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Landau-Ginzburg theory of order-disorder transition in semi-infinite systems
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The parameters of the Landau-Ginzburg functional for atomic order-disorder transitions are calculated
from a microscopic Ising-like Hamiltonian. It is shown that the surface force X and the transition depend

. crucially. on segregation at the surface. It is shown that the surface may order before ordering in the bulk
occurs.

I. INTRODUCTION

Surface effects on the order-disorder transition
in &3& type of alloys have been studied recently'
by means of Bragg-Williams theory. One finds
that the bulk and the surface will both order at
temperatures T & T„where T, is a common criti-
cal temperature, but the order parameter, is re-
duced at the surface due to. segregation. These
results are in fair agreement with experimental
data for Cu, Au. ' However, the following problem
has not been studied: The critical temperature of
the order-disorder transition depends on the con-
centrationx of one of the components as T,~x(1 —x).
Thus one would expect that if segregation oc-
curs, ' such that x, & x„, there should be two differ-
ent critical temperatures for bulk and surface.
As a consequence the surface may order while the
bulk is still completely disordered.

The purpose of this paper is to investigate this
point in the context of the Landau-. Qinzburg theory
for order-disorder transitions in the presence of a
surface. We obtain that the order at the surface
may be reduced or enhanced due to segregation.
In the last case, there exists a characteristic tem-
perature T,& T& such that for T, T, the surface is
ordered while the bulk remains disordered. We
call T& the bulk-transition temperature.

The order-disorder transition can be studied by
means of an Ising-like model Hamiltonian. " Start-
ing from this microscopic formulation we derive
in Sec. II a Landau-Qinzburg expression for the
free-energy functional. We consider here a simple
model that can describe an order-disorder transi-
tion in A, &, alloys including surface segregation.
We assume a lattice that can be decomposed in
two equal interpenetrating sublattices and the in-
teractions are taken only between nearest neigh-
bors. As a consequence of these two 'assumptions
we obtain only a second-order transition and not
a first-order; transition as it is the case in A3+
alloys. "

In Sec. III, we derive the Landau-Ginzburg (LG)
equations for the order parameter. The main dif-

ference between our. problem and the case of mag-
netic systems' is that we have additional con-
straints due to the requirement of a fixed number
of atoms of either kind. Once these contraints are
introduced in the theory, the LQ equations are the
same as those obtained in magnetic" systems, but
the parameters are concentration dependent. We
find that the surface force A ' depends not only on
the interactions at the surface, but also on the ratio
between the bulk and surface concentrations. The '

solution of the LQ equations in semi-infinite mag-
netic systems is known and discussed in great de-
tail by Lubensky et al. ' The following results are
found. Calling x; (x,) the bulk (surface) concen-
tration we obtain A '& 0, if x,(1-x,)& x,(1 —x,) u'„
where v, is concentration independent and depends
only on the surface interactions. For A '& 0, bulk
and surface order is at the same temperature T
= T, and the order parameter is reduced at the
surface. When A

' = 0, then there exists a surface
critical temperature T, & T„such that for T, = T
& T, a surface transition occurs and the order
parameter vanishes exponentially away from the
surface. For lower temperatures T & T„ the bulk
is ordered, but the order parameter remains en-
hanced at the surface. We recall that if the inter-
actions are such that v, = 1, then A.

' & 0 if x,(1
'-x,) & x,(l —xb) and we have confirmed the initial
hypothesis that originated this work.

II. 4.ANDAU-GINZBURG PARTITION FUNCTION

The order-disorder transition in an alloy A„B„„
can be studied by writing an Ising-like partition
function. '" The model we consider here is an al-
loy with N„= xN and N~ = (1 - x)N atoms of type A
and &, respectively, distributed on the N sites of
a semi-infinite crystal with a sc lattice structure.
Interactions are considered to take place. only be-
tween nearest neighbors and we call m,

' the po-
tential energy between a neighboring pair of X, v'
atoms (v, A' =& or &) in the bulk, and w, the anal-
ogous potential energy when both atoms are on the
surface. For simplicity, we consider that the in-
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teraction between one atom ~ on the surface and
one atom v' in the bulk is also sob"" . We denote by
R =(r, z) the position of a given lattice site, where
the ~ axis is perpendicu1ar to the surface and r
denotes the position of sites on planes parallel to
the surface. The surface is a (1 0 0) plane of the
crystal and it has ~ =0. We start by considering a
finite crystal with I. layers parallel to the surface,
with M sites per layer, then N=MI. .

