$

where $E(\lbrace \sigma \rbrace)$ is given in Eq. (2.9) and Eqs. (2.11),

(2.14)

(2.12) can be written

$$
\frac{1}{M} \frac{\partial \ln Z}{\partial \overline{\mu}(Z)} = 2x - 1 \quad \text{if } Z \neq 0 \quad (\overline{\mu} = \mu/T)
$$

and

$$
\frac{1}{M} \frac{\partial \ln Z}{\partial \Delta} = 2x_s - 1 \quad (\overline{\Delta} = \Delta/T).
$$

From Eqs. (2.9) and (2.13) , one finds that Z corresponds to the partition function for an antiferromagnetic Ising model with constraints given by Eq. (2.14). We will look for a solution in the meanfield approximation. We call

$$
\rho(z) = \sum_{\vec{r}} \sigma(\vec{r}, z) = \sum_{\vec{r}_{\alpha}} \sigma(\vec{r}_{\alpha}, z) + \sum_{\vec{r}_{\beta}} \sigma(\vec{r}_{\beta}, z),
$$
\n
$$
m(z) = \sum_{\vec{r}} m(\vec{r}, z) = \sum_{\vec{r}_{\alpha}} \sigma(\vec{r}_{\alpha}, z) - \sum_{\vec{r}_{\beta}} \sigma(\vec{r}_{\beta}, z),
$$
\n(2.15)

where we used Eqs. (2.8) and (2.10) , then the appropriate order parameter for the order-disorder transition is

$$
O(z) = (1/M)\langle m(z)\rangle.
$$
 (2.16)

In the complete ordered state, all the $A(B)$ atoms will be sitting on α (β) sites and $O(z)=1$, while in the case of complete disorder A and B atoms are equally distributed and $O(z) = 0$. In the context of mean-field theory we make the following approximations on the two interacting terms in Eq. (2.9):

$$
\sum_{\vec{\mathbf{R}}, \vec{\mathbf{R}}} j(\vec{\mathbf{R}} - \vec{\mathbf{R}}') m(\vec{\mathbf{R}}) m(\vec{\mathbf{R}}')
$$
\n
$$
\approx \frac{6}{M} \sum_{z, z'} j(z - z') m(z) m(z'), \quad (2.17a)
$$
\n
$$
\sum_{\vec{\mathbf{R}}_0, \vec{\mathbf{R}}} j(\vec{\mathbf{R}}_0 - \vec{\mathbf{R}}) [U(z) - U_b] m(\vec{\mathbf{R}}_0) m(\vec{\mathbf{R}})
$$
\n
$$
\approx -m(\vec{\mathbf{R}}_0) g_0 T, \quad (2.17b)
$$

where from Eq. (2. 14),

$$
j(\vec{z} - \vec{z}') = \frac{1}{6} \sum_{\vec{R}'} j(\vec{R} - \vec{R}')
$$

= $\frac{1}{6} [4\delta(z - z') + \delta(z - z' + a) + \delta(z - z' - a)]$ (2.18)

and

$$
g_0 = \frac{6}{T} \frac{1}{M} \sum_{\mathbf{z}} j(z) (U_b - U(z)) \langle m(z) \rangle. \tag{2.19}
$$

These two approximations are of different nature. In Eq. (2.17a) we decoupled the $m(\overline{R})$, $m(\overline{R}')$ on the layer but we kept the correlations between different layers, while in Eq. (2.17b) we just made a plain mean-field approximation to evaluate the surface force. We then obtain for the exponential in

Eq. (2.13) ,

$$
e^{-E(\lbrace \sigma \rbrace)/T} \approx \exp\left(\frac{\epsilon_b}{2M} \sum_{z,z'} j(z-z')m(z)m(z')\right)
$$

$$
\times \exp\left(\sum \overline{\mu}(z)\rho(z) + g_0m(0) + \overline{\Delta}\varphi(0)\right),
$$
(2.20)

where $m(z)$, $\rho(z)$ were defined in Eq. (2.15) and

$$
\epsilon_b = 6U_b/T \tag{2.21}
$$

We further use the well-known mathematical identity

$$
\exp\left(\frac{\epsilon_b}{2M} \sum_{\mathbf{z}, \mathbf{z}'} j(z - z')m(z)m(z')\right)
$$

