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We report on a study of the damping of electron-hole-droplet (EHD) motion due to scattering by acoustical
phonons coupled by the deformation-potential mechanism. Screening by the electrons and holes is taken into
account in the random-phase approximation. Numerical results are presented for Ge in the low-velocity limit,
EHD velocities less than the sound velocity, and high-velocity limit, velocities greater than the sound
velocity. The low-velocity results are found to be in good agreement with the values of the phonon damping
measured by an ultrasonic-absorption experiment. The results suggest that in recent measurements of EHD
motion one must take into account driving forces produced by, perhaps, a phonon wind. In the high-velocity
case the damping is found to be sufficiently large to make it unlikely that velocities greater than the sound

velocity will be observed experimentally.

I. INTRODUCTION

The condensation of excitons into electron-hole
droplets (EHD) in Ge and Si have been studied
extensively.! Recently, there have been a number
of experimental investigations®'® which give in-
formation on the interaction between acoustical
phonons and EHD. These experiments may be di-
vided into two classes.

The first class of experiments measures the
damping of thedrops by applying a known driving
force.>” The ultrasonic-absorption experiments
have been interpreted in terms of drops being ac-
celerated by the dynamic deformation from ultra-
sound and dissipating energy because of interaction
with thermal lattice phonons. From the tempera-
ture dependence of the absorption of ultrasound
at 160 MHz, the deduced momentum relaxation
time is about 1 nsec at 2.4 °K.*»*® Ultrasound in the
gigahertz range couples with the capillary-wave
oscillations of drops. In this case, the deduced
momentum relaxation time is about 7 nsec at
1.8 °K.* Static nonuniform stress on the crystal
also accelerates the drops. Experiments measur -
ing the mobility of the EHD by setting up a static
inhomogeneous deformation field give a relaxation
time of roughly 6 nsec at 1.8 °’K.> Droplets have
also been shown to be driven by a wind of phon-
ons,® and to be carried along by a current of free
electrons and holes in an electric field.” However,
for both the phonon wind and current drag, the
forces were not accurately known.

The second class of experiments measures the
arrival time of the EHD at some point in the cry-
stal remote from the site of droplet generation.?!°
The drops start with an initial drift velocity and
their velocity decreases as a function of time or
distance. Junction noise experiments® suggest
that EHD can move a distance of about 0.3 mm.
Assuming no external force, the observed motion

—
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indicates a momentum relaxation time of about
1 psec.® Doppler -shifted light scattering experi-
ments® have shown droplet motion in a direct
fashion; the observed relaxation time is roughly
100 psec (assuming no external force). In both ex-
periments, the initial velocities of EHD are less
than sound velocity. However, time and spatially
resolved light-scattering experiments suggest that
the initial droplet velocities can even exceed the
sound velocity'® in the crystal when the drops are
formed by a short, high-intensity laser pulse;
droplets are observed at a distance of about 5 mm
from the excitation point and the damping is re-
ported to be nonlinear.'®

Theoretically, Keldysh'""!? has pointed out that
the motion of EHD in pure Ge should be damped
by the interaction of the carriers in the EHD with
acoustical phonons.

Using deformation-potential coupling, Keldysh
calculated the damping rate (time derivative of
the droplet drift velocity) in Ge as a function of
temperature for droplet velocities much less than the
sound velocity.'"!* In this low-velocity regime,
the damping rate is linear with velocity. The re-
sults of these calculations were in reasonable
qualitative agreement with damping rates deduced
from ultrasonic-absorption measurements®?3 and
from droplet motion in an inhomogeneous defor -
mation field.® However, if the junction noise ex-
periments and the light scattering experiments
are interpreted in terms of droplet motion, either
the phonon damping of the droplet motion must be
much smaller than calculated by Keldysh or the
droplets observed in these experiments were
pushed along by some external force (e.g., a phon-
on wind). In other words, with the large damping
rate computed by Keldysh, droplets could not move
the distances observed in the junction noise and
time and spatially resolved light scattering experi-
ments unless they were pushed.
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In deriving his results, Keldysh did not consider
any modification of the free-carrier electron-
phonon interaction for the carriers inside the
EHD. However, one might expect that this in-
teraction is screened by the carriers in the EHD.
Such screening significantly reduces the “bare”
electron-phonon interactions in a metal,!® and one
might expect a similar large reduction in the
damping of EHD motion due to screening. Because
EHD is a two-component system, the screening
is more complicated than in a metal. The defor-
mation of the lattice produced by an acoustical
phonon is not an electrostatic perturbation and the
polarizations of the electrons and holes in the
EHD produced by this perturbation may have either
the same or opposite phase.