By introducing the "spin" variables

1 for an atom A,
o(R =

1 for an atom B,
(2.1)

where
AA BB AB AA BB

Ub(, )
——g b(,) + g b(~)

—2 Wb(,), Vb(~)
——5'b(,)

—Wb(~)

AA BB AB
Cb(s) ~b(s) + ~b(s) + 2~b(s)

The suffix b applies if both R, R' or one of them
refer to the bulk, while the suffix s applies if
R, R' are both on the surface. The total energy
for a given configuration fo} of A and B atoms in
the crystal can then be written

&((o})= g j(H-R')ll'(H, H'),
R, R'

with li'(H, R') given by Eq. (2.2) when z, z' ~ 0 and
equal to zero otherwise, and.

(2 2)

j(H —R) =»f IR-R I=.
(a is the lattice constant). (2.4)

It follows from the definition of the interactions
in Eq. (2.2) that all the surface effects are con-
tained in W(R, R') while j(R —R') assumes that on-
ly nearest neighbors interact and is independent of
the surface, i.e., translational invariant. We ob-
tain from Eqs. (2.3) and (2.2),

E(f&})=2~Up p j(H —H')o(R)o(R') +6& Q&(H)
R

+ g R, -R Uz —UboR, OR
RO, R

(2.5)—ag o(R,),
RO

where we neglected the constant term R, =(r, 0).
is a vector on the surface and

z=5V, -4V„ (2.6)

the potential energy between two neighboring atoms
at R, R' can be written

W~(,l(H, H') =2'(,)o(R)o(R') +21'(.)
x [o(R)+o(R')] + —,'C,

&,&, (2.2)

The first two terms in Eq. (2. 5) are the bulk con-
tribution to the total energy while the last two
terms are surface corrections. According to Eq.
(2.1), Q Ro'(R) =N& —Ns. This term just adds a
constant to the total energy. We relax this con-
straint by the introduction of a chemical potential
and by requiring this relation to be valid on the
average.

It is convenient at this point to introduce two
interpenetrating sublattices. We call & a vector
joining any two nearest-neighbor sites and q a
vector such that q 5 =m. Then we define n and P
sublattices by the requirement

e"' &=1 e'~ 8=1 (2.8)

The energy in Eq. (2.5) can then be written

E(lo})=--.'U, g j(H-H') (H)m(H )
R, R'

p, zo r, z
Z, I'p

—Z j(H~-R)[U(z) —U. ]m(H, )m(H)
Rp, R

where
Rp

0 Rp, (2 9)

m (R ) = e' ~ o'(R ) . (2.10)

The chemical potential Io(z) is determined by

1
cr(r, z) =2x —1 if z c 0.M (2.11)

Q. o(r, 0) = 2x, 1.
r

(2.12)

The value of p, (Q) is left undetermined, but in the
continuous limit we will consider

lt, (0) = lim p, (z) .
g~p

From Eqs. (2.11) and (2.12) we obtain

and in the limit L -~ we obtain the correct aver-
age number of particles.

'The partition function is

I'

We impose this condition only in the bulk, .while
the concentration at the surface z =0 is allowed
to fluctuate and will be determined by the param-
eter & in Eq. (2.9). If we call x,[M„(s)jM] the con-
centration of A atoms on the surface, then

&(z)U, +(1 —5(z))U, , z~ 0,
0 if z 0.

(2.7)
Z=Tr e (2.13)

where E((o})is given in Eq. (2.9) and Eqs. (2.11),
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(2.12) can be written

1 slug
M &Pg

=2x —1 if Z000 (p = p/T, )

——2x, —1 (& = &/T).