= $\frac{1}{N} \int \cdots \int \prod d\eta(z)$

$$
\times \exp\left(-\frac{\epsilon_b M}{2} \sum_{\mathbf{z}, \mathbf{z}'} j^{-1}(z - z')\eta(z)\eta(z')\right)
$$

+ $\epsilon_b \sum m(z)\eta(z)$ (2.22)

 $O(z) = (1/M)\langle m(z)\rangle$. (2.16) where N is a numerical constant and $j^{-1}(z - z')$ is the inverse potential such that

$$
\sum j(z - z^{n})j^{-1}(z^{n} - z^{n}) = \delta(z - z^{n}).
$$
\n(2.23)

By using Eqs. (2.20) and (2.22) the trace over the spin variables can be performed in Eq. (2.13). We obtain then for the partition function

$$
Z = \int \cdots \int \prod d\eta(z) \, e^{-MF}, \qquad (2.24)
$$

$$
F = \frac{1}{2} \left(\epsilon_b \sum_{\mathbf{z}, \mathbf{z}'} j^{-1} (z - z') \eta(z) \eta(z') + \sum_{\mathbf{z} \neq 0} V_b(\eta(z)) - V_s(\eta(0)) \right) , \qquad (2.25)
$$

$$
V_b(\eta(z)) = \ln \{ \cosh[\epsilon_b \eta(z') + \overline{\mu}(z)]
$$

$$
\times \cosh[\epsilon_b \eta(z) - \overline{\mu}(z)]\}, \qquad (2.26)
$$

$$
V_s(\eta(0)) = \ln\{\cosh[\epsilon_b \nu_s \eta(0) + \overline{\mu}_s]\}
$$

× cosh[$\epsilon_b \nu_s(0) - \overline{\mu}_s]$ },

$$
\nu_s = 1 + g_0/\epsilon_b \eta(0), \quad \overline{\mu}_s = \overline{\mu}(0) + \overline{\Delta}.
$$
 (2.27)

We obtain from Eqs. (2.16) and (2.22) the expression for the order parameter

$$
\frac{1}{M} \langle m(z) \rangle
$$
\n
$$
= \frac{1}{Z} \int \cdots \int \prod d\eta(z) e^{-MF}
$$
\n
$$
\times \left(-\frac{1}{\epsilon_b} \frac{\delta F}{\delta \eta(z)} + \sum_{z'} j^{-1} (z - z') \eta(z') \right).
$$
\n(2.28)

 ${\bf 17}$

For the continuous-limit case we write Eq. (2.25) ,

$$
\eta(z)\eta(z')\approx \eta^2(\overline{z})-\left(\frac{d\eta}{d\overline{z}}\right)^2\left(\frac{z-z'}{2}\right)^2,\qquad\qquad(2.29)
$$

where we neglected higher derivatives and \overline{z} $=\frac{1}{2}(z+z')$. We obtain then in the continuum limit the partition function as a functional integral

$$
Z = \int \delta \eta(z) e^{-M(F_b + F_s)}, \qquad (2.30)
$$

where adding and subtracting $V_b(\eta(0))$ to the function F in Eq. (2.25) gives

$$
F_b = \frac{1}{2a} \int_0^\infty dz \left[\epsilon_b \eta^2(z) + \frac{\epsilon_b a^2}{12} \left(\frac{d\eta}{dz} \right)^2 - V_b(\eta(z)) \right]
$$
\n(2.31)

and

$$
F_s = \frac{1}{2} \left\{ V_b(\eta(0)) - V_s(\eta(0)) \right\}.
$$
 (2.32)

The constraint equations (2.14) now become

$$
\frac{1}{z} \int \delta \eta(z) e^{-M(F_b + F_s)} \frac{1}{2} \frac{\delta V_b}{\delta \mu(z)} = 2x - 1, \qquad (2.33)
$$

$$
\frac{1}{z} \int \delta \eta(z) e^{-M(F_b + F_s)} \frac{1}{2} \frac{\delta V_s}{\delta \mu_s} = 2x_s - 1, \qquad (2.34)
$$

where from Eqs. (2.32) and (2.27) one finds $\delta F_s/\delta\overline{\Delta} = -\frac{1}{2}\delta V_s/\delta\overline{\mu}_s$.