The main purposes of this paper are twofold:
first, to examine the effect that screening by the
carriers in the EHD has on the damping of EHD
motion; second, to investigate the damping of the
droplet motion in Ge for velocities greater than the
sound velocity.

We adopt the approach that the screening of the bare
perturbationby the carriers inthe EHD is calculated
in the random-phase approximation (RPA). Gen-
eral results are derived for the low -velocity damp-
ing rate from the entropy production rate,'* simi-
lar to those used in the theory of metal resistivity.
This general result is evaluated by making use of
some simplifying approximations to the details
of conduction- and valence-band anisotropies.

The result is equivalent to Keldysh’s damping for -
mula for a spherical band structure and a single
effective deformation-potential constant.

In the high-velocity limit, the approximations
to the distribution function used in the low-velocity
limit are not valid. The distribution function for
electrons and holes is assumed to be a shifted
Fermi distribution function for zero temperature
and the damping rate is calculated from a momen-
tum balance equation.

We find that screening does not change qualita-
tively the damping of the EHD motion. The mag-
nitude of the damping is changed by about a factor
of 2 from a similar unscreened calculation. Our
results are in semiquantitative agreement with
the results of the ultrasonic attenuation experi-
ments®* and, hence, are in disagreement with the
dynamical measurements®® of EHD motion when
interpreted without a driving force. Therefore, we
conclude that droplets observed in junction noise
and light scattering experiments are being pushed.

Our calculation of the damping rate in the high-
velocity limit is some three orders magnitude
larger than that obtained by interpreting the re-
sults of experiments in which EHD motion was ob-
served following a strong pulse excitation.’® Thus,

droplets moving at velocities greater than the
sound velocity would be very rapidly damped. We
believe the very high initial velocities reported in
Ref. 10 should not be interpreted in terms of drop-
let motion. Subsequent motion, at lower velocities,
may be interpreted as due to a phonon wind push-
ing the droplets.

This paper is divided into five major sections
as follows: In Sec. II, we consider the screening
by the two components EHD on the bare electron-
phonon interactions. Section III outlines the cal-
culations of the damping coefficient for low-velo-
city droplet motion in cubic semiconductors. Sec-
tion IV contains the calculation of the phonon damp -
ing coefficients of EHD in Ge in the low -velocity
limit. Section V treats the phonon damping of
droplet motion in Ge when the droplet velocity
exceeds the velocity of sound. In Sec. VI, we give
results, conclusion, and summarization.

II. SCREENING OF CARRIER-PHONON INTERACTION
IN EHD

In most transport problems in semiconducters
the low density of carriers means that we can
neglect the screening of the carrier -phonon in-
teraction.'* However, in the EHD the density of
carriers (2% 10" cm™ in Ge) is sufficiently high
that screening may play an important role. A
simple estimate shows that the Thomas -Fermi
screening wave vector ggp is about 5% 10° em™*
for the EHD in Ge. This value of gpq is actually
larger than the characteristic wave vector of the
phonons which play a role in the scattering in the
EHD; the Fermi wave vector for EHD is about
2% 10° cm™ in Ge. Hence, we must consider the
role of screening in the effective carrier-phonon
interaction in EHD.

This problem is further complicated by the fact
that EHD is a two-component quantum plasma.
Therefore, we must consider the screening re-
sponse from both carrier types each responding
to the perturbation produced by their respective
deformation-potential coupling. Since the deforma-
tion-potential coupling is not electrostatic, the
electrons and holes may respond with different
magnitudes and phases which are not simply given
by signs of these charges. Thus, the screening
response cannot be gauged by a single dielectric
function.

In this section, we calculate the response of
the electrons and holes to the carrier -phonon in-
teraction. The responses are calculated in the
random-phase approximation.

A. Derivation of screened interaction in RPA

The electrons and holes in the EHD are treated
on the basis of the effective mass approximation.
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The band structure is taken to be that in the elem-
ental semiconductors Si and Ge and the III-V semi-
conductors with indirect gaps. The conduction band
is assumed to have a number of equivalent valleys
v; the valence bands are assumed to consist of
four degenerate bands at the zone center. The con-
duction-band valleys are assumed to be ellipsoidal
with an energy for the nth valley given by Eﬁ(l‘{).
The four hole valence bands are assumed to have
energies given by E*(k) where » labels the dif-
ferent valence bands. For this case, the single-
particle Hamiltonian is given by

‘221 Z Ee(k aknakn +Z Z Eh b{n &n (21)
n= n=1 ’

where al, creates an electron in the state with
wave vector K in the nth valley and b creates a
hole in the nth valence band in the state K. The
basis functions used in this second quantization
are the Bloch functions from an appropriate band-
structure calculation. The interaction between
carriers can be written as

Veem 3 @0, (2.2

q

where k is the static dielectric constant of the
solid.'® In Eq. (2.2) p(q) is the charge-density
operator for the electrons and holes.