(2.14)

Eq. (2.13),

e ' "l =exp ' Q j(e —e )mlz'lm(z'))
2M

x exp
'

p, z p z + gom 0 + &y 0

(2.20)

From Eqs. (2.9) and (2.13), one finds that Z cor-
responds to the partition function for an antiferro-
magnetic Ising model with constraints given by
Eq. (2.14). We will look for a solution in the mean-
field approximation. %e call

p(z) = P o(r, z) =P o(r, z)+ g o(r(), z),

(2.15)

m (z) = Q m (r, z) = Q o (r, z) —Q o (r(), z),
r r+ rg

where we used Eqs. (2.8) and (2. 10), then the ap-
propriate order parameter for the order-disorder
transition is

where m(z), p(z) were defined in Eq. (2. 15) and

E(,
——6Uq/T (2.21)

exp ' jz-z'mznzz'
gag

1 ~z

dq(z)

&~IV)
xexp — ' j 'z-z'qz qz'

Z0 g

z, Q m(z)0(e)) (2.22)

%e further use the well-known mathematical identity

O(z) = (I/~){m(z)&. (2.16)
where 1V is a numerical constant and j '(z —z') is
the inverse potential such that

In the complete ordered state, all the A(B) atoms
will be sitting on n (P) sites and O(z)=1, while
in the case of complete disorder A and 8 atoms are
equally distributed and O(z) =0. In the context of
mean-field theory we make the following approxi-
mations on the two interacting terms in Eq. (2.9):

P j(z —z")j-'(z" —z') = 6(z —z'). (2;23)

By using Eqs. (2.20) and (2.22) the trace over the
spin variables can be performed in Eq. (2.13).
%e obtain then for the partition function

P j(R —R')m(R)m(R')
R, R

6 P j(z —z')m(z)m(z'), (2.17a)
g, g'

P j(R, —R)[V(z) —U,]m(R, )m(R)
BjO, R

=-m(RO)g, T, (2. 17b)

where from Eq. (2. 14),

j(z z ) =—'Q j(R - R )
R'

= —,
" [46(z —z') + 6(z —z' + a) + 6(z —z' —a)]

F = -,' z, j ' z - z' g z g z'
Z Z

z F V,(zl(z)) — V( (00))),
Z~0

V,(q(z)) = In(cosh[&,7i(z') + P(z)]

&& cosh[a, q(z) —p(z)]j,

V,(q(0)) = In(cosh[&, v, rl(0) + p,,]
x cosh[a, v, (0) —p, ]j,

v, = -1 +g,/e, g(0), p, = p (0) + 4 .

(2.24)

(2.25)

(2.26)

(2.27)

and

Z ( )(U —U( ))( ( )).6 1

(2.18)

(2.19)

We obtain from Eqs. (2.16) and (2.22) the expres-
sion for the order parameter

—{m(z))
1

These two approximations are of different nature.
In Eq. (2.17a) we decoupled the m(R), m(R') on the
layer but we kept the correlations between dif fer-
ent layers, while in Eq. (2.17b) we just made a
plain mean-field approximation to evaluate the sur-
face force. We then obtain for the exponential in

1
z I [dn(z).

1 6E
z —z' gz'

6')I z

(2.28)
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n(~)n(~')= n'(~)-. (&, ) (- z
(2.29)

where we neglected higher derivatives and Z
= 2(z+ z'). We obtain then in the continuum limit
the partition function as a functional integral

g 6~( )
-M(E~+E~) (2.30)

where adding and subtracting V,(q(0)) to the func-
tion E in Eq. (2.25) gives

20
d. ~ q'(z)+ ' ——- V.(n(z))CbQ

12 dz

For the continuous-limit case we write Eq. (2.25),
—[A,(q(0)) —A, (q(0))] = 0,

d'g =0 if z-~.
dz

'V~(71)
b 2~b Bn

= —[tanh(ep+ P )+ tanh(e„q —g )],2

1 s V,(g)
A, [q] =—

8'g

(3.4)

and

F,= l (V,(n(0)) —V,(n(0))].

(2.31)

(2.32)

' [tanh(e, v, g+ P,)+ tanh(e, I,7) —p,,)], (3.6)

which we obtained by using Eqs. (2.26) and' (2.27).
'I'he constraints in Eq. (2.33) become

The constraint equations (2.14) now become

6q(z)e- ~' ~ ——= —= 2x —1,-~(z ~z ) 1 5Vb
g 2 5$(z) (2.33)

1 ~Vb 1——' = —[tanh(e~q+ p ) —tanh(ep —p, )]= 2x —1.
2 ~p. 2

(3.7)

6'q(z)e ' n' s —— —' =2x, —1,
1 -ez+z ~

1
8 2 5p, (2.34)

where from Eqs. (2.32) and (2.2'I) one finds
5F,/6A = ——,'6V, /6p, .