Note, the two terms in the free energy given by Eqs. (2.31) and (2.32) are not yet in the Landau-Ginzburg form, because V_b and V_s are not expanded in powers of η . We find it more convenient to perform the expansion in the differential equations and will do it in Sec. III.

III. LANDAU-GINZBURG DIFFERENTIAL EQUATIONS

In the limit $M \rightarrow \infty$ the partition function given by Eq. (2.30) may be evaluated by steepest descents and $\eta(z)$ is given by the stationary condition

$$
[\delta/\delta\eta(z)](F_b + F_s) = 0.
$$
 (3.1)

The order parameter is obtained from Eqs. (2.28) and (3.1),

$$
\frac{1}{M} \langle m(z) \rangle = \sum_{z'} j^{-1} (z - z') \eta(z')
$$

$$
\approx \sum_{z'} j^{-1} (z - z') \eta(z) = \eta(z), \qquad (3.2)
$$

where we neglected the derivatives in the expansion of $\eta(z')$ and where $\eta(z)$ is the solution of Eq. (3.1). We obtain from Eq. (3.1) and by functional differ- $\frac{1}{2}$ entiation⁶⁻⁸ of Eqs. (2.31) and (2.32) the expression

$$
\frac{a^2}{12}\frac{d^2\eta}{dz^2} - \eta(z) + \Lambda_b(\eta(z)) = 0,
$$
\n(3.3)

with boundary conditions

$$
\frac{a}{12} \frac{d\eta}{dz} \bigg|_{z=0} - [\Lambda_b(\eta(0)) - \Lambda_s(\eta(0))] = 0,
$$
\n
$$
\frac{d\eta}{dz} = 0 \quad \text{if } z \to \infty.
$$
\n(3.4)

Here.

$$
\Lambda_b[\eta] = \frac{1}{2\epsilon_b} \frac{\partial V_b(\eta)}{\partial \eta}
$$

= $\frac{1}{2} [\tanh(\epsilon_b \eta + \overline{\mu}) + \tanh(\epsilon_b \eta - \overline{\mu})],$ (3.5)

$$
\Lambda_s[\eta] = \frac{1}{2\epsilon_b} \frac{\partial V_s(\eta)}{\partial \eta}
$$

$$
=\frac{\nu_s}{2}\left[\tanh(\epsilon_b\nu_s\eta+\overline{\mu}_s)+\tanh(\epsilon_b\nu_s\eta-\overline{\mu}_s)\right],\qquad(3.6)
$$

which we obtained by using Eqs. (2.26) and' (2.27). The constraints in Eq. (2.33) become

$$
\frac{1}{2} \frac{\partial V_b}{\partial \overline{\mu}} = \frac{1}{2} \left[\tanh(\epsilon_b \eta + \overline{\mu}) - \tanh(\epsilon_b \eta - \overline{\mu}) \right] = 2x - 1.
$$
\n(3.7)

The concentration x_s of A atoms on the surface is determined by $[Eq. (2.34)]$

$$
\frac{1}{2} \frac{\partial V_s}{\partial \bar{\mu}_s} = \frac{1}{2} \left[\tanh(\epsilon_b \nu_s \eta + \bar{\mu}_s) - \tanh(\epsilon_b \nu_s \eta - \bar{\mu}_s) \right] = 2x_s - 1. \quad . (3.8)
$$