- 1 1
P@ =2 Otian,in hianbin = D P, it Whrantlens »

.
(2.3)
where
Oteimn i = Whign| €'TF| Ul (2.4)
and
Piogn i = Whagnl €57 |98 - (2.5)

In Eq. (2.4) and Eq. (2.5) ¥§ , and y¢ , are the ap-
propriate Bloch functions for electrons and holes,
respectively. In our treatment here we will neg-
lect the large-q components which arise from in-
tervalley scattering. For single-valley scattering,
we can take

P (2.6)

E+qn, kn’ = 5rm’ ’
neglecting terms of order q. For the valence band,
no such simplification is possible.

The interactions of electrons and holes with
phonons are of the general form

e-ph Z De(k+ Q’ k A) ak*qnakn(A‘)t +A-qx) (2.7)

and
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(2.8)

where D! ,(k +q,k, 1), and D2(k+3, K, A) are the ma-
trix elements of the interaction between phonons
and a single carrier, and A;-l is the creation oper-
ator of a phonon with wave vector E and polariza-
tion x. The intervalley phonon scattering is neg-
lected in Eq. (2.7).

The total Hamiltonian is

H=H+V,o+ Vo + Voo (2.9)

Using the well -known equation-of -motion tech-
niques and RPA,'® we obtain the following expres -
sion for the induced charge density due to linear
response to the phonon perturbation

p@) =2 c@@a+As),

by

(2.10)
where c(q) is given by

ezq)(z

h &+ 4, G, N0z i
E:(k +q) —Eﬁ.(k)

a@) =

P
B P R +c.c.> (2.11)
& En(k+q) -Ef(k)

and €(q) is the dielectric function of the two com-
ponents EHD in the RPA.

- 8me? 1
€e@)=1+ <E - —
d kq® \% ES(K) —ES(k+q)

[0z,2 .12
E:jﬂuu—h—.r-"h T) 2.12
" knn’ En'( En(k q) ( )

The summation in expressions for ¢A(q) and €(q)
are over the occupied single-particle states.

Adding the response given by Eqgs. (2.10)—(2.12),
we obtain expressions for the screened carrier-
phonon interaction.

V?—ph: ; A/Ie(E )\)ai‘q"ah (14* +A_q\) (2.13)
qQnk
Vion= 2 Mhy (R4, K, 0L, by (Ap+Aln) s
kqnn')«
(2.14)

where M° and M" are given by

dme” | @, (2.15)

-

Me(k+§,k,\)=D%(k+§, x)+

M',',,,(E+ 3.k, )\)=D’,‘m.(§+§,-ﬁ,)\)
4re?

—Ez—om,n,:n:cl(ﬁ) . (2.16)
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B. Symmetry considerations of response

Symmetry arguments may be used to simplify the
potential due tothe screening charge V,(q, ) for
certain directions of q and polarization X. Writing
V,(@,2) in terms of the local strain induced by a
given phonon mode ¢€;,(d,1) we have

V,@,0= ;F,.,@)e“(a,x) , (2.17)
1
where F“(E) is a second-rank tensor character-
izing the linear response.

In the long-wavelength limit, which means that
the phonon wave vector q is much smaller in mag-
nitude than the Thomas-Fermi screening wave
vector gpp, the tensor F,;(q) is approximately in-
dependent of ¢ and has the total cubic symmetry
of the crystal. Thus, F;; is a multiple of the unit
tensor, and we have

v,(a,x)=FZe“(a,x). (2.18)
The sum on the diagonal components is called the
dilation A(d, ). Hence, we have

V,(@,\)=FA(G,N). (2.19)

For any phonon mode or wave vector in the long-
wavelength limit, only the dilational part of the
local strain is screened.

However, in the range of the temperatures which
are of interest around 2 °K, phonons with wave-
lengths of the order of the Fermi wave vector for
the EHD make the primary contributions. These
phonons have wavelengths which are on the order
of the Thomas-Fermi wave vector. Thus, the
long-wavelength limit is not valid in estimating
the screening, and the above arguments must be
modified to consider finite §.