Note, the two terms in the free energy given by
Eqs. (2.31) and (2.32) are not yet in the Landau-
Ginzburg form, because V„and V, are not expand-
ed'in powers of q. We find it more convenient to
perform the expansion in the differential equations
and will do it in Sec. III.

III. LANDAU-GINZBURG DIFFERENTIAL EQUATIONS

ln the limit M -~ the partition function given by
Eq. (2.30) may be evaluated by steepest descents
and q(z) is given by the stationary condition

(3.1)

The order parameter is obtained from Eqs. (2.28)
and (3.1),

(3.2)

z) + A, (~( ))- 0

with boundary conditions

(3.3)

where we neglected the derivatives in the expansion
of q(z') and where q(z) is the solution of Eq. (3.1).
We obtain from Eq. (3.1) and by functional differ-
entiation' ' of Eqs. (2.31) and (2.32) the expression

The concentration x, of A. atoms on the surface
is determined by [Eq. (2.34)]

1 ~V,-' =—[tanh(e, v, q+ p. ,)
S

—tanh(e, t,q —p, )]= 2x, —1. . (3.8)

= —,
' tanh(2ep)[l —(2x —1)'+ A', (q)].

This gives

(3.9)

A, [q] = fl [1 —4x(1 —x) tanh'(2ep)]'~'],
tanh(2e, q

(3.10)

where we choose the sign in front of the square
root such that A,[q] -0 if p-0. We obtained in Eq.
(3.10), A, (q) as a function of q and the bulk concen-
tration x,. The expansion in powers of g gives to
third order the expression

A, [rI] = 4x(l —x)e,tI —4x(1 —x)

&& [(2x —1)'+ 3'](e,0)'+ 0(R') . (3.11)

We obtain in a, similar fashion from Eqs. (2.26)
and (2.8),

Note, x, is a function of the surface parameter v,
and ~. Here, we consider that in the continuum
limit p, (0) = p (z =0) is given by Eq. (3.7). In order
to express Eqs. (3.3) and (3.4) in a LG form' ' we
first have to eliminate p. (z) which is itself a func-
tion of q(z) through Eq. (3.7). We obtain from Eqs.
(3.5) a,nd (3.7),

A,[7)] = —,
' tanh(2e„7I)[l+ tanh(e~q+ p) tanh(e, q —p)]
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ii, (q(0)) = 4x, (1 —x,)v', ebq(0) + O(q'(0)) . (3.12)

By using Eqs. (3.11) and (3.12) in Eqs. (3.3) and

(3.4) we obtain the LG differential equation for the
order parameter

4T U,4 1-—'+1
a T Ub

(3.16)

Note X ' is just the same as the surface force in
semi-infinite'2' magnets.

(ii) U, /U, = sb, lb=0. In this case,

d,
", -tn(2) -2qn'(2) =o,

=~-'q(0), —=o if e-d'g d'g

-0 dZ

with q & 0 and

T, = 6U, 4 (I- x) .12 T —Tb

b

The surface force is given by

X '= (12/a)ab[4x{1-x) —4x, (1 -x,)vg .

(3.13)

(3.14)

{3.15)

12 i x, (1 —x, )
a x(1 —x)

(3.19)

y, = arg tanh(q, /qb), (s.2o)

Then for x, (1 —x,) &x(1-x) one obtains X ~&0 and
a surfac e transition oc curs' ' when the surf ace
orders before the bulk. For x,(1 —x,) &x(1-x) the
bulk and surface order at the same temperature
Tb, but q(0) &qb.