Note, x_s is a function of the surface parameter v_s and Δ . Here, we consider that in the continuum limit $\overline{\mu}(0) = \overline{\mu}(z = 0)$ is given by Eq. (3.7). In order to express Eqs. (3.3) and (3.4) in a LG form⁶⁻⁸ we first have to eliminate $\overline{\mu}$ (z) which is itself a function of $\eta(z)$ through Eq. (3.7). We obtain from Eqs. (3.5) and (3.7) ,

$$
\Lambda_b[\eta] = \frac{1}{2} \tanh(2\epsilon_b \eta) [1 + \tanh(\epsilon_b \eta + \bar{\mu}) \tanh(\epsilon_b \eta - \bar{\mu})]
$$

$$
= \frac{1}{2} \tanh(2\epsilon_b \eta) [1 - (2x - 1)^2 + \Lambda_b^2(\eta)]. \tag{3.9}
$$

This gives

$$
\Lambda_b[\eta] = \frac{1}{\tanh(2\epsilon_b \eta)} \left\{ 1 - \left[1 - 4x(1-x)\tanh^2(2\epsilon_b \eta) \right]^{1/2} \right\},\tag{3.10}
$$

where we choose the sign in front of the square root such that $\Lambda_b[\eta] \to 0$ if $\eta \to 0$. We obtained in Eq. (3.10), $\Lambda_b(\eta)$ as a function of η and the bulk concentration x_b . The expansion in powers of η gives to third order the expression

$$
\Lambda_b[\eta] = 4x(1-x)\epsilon_b\eta - 4x(1-x) \times [(2x-1)^2 + \frac{1}{3}](\epsilon_b\eta)^3 + O(\eta^5).
$$
 (3.11)

We obtain in a, similar fashion from Eqs. (2.26) and (2.8),

 $17\,$

334

$$
\Lambda_s(\eta(0)) = 4x_s(1 - x_s)\nu_s^2 \epsilon_b \eta(0) + O(\eta^3(0)). \tag{3.12}
$$

By using Eqs. (3.11) and (3.12) in Eqs. (3.3) and (3.4) we obtain the LG differential equation for the order parameter

$$
\frac{d^2\eta}{dz^2} - t\eta(z) - 2q\eta^3(z) = 0,
$$
\n
$$
\frac{d\eta}{dz}\Big|_{z=0} = \lambda^{-1}\eta(0), \quad \frac{d\eta}{dz} = 0 \quad \text{if } z \to \infty,
$$
\n(3.13)

with $q > 0$ and

$$
t = \frac{12}{a^2} \frac{T - T_b}{T_b}, \quad T_b = 6U_b 4x (1 - x) . \tag{3.14}
$$

The surface force is given by

$$
\lambda^{-1} = (12/a)\epsilon_b[4x(1-x) - 4x_s(1-x_s)\nu_s^2]. \tag{3.15}
$$

The differential equation (3.13) has already been solved for magnetic systems, $5-8$ and we refer the reader to Ref. 6 for a very detailed analysis of the solutions. The behavior of the order parameter η will depend on the sign of the surface force. For λ^{-1} < 0 a surface transition occurs where the ordered state is limited to the neighborhood of the 'surface. We will evaluate λ^{-1} in more detail From Eqs. (3.15) , (2.27) , and (2.21) one finds

$$
\lambda^{-1} = \frac{12}{a} \frac{T_b}{T} \left(1 - \frac{x_s (1 - x_s)}{x (1 - x)} [1 + h]^2 \right) , \qquad (3.16)
$$

where using the definition of g_0 in Eq. (2.19),

$$
h = \frac{T}{6U_b \eta(0)} g_0
$$

$$
= \frac{1}{U_b \eta(0)} \sum_{\mathbf{z}} j(\mathbf{z}) [U_b - U(\mathbf{z})] \eta(\mathbf{z})
$$

$$
= \frac{1}{6} [4(1 - \frac{U_s}{U_b}) + 1].
$$
 (3.17)

To obtain the last equality we used Eqs. (2.17) and (2.18) for $U(z)$ and $j(z)$, and we kept only the first term in the expansion of $\eta(z)$ around $z = 0$. It follows from Eqs. (3.16) and (3.17) that the interactions give two different contributions to the surface force: (a) The "spin-spin"-like interactions $\overline{V}_{b\, (s)}$ cause the term in the small square brackets in Eq. (3.16). This term also appears typically in magnetic systems.⁵⁻⁷ In Eq. (3.17) h is just the surface force as given in Ref. (5). (b) The combinations $V_{b(s)} = W_{b(s)}^{AA} - W_{b(s)}^{BB}$ cause the dependence on the bulk and surface concentrations x_h and x_s , respectively, through Eqs. (2.11) and (2.12) . These terms do not occur for magnetic systems.