At finite §, the symmetry arguments can be ap-
plied only along certain high-symmetry directions.
For § along the [100], [110], and [111] directions,
the phonons divide into totally transverse and
longitudinal modes. In these directions in the dia-
mond structure application of simple group-theo-
retical arguments!” leads to the conclusion that
there is no contribution to the potential in Eq.
(2.17) from the transverse modes. Hence, for
these high-symmetry directions there is no
screening of the transverse modes. However, for
arbitrary q the modes cannot be divided into trans-
verse and longitudinal modes and all the modes
are screened

II. DAMPING OF LOW-VELOCITY DROPLETS

Once the effective carrier’s scattering matrix
elements are known, the damping of the droplet
motion can be calculated from transport theory.

In the low-velocity limit, the damping should be
linear. The well-known resistivity theory for a
metal can be applied.!* The calculations of the
damping coefficient are outlined in this section.

The damping coefficient is defined by the equa-
tion

d
}%ﬁ —Z)’uvn (3.1)
7

where v, is the i *® component of the velocity of
the droplet. In general v,; is a second-rank ten-
sor. However, in cubic crystals of interest here
¥i; can be reduced to a scalar;

Y=y, (3.2)

where §,; is the Kronecker delta.

To determine 7, we calculate the rate of entropy
production.!* The electrons in the EHD are char-
acterized by a carrier distribution function f,,(E)
with n labeling the various conduction-band mini-
mum. The deviation of each of these distribution
functions as given by a function ¢,(&).

) = £O(Tc of O(E)
1®)=£ 300 - 6,00 S Ey (3.3)

where f¢ is the equilibrium distribution function.
Similar equations hold for the holes. Throughout
this discussion we consider for simplicity only
the electron part of each expression.

The entropy production rate corresponding to
the distribution function in Eq. (3.3) is given by!*

das 1 * TV12h (! T Fie AT?
Tﬁﬁff [6(F) - (&N Pp (k" K)ak k!, (3.4)

where kg is the Boltzmann constant, T is the
temperature of the EHD, and p(k’,K) is the equi-
librium transition probability for carriers from
k to k’. For lattice-phonon scattering, p(k,k’)
can be determined by calculating the scattering
matrix for the effective carrier-phonon interac-
tion in Egs. (2.13) and (2.14), using Fermi’s gol-
den rule and averaging the matrix over the ther-
mal equilibrium distribution function for carriers
and phonons. The ¢ (k) is determined by a vari-
ational calculation in which the entropy production
rate given in Eq. (3.3) is maximized. The total
entropy production rate, (dS/dt),,,,;, iS the sum
of Eq. (3.3) over each conduction-band valley and
each valence band.

The macroscopic rate of energy dissipation for
a droplet of total mass M and velocity v is given
by yMv?. Equating the energy dissipation to the
product of the temperature and the entropy pro-
duction rate in Eq. (3.4), we obtain an expression
for y

T (dS
Y= Mo (2?>total ’ (3.5)
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The macroscopic velocity V is given by

= -f (B, @2 Lalk) BE,(k) d3k/ff°(k)d3k (3.6)

where ?,,(E) is the group velocity for an electron

in valley n with wave vector kK. The value of ¥ is

required to be independent of the valley and val-

ence band over which the computation in Eq. (3.6)
is evaluated. The inertial mass Mis made up of

a sum of terms of the form

’fﬁkqs (k)BE (k)dSk ﬂﬂ;

the sum runs over the conduction-band minimum
with k measured from the conduction-band mini-

—
-~

mum and the various valence bands.
For our purpose here, we will simply take ¢ (k)
of the form

P (K)=ak T, (3.7

where K is measured from the conduction-band
minimum, U is a unit vector in the direction of
the velocity, and «, is a parameter. The value of
a, for each valence band and conduction valley
may be different. They are constrained to pro-
duce the same velocity of the drops. If the scat-
tering function is very anisotropic, we might have
to consider a more complicated trial func-
tion.l‘i,la,ls

Collecting the various results, we obtain finally

v (k) v, (E

(oo T [ B ]

( )(2m)?

give a reasonable estimate of the magnitude of
the damping.

(G 0)0(@, )| Mek’ k)| dGE dGe
e\2 2 n )™ n

Y= 16n5h2kT(2; g: f(a ) (1 = e "o D TRT ) (GhaTE I TRT _ l)vﬁ(ﬁ) vf.f")

u-(ahg—a",k” w(d, 1) Mf,,,(k' k |2 dGh acr,
+ f g-hw Qs )(e w(q, 2
=1 A=
T
with
§=k -k. (3.9)

Here w(d,\) is the angular frequency of a phonon
with wave vector § and polarization A, G, is the
surface area of the Fermi surface, and V,,(E) is
the group velocity on the Fermi surface; V in the
denominator of Eq. (3.8) is the velocity of droplet
determined by Eq. (3.6) and (3.7) using a =1 for
a conduction valley. The a?*’s(a?’s) in Eq. (3.8)
are constants for the »!® valence bands (conduc-
tion valley); they are determined from Eq. (3.6)
and (3.7) by requiring that electrons and holes in
EHD have the same velocity.