Applying the results obtained in Befs. 5 and 6
one finds for (i) X '&0: (a) qb=q, =o if T&T„t&0.
(b) g (t) = qb tanh(2/(b + y~) if T & T„t & 0:

The differential equation (3.13) has already been
solved for magnetic systems, ' and we refer the
reader to Ref. 6 for a very detailed analysis of the
solutions. The behavior of the order parameter
g will depend on the sign of the surface force. For
X '&0 a surface transition occurs where the or-
dered state is limited to the neighborhood of the
surface. %e will evaluate X ' in more detail.
Prom Eqs. (3.15), (2.27), and (2.21) one finds

where
x-'- 4x' '/' (q2s b 2q g2 b (3.21)

and correlation length (3.22)

Here, we introduced the bulk order parameter

vl', = ft f/2q

12 7 x, (1 —x,)i „))a T x(l -x
where using the definition of g, in Eq. (2.19),

T
6Up (0)

gi (2)[U, U(2)jn0)—
bq

1 U,=-[4 1-—+ ij.
6 Ub

(3.16)

(3.17)

For (ii) A. &0 we find the existence of a tempera-
ture

Q
T =T 1+—g2 &T

b 12 b (3.23)

such that we can distinguish three temperature
regions: (a) T& T, with qb=q, =o. (b) T, &T&T„t
&0, with

1/2
q(2) = — sinh '(v t a + y2),

To obtain the last equality we used Eqs. (2.17) and
(2.13) for U(a) and j(a), and we kept only the first
term in the expansion of q(e) around 2 =0. It
follows from Eqs (3.16) an. d (3.17) that the inter-
actions give two different contributions to the sur-
face force: (a) The "spin-spin"-like interactions
Vb(, &

cause the term in the small square brackets in
Eq. (3.16). This term also appears typically in
magnetic systems. ' ' In Eq. (3.17) Ib is just the
surface force as given in Ref. (5). (b) The com-
binations Vb(, &-—W, (",

&

—Wb~(, ) cause the dependence
on the bulk and surface concentrations xb and x„
respectively, through Eqs. (2.11) and (2.12). These
terms do not occur for magnetic systems.

In the following we analyze two special cases.
(i) x, =xb. There is no segregation, x, =x, and

we obtain from Eq. (3.16) if we keep only the linear
term in h the expression

p2 = arg sinh[ (t/q)'t 2q, '],
rl', =(l-'-t)/q =T, -T.

(s.24)

(s.25)

q (2) = qb coth(S/]b+ ps),

y 2
= arg coth(q, /rib),

(s.26)

~Z X/2
1+4 +1 )g2s b 2q ~2 b (3.27)

Here, gb and qb are given by Eq. (3.22).
The range of validity of the continuous approxi-

mations is given by the requirement that the vari-

Clearly, for Tb & T & T, only a transition at the surface
occurs (c) T&T„t&0. For this range of tempera-
ture the bulk starts to order too, but the order
parameter near the surface is enhanced. One ob-
tains
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ations of q(x) over a lattice constant must be
small. From Eqs. (3.20), (3.24), and (3.26) this
leads to the general condition (,» a or

~

f
~

«1/a2.
This condition puts also a restriction on the
allowed values of X ~. Indeed, if we consider T
= T„ the values of T, must satisfy

or, from Eq. (3.23), X '«1/a'.

IV. CONCLUSIONS

We have studied the order-disorder transition
in a semi-infinite A„B~ „alloy by means of Lan-
dau-Ginzburg theory. The main of our work was
to calculate the LG parameter at a surface start-
ing from a microscopic Ising-like Hamiltonian
for an alloy which exhibits surface segregation.
We have shown that the sign of the surface force
depends crucially on segregation at the surface.
For surface concentrations x, such that x,(1 —x, ))x(1 -x), A.

' may be negative and a surface tran-
sition occurs, similar to the case in semi-infi-

nite magnetic systems.
When this work was finished, it came to our

knowledge that Binder et aE.' have applied the
same methods to study the mixing transition in
analogous systems. If we call m»„(z) and
mzz„(z) the order parameters of Ref. 9, it is clear
that we can write the correspondence m»„(z)
= q(z ), msz„(z ) = ((1/M) p(z )), from Zqs. (2.15) and
(3.2).

The essential difference between both works is
that we studied the order-disorder transition de-
scribed by g(z) for a given density distribution
(1/Mp(z))=2x —1=const, while Binder et al. con-
sider a mixing transition described by msz„(z)
with no spontaneous order-disorder transition.
In effect, m»„(z) was considered to be vanishing
in the LG equation for m»„(z) of Ref. 9 [Eq. (7.6)],
and only the linear term was kept in Eq. (7.6) for
mBsw( ) '
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