In the following we analyze two special cases.

(i) $x_s = x_b$. There is no segregation, $x_s = x_s$, and we obtain from Eq. (3.16) if we keep only the linear term in h the expression

$$
\lambda^{-1} = -\frac{4}{a} \frac{T_b}{T} \left[4 \left(1 - \frac{U_s}{U_b} \right) + 1 \right] \tag{3.18}
$$

Note λ^{-1} is just the same as the surface force in semi-infinite^{5,6} magnets.

(ii) $U_{\rm s}/U_{\rm b}=\frac{5}{4}$, $h=0$. In this case,

$$
\lambda^{-1} = \frac{12}{a} \left(1 - \frac{x_s (1 - x_s)}{x (1 - x)} \right). \tag{3.19}
$$

Then for $x_s(1-x_s) > x(1-x)$ one obtains $\lambda^{-1} < 0$ and a surface transition $occurs^{5,7}$ when the surface orders before the bulk. For $x_s(1-x_s) \leq x(1-x)$ the bulk and surface order at the same temperature T_{b} , but $\eta(0) < \eta_{b}$.

Applying the results obtained in Befs. 5 and 6 one finds for (i) $\lambda^{-1} > 0$: (a) $\eta_b = \eta_s = 0$ if $T > T_b$, $t > 0$. one finds for (i) $\lambda^2 > 0$; (a) $\eta_b = \eta_s = 0$ if
(b) $\eta(t) = \eta_b \tanh(z/\xi_b + \varphi_1)$ if $T < T_b$, $t < 0$;

$$
\varphi_1 = \arg \tanh(\eta_s / \eta_b), \tag{3.20}
$$

where

$$
\eta_s^2 = \eta_b^2 - \frac{\lambda^{-2}}{2q} \left[\left(1 + \frac{4\lambda^2}{\xi_b^2} \right)^{1/2} - 1 \right] < \eta_b^2.
$$
 (3.21)

Here, we introduced the bulk order parameter

$$
\eta_p^2 = |t|/2q
$$

and correlation length (3.22)

$$
\xi_b^2=2/|t|.
$$

For (ii) λ^{-1} < 0 we find the existence of a temperature

$$
T_s = T_b \left(1 + \frac{a^2}{12} \lambda^{-2} \right) > T_b \tag{3.23}
$$

such that we can distinguish three temperature regions: (a) $T>T_s$ with $\eta_b=\eta_s=0$. (b) $T_b \leq T \leq T_s$, t >0 , with

$$
\eta(z) = \left(\frac{t}{q}\right)^{1/2} \sinh^{-1}(\sqrt{t} z + \varphi_2),
$$
\n
$$
\varphi_2 = \arg \sinh[(t/q)^{1/2} \eta_s^{-1}],
$$
\n(3.24)

$$
\eta_s^2 = (\lambda^{-2} - t)/q \approx T_s - T \,. \tag{3.25}
$$

Clearly, for $T_b < T < T_s$ only a transition at the surface occurs (c) $T \leq T_h, t \leq 0$. For this range of temperature the bulk starts to order too, but the order parameter near the surface is enhanced. One obtains

$$
\eta(z) = \eta_b \coth(z/\xi_b + \varphi_3),
$$

\n
$$
\varphi_3 = \arg \coth(\eta_s/\eta_b),
$$
\n(3.26)

$$
\eta_s^2 = \eta_b^2 + \frac{\lambda^{-2}}{2q} \left[\left(1 + 4 \frac{\lambda^2}{\xi_b^2} \right)^{1/2} + 1 \right] > \eta_b^2 \tag{3.27}
$$

Here, ξ_b and η_b are given by Eq. (3.22).