IV. PHONON DAMPING OF LOW-VELOCITY DROPLET
MOTION IN Ge

The results for A given in Eq. (3.8) may be eval-
uated using the measured deformation poten-
tials,'°"?* phonon dispersion curves as computed
from elastic constants,'® the well-known band

structure for Ge,?® and the properties of the EHD.?®

This calculation would require extensive numeri-
cal work, particularly for the valence bands. For
our purposes here, we want to examine the role
of screening and to make simplifying approxima-
tions which will result in answers which should

A. Model for electrons

Herring and Vogt'® have studied the expressions
for the relaxation times appropriate to the mobil-
ity of electrons in Ge. They find their results are
equivalent to a simplified model in which the an-
istropic scattering rates, variations in sound vel-
ocity, and contribution from all three phonons
modes are replaced by a single phonon mode, the
longitudinal mode, a single deformation-potential
constant, and a spherically symmetric effective
mass. The single deformation potential which is
obtained by comparing their exact results with
the simple model is'®

E2=0.7522[1.31+ 1.61%,/5,+ 1.01(E,/%,)?].  (4.1)

where =, and =, are the deformation-potential
constants as defined by Herring.!®* The effective
mass is taken to be the density-of-states effect-
ive mass.

The results of Herring and Vogt are not directly
extendable to the case being treated here since we
are dealing with a Fermi degenerate distribution
of electrons and the temperatures are low enough
that equipartition is not valid for the phonons of
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interest. However, numerical estimates of the
terms in Eq. (3.8) for the electrons show that this
model provides a good estimate (i.e., within a
factor of 2) at 2°K. At lower temperatures the
differences between transverse and longitudinal
sound velocities are sufficiently large that this
model can lead to substantial errors.

B. Model for holes

For the hole contribution, we use an approxima-
tion originally introduced by Lawaetz?? and
Wiley.?»?" The valence band is approximated by
one spherical heavy-hole band with the spherically
averaged effective mass. The light-hole band can
be neglected since it has very few holes in it. The
velocity of sound is taken to be the average long-
itudinal sound velocity. The deformation potential
is taken to be an average value appropriate to the
calculation of the hole mobility?®

52=0.29[a%+ 2.6(b%+ 5d9)] , “.2)

where a, b, and d are the deformation-potential
constants defined by Pikus and Bir.*

C. Screening

The potential due to the screening charge must
be estimated for the models given above. In the
formal expression, Egs. (2.11) and (2.12), ¢,(q)
will depend in general on the details of the aniso-
tropy, deformation potentials, and matrix ele-
ments in Eq. (2.7) and (2.8). The value of ¢,(q) is
sensitive to the relative sign of the electron and
hole contributions. Hence, to estimate the role of
screening using our model parameters, we must
make a judicious choice of the sign of the parame-
ters. To make this determination, we compare
the relative phases of the diagonal matrix ele-
ments of deformation potential for holes with the
deformation potential for electrons.

For electrons in the [111] valley'®

DP=(Z 4 5 E)(€pp + €5y +€,,)
1 «
+3 E €+ €t €y,), (4.3)

where the strain tensors are referred to crystallo-
graphic axis along the [100] directions. The ma-
trix elements for other valleys can be obtained
from a symmetry transformation and the dilation-
al parts are invariants. For the heavy-hole
band20,21

> Bb(3k2 -1)
DR, B)= (a4 5 )en

B2+ CRZRZ+c.p. I

N Ddk k c
[BT+ CU R R+ c.p ) 2 ot O
(4.4)

where c.p. stands for cyclic permutations of x, y,
and z; B, C, and D are effective-mass parameters
for hole bands?’; &, are unit vectors.

For longitudinal modes, since the dilational part
dominates and both=E,+3E, and a in Egs. (4.3) and
(4.4) are negative in Ge (see Table I for parame-
ters), we may regard the deformation-potential
constants for electrons and holes as having the
same sign. For the transverse modes, the rel-
ative signs of D¢ and D* are determined by the
shear components. They depend on the direction
of k of the valence bands and on the valleys of the
conduction band. We know from symmetry that the
transverse phonons along [100], [110], and [111]
directions are not screened, as shown in Sec. II.
We also know, for example, that the [111] trans-
verse phonons do not scatter electrons in the [111]
valley from symmetry, and have little effect for
other valleys. However, for most of the phonons
propagating in arbitary directions, the transverse
phonon cannot be exactly defined, and it is not ob-
vious that the screening is vanishing small in gen-
eral. For simplicity, we adopt the approximation
that half of the transverse scattering has D° and D*

TABLE I. List of parameters used in calculation.

e h

€F €F n me my U
2.5 meVv? 3.9 mev? 2.4x 107 cm™? 0.22m" 0.30m° 5x 10° cm/sec ©
p K Zaq a b d
5.3 g/cm3®  15.36¢ 8.5 eV? 19ev!  _2.0eVE  2.2eVE 4.4 eV®

2Reference 26.

®M. Combescot and P. Noziéres, J. Phys. C. 2, 2369 (1972).

¢Reference 19.

dS. M. Sze, The Physics and Semiconductor Devices (Wiley, New York, 1969), p. 57.
¢W. F. Brinkman and T. M. Rice, Phys. Rev. B 7, 1508 (1973).

f Reference 24.
& Reference 23.
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to be of the same sign and half has the opposite
sign. Assuming that each mode contributes the
same weight in scattering, the signs of =, and=,
are determined as follows: two-thirds of the total
scattering events are assumed to have=, and =, of
the same sign, and one-third is of the opposite
sign. What is important is thatZ, and =, have the
same sign for most of the scattering. This corres-
ponds to the bands’ edges moving in opposite di-
rections as a result of the phonon perturbations.

This approximation probably overestimates the
effect of screening since we are allowing the trans-
verse phonons to be screened in part. However, as
will be shown by the results later, the screening
effect is small even in this approximation (reducing
the damping by less than a factor of 2). Therefore,
the errors caused by our approximation for
screening of transverse mode is less than a factor
of 2. Other approximations in our model may in-
troduce errors of comparable size.

The matrix element defined in Eq. (2.4) may be
computed using the two band approximations intro-
duced by Kane.?® In this approximation we consider
only the single heavy-hole band and U3, 3, z,- in Eq.
(2.4) turns out to be independent of k. The result
may be written as:

0(q) =3 (1+3cos®y)/2, (4.5)

where vy is the angle between & and E+§ on the Fer-
mi surface. This addition is found to make a small
correction to our final results.

Hence, finally we have for the screened carrier-
phonon interaction in Egs. (2.15) and (2.16)

Me(&+3, k) = (/200)" %[5, + V,(a)] (4.6)

and
MME+d,Kk) = (/200)%q[E, - V,(@)0@)], (4.7)

where V,(q) are calculated by Eq. (2.11) and re-
present potentials arising for polarization of EHD;
the plus and minus subscripts in V, denote the two
values of V(g) obtained by assuming that=, and =,
are of the same sign and of opposite sign from the
values discussed above. The density of the crystal
is given by p.

D. Calculation for the damping coefficient

Using the matrix elements in Eqgs. (4.6) and (4.7),
one can carry out integrations in Eq. (3.8) for the
damping rate y in our model. The damping coef-
ficient obtained is of the same form as Keldysh’s
formula'!»'2

= ————1 qsh 252 202
Y= 1273 h:-2(me+’nh)pUn (Vm K + mh._,hKh) s (4,8)
where
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q4n=kT/HU. (4.9)

In the formula, m, and m, are the mass for elec-
trons and holes defined in our model; v is the num-
ber of equivalent valleys (v=4 in Ge); the T, p,
and U are the temperature, density, and longi-
tudinal sound velocity of the crystal; » is the car-
rier pair density in EHD. The K, and K, are inte-
grals reduced from Eq. (3.8). They are calculated
by assuming that two-thirds of the scattering
events use V, and one-third use V. as described in
Sec. IVC.

2 (%P1 V (0)O@©)/IE, P

Kn=3 ) Fondoey %
1 V.(2)0@©)/1E,| P
§f (e e (4.10)
where
Ep=2kpy/dy, (4.11)

and &, is the Fermi wave vector for holes. The
overlap integral O({) can be obtained from Eq.
(4.5)

0(8)=3{1+3[1-2(¢/&,)H 2
The two functions V,(£) and V.(¢) are given by

(4.12)

_ 8men 1Z,0 1E,l

V&)= e ( WD)~ wem) o (41
_ 8re’n o 12,1

V(&)= xq%,,e(g)y(wh(g) * We(c)>- (4.14)

The W,(£), W,(¢) result from the two summations
in Eq, (2.12). For spherical band structure, they
are given by

1 3 /1 §2-if Lo+ ¢
- 4 e 1
AT C v :e—g) (4.15)
and
13 /1 gog | et )
= — n .1
Wi(e) 4EF,.(2+ vl vy KRN

where E, and E, are the Fermi energies for elec-
trons and holes, respectively. Neglecting the
small overlap integral effect, the dielectric func-
tion in Eq. (2.12) can be reduced to

i(g)_1+81re2n 1 . 1
Kqyn  \ Wo(8) W,,(c))

The same equations hold for K,; the function O(q)
in Eq. (4.10) is absent and the appropriate electron
parameters are substituted.