The range of validity of the continuous approximations is given by the requirement that the vari-

335

ations of $\eta(x)$ over a lattice constant must be small. From Eqs. (3.20), (3.24), and (3.26) this leads to the general condition $\xi_b \gg a$ or $|t| \ll 1/a^2$ This condition puts also a restriction on the allowed values of λ^{-1} . Indeed, if we consider T $T_{\rm s}$, the values of T_s must satisfy

$$
\frac{\mid T_{s}-T_{b}\mid}{T_{b}}\frac{1^{2}}{a^{2}}\ll\frac{1}{a^{2}} ,
$$

or, from Eq. (3.23), $\lambda^{-2} \ll 1/a^2$.

IV. CONCLUSIONS

We have studied the order-disorder transition in a semi-infinite $A_x B_{1-x}$ alloy by means of Landau-Ginzburg theory. The main of our work was to calculate the LG parameter at a surface starting from a microscopic Ising-like Hamiltonian for an alloy which exhibits surface segregation. We have shown that the sign of the surface force depends crucially on segregation at the surface. For surface concentrations x_s such that $x_s(1-x_s)$ For surface concentrations x_s such that $x_s(1 - x_s)$
> $x(1 - x)$, λ^{-1} may be negative and a surface transition occurs, similar to the case in semi-infinite magnetic systems.

When this work was finished, it came to our when this work was immissived, it came to our knowledge that Binder $et al.^9$ have applied the same methods to study the mixing transition in analogous systems. If we call $m_{\text{BSW}}(z)$ and $\widetilde{m}_{\mathtt{BSW}}(z)$ the order parameters of Ref. 9, it is clear that we can write the correspondence $\tilde{m}_{\text{Bsw}}(z)$ $=\eta(z)$, $m_{\text{BSW}}(z) = \langle (1/M)\rho(z) \rangle$, from Eqs. (2.15) and (3.2).

The essential difference between both works is that we studied the order-disorder transition described by $\eta(z)$ for a given density distribution $\langle 1/M \rho(z) \rangle = 2x - 1 = \text{const}$, while Binder *et al.* consider a mixing transition described by $m_{\text{BSW}}(z)$ with no spontaneous order-disorder transition. In effect, $\tilde{m}_{\text{BSW}}(z)$ was considered to be vanishing in the LG equation for $m_{\text{BSW}}(z)$ of Ref. 9 [Eq. (7.6)], and only the linear term was kept in Eq. (7.6) for $\tilde{m}_{\text{BSW}}(z)$.

ACKNOWLEDGMENTS

We would like to thank Dr. W. Theumann, Dr. J. L. Morán-López, and Dr. K. Penson for discussions; and Dr. T. Burkhardt and Dr. E. Eisenriegler for pointing out Refs. 6 and 9 to us.

- *Present address: Institut Laue Langevin, 38042 Grenoble Cedex, France.
- 1 J. L. Morán-López and K. H. Bennemann (unpublished).
- v^2 V. S. Sundaram, B. Farrell, R. S. Alben, and W. D. Robertson, Phys. Rev. Lett. 31, 1136 (1973}.
- 3 G. Kerker, J. L. Morán-López, and K. H. Bennemann, Phys. Rev. B 15, 638 (1977).
- 4 R. P. Feynmann, *Statistical Mechanics* (Benjamin, New York, 1972), Chap. 5.

⁵D. L. Mills, Phys. Rev. B 3, 3887 (1971).

- 6 T. C. Lubensky and Morton H. Rubin, Phys. Rev. B 12, 3885 (1975).
- ⁷K. Binder and P. C. Hohenberg, Phys. Rev. B 6 , 3461 (1972};9, 2194 (1974}.
- 8 M. I. Kaganov and A. N. Ome Lyanchuk; Zh. Eksp. Teor. Fiz. 61, 1679 (1971) [Sov. Phys. -JETP 34, 895 (1972)]. 9 K. Binder, D. Stauffer and V. Wildpaner, Acta Metall.
- 23, 1191 (1975).