(4.17)

V. DAMPING OF HIGH-VELOCITY DROPLETS

When the drift velocity is larger than the sound
velocity and comparable to the EHD Fermi vel-
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ocity, the previous linear calculation is not valid.
To treat the damping in this case, we calculate the
momentum loss rate due to phonon scattering. The
distribution functions for electrons and holes are
taken to be drifted Fermi distribution functions
both shifted to produce the same average velocity.
The carrier-carrier scattering is assumed to
maintain a distribution function which is simply a
drifted Fermi distribution and to keep the electrons
and holes moving at the same velocity. The mo-
mentum loss rate for the holes and electrons will
be computed independently and simply added to-
gether.

Since screening of the carrier-phonon interaction
in Ge will modify the result of calculation by only
a factor of 2 or less, and other approximations in-
troduce uncertainties of comparable size, we will
use the much simpler “bare” interaction in the
high-velocity calculation. The same model for
band structure of Ge in Sec. IV is used here. The
square of matrix elements of V,_,, in Eq. (2.7) for

dt—h’;';

an electron scattered from K to E+c’1 by phonon ab-
sorption averaged over themal phonon occupation
probability may be written as

V3= R+ 3] Ve[ Np) |22 22 2
q ’ e=ph|®s<Vq 2pU EEWW—I"

(5.1)

where X, is given by Eq. (4.1), p, and are U the

density and longitudinal sound velocity of the cry-
stal, and the volume of the crystal is assumed to
be unity. Similarly for phonon emission, we have

2
> . > =g 1
‘<Nﬁ+1;k+q|Ve'phlk’Ni>lz= 20U eﬂU¢7k7'__1+1 .
(5.2)

The rate of momentum loss by the electrons in
the EHD in one conduction valley can be written
down using the usual result of time-dependent per-
turbation theory®®:

db, _ 21 Zh‘ﬁ[](Na— LR+§| Vo |Ks N |26(E(R) - ER+§) + 7Uq)+ [(N3+ 13K +§ |V, |K; N3 |2

x S(E(K) - E(R+§) - 1Ug)) FR)[1 - Fk+T)], (5.3)

where f(k) is the shifted Fermi distribution func-
tion. The shift is taken to be m,v/% and v is the
drift velocity of the drops. Similar equations can
be written down for holes with the hole parameters
replacing the electron parameters.

The rate of momentum loss by the carriers in
the EHD is balanced by the damping of the EHD
velocity.

dP dpP dv
e . " h_ , ==
F AT (mg+m,)nQ i (5.4)

where § denotes the volume of the droplet. To de-
termine the damping of the EHD, we must compute
the rate of momentum loss by the carriers from
Eq. (5.3). The rate of momentum loss by the car-
riers is a nonlinear function of v.

The integrations involved in the evaluation of the
rate of momentum loss in Eq. (5.3) are complicated
for arbitrary values of the drift velocity limits. In
the low-velocity case, this approach gives linear
damping with the same value obtained in Sec. IV.

In the high-velocity limit, the shift of the Fermi
function is larger than the thermal broadening, and
we can simplify the calculation by neglecting the
thermal broadening of the shifted carrier distri-
bution function. In addition, we neglect the phonon

r

energy compared with electronic energies; this is
a reasonable approximation when the drift velocity
is considerably larger than sound velocity. The
details of our estimate of the integrals are given
in the Appendix. We only give the results here.
The rate of momentum loss for electrons is gi-
ven by
dp,
dit

=-C,[F,8)+F,8)}, (5.5)

where the dimensional constant C, is given by
C,=16vEkS Z2m Q/(21)hpU (5.6)

and v is the number of equivalent valleys (4 in Ge).
The unit vector ¢ is in the direction of the drift
velocity. The parameter S is defined to be

S=0/Vpg, (5.7)

where v, is the Fermi velocity for electrons. The
functions F, and F, are defined in the Appendix.

The same expressions hold for the momentum
loss rate for holes in droplets, except that para-
meters for holes are used. The integrals in Eq.
(5.5) and the analogous equation for the hole con-
tribution may be carried out numerically to give
the rate of momentum loss in Eq. (5.4).
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FIG. 1. Phonon damping coefficient for EHD motion
in Ge vs temperature in the low-drift-velocity limit.
The dashed curve is the result for the “bare” carrier-
phonon interaction; the solid curve is the result when
screening of the carrier-phonon interaction by the
carriers in the EHD is included. The experimental
points are ® from Ref. 2, A from Ref. 4, and J from
Ref. 5.

VI. RESULTS AND DISCUSSION
A. Low velocity

The values of parameters used in the calcula-
tion are given in Table I. The one-dimensional
integrals in the expressions for K, and K, were
calculated numerically. The result of the calcu-
lation of the damping coefficient in pure Ge, as a
function of temperature, is plotted in Fig. 1.

For comparison, the result of damping coeffi-
cient without including screening is also indicated
by dashed line. Experimental results by Alekseev
et al.?*® using 160-MHz ultrasonic absorption,

by Alekseev et al.® using droplet motion in a non-
uniform stressed crystal, and by Etienne et al.*
using 1.5- GHz ultrasonic absorption are shown in
Fig. 1 for comparison.

First of all, we see that screening of carrier-
phonon interaction in the EHD has reduced the
damping by only about a factor of 2. The screening
effect is rather small in Ge, because the valence
and conduction bands tend to move in opposite
directions when Ge is subjected to an arbitrary
deformation. Thus, the two types of carriers
tend to move in the same direction in response

-
-1

l

to a deformation and the net induced charge is
small.

Second, we see that the results of calculation
are in reasonable agreement with the values of
the damping rate determined by ultrasonic ab-
sorption experiments and droplet motion in an
inhomogeneous deformation. In our model, we
used the averaged deformation-potential con-
stants in Egs. (4.1) and (4.2). The averaging in-
volved in them is slightly different from the
“averaging” prescribed in Eq. (3.8). This ap-
proximation is still reasonable for temperatures
around and above 2°K. In the low-temperature
limit (below 1°K), one may expect the transverse
modes of phonons will dominate because the
smaller value of transverse sound velocity (about
3.5x10°% cm/sec in Ge).

The calculated damping coefficient is approxi-
mately three orders of magnitude larger than that
obtained if the junction noise experiments® and
Doppler-shifted light scattering experiments® are
interpreted in terms damped motion without a
driving force. Hence, we conclude the droplet
motion in those experiments were pushed by an
external force, most likely the force from the
interaction of a stream of nonequilibrium phonon—
the phonon wind.® This effect has been investi-
gated recently. In the junction noise experiments,
since pulsed (10 nsec) excitation is used, it is
most likely that the phonon wind produced in non-
radiative recombination of electrons and holes in
the nonuniform distribution of EHD pushes the
droplets a distance of about 0.3 mm. A rough
estimate using Keldysh phonon wind theory® gives
results in qualitative agreement with the experi-
mental observations. Worlock et al.3° has esti-
mated the role of phonon wind in the Doppler-
shifted light scattering experiments and finds
qualitative agreement with the experimental ob-
servations.

Very recently Hensel and Dynes®! have mea-
sured the interaction of phonons with EHD. Using
an estimate of the phonon wind, they conclude
that the damping at 1.6°K is approximately 8.3
x10® sec™. This value is in qualitative agree-
ment with the results presented here.

B. High velocity

Evaluating the results stated in Sec. V for the
parameters in Table I, we obtain the results shown
in Fig. 2. Since we find that spontaneous emis-
sion dominates the damping, we expect the re-
sults to be almost independent of temperature.
Hence, while the results in Fig. 2 are obtained
for 0°K, they are in fact valid for the tempera-
ture range where EHD occur, 7 < 7K. At zero



17 DAMPING OF ELECTRON-HOLE-DROPLET MOTION. I.... 3293

9 T T
—_— V>U
8 --= v<u
(T=3°K)
0.5 -

7k

L glem===TT L
6 OO 05 1.0

| PHONON DAMPING OF THE
EHD IN THE HIGH VELOCITY
LIMIT IN Ge

DAMPING RATE (10'® cm/sec?)

1 | 1
e} | 2 3 4
DRIFT VELOCITY (10%cm/szc)

FIG. 2. Damping rate for EHD motion in Ge vs drift
velocity in the high-velocity limit (V,>U). The calculation
was carried out for zero temperature, but the damping
rate is insensitive to temperature when V> U. There
is no phonon damping of the EHD motion at zero degrees
when V,<U. The insert compares the low-velocity
damping rate at T=3 °K curve with that at high drift
velocities.

degrees, there is no damping of EHD motion for
v4<U. For comparison, we show the low-velo-
city result for T =3°K in the insert of Fig. 2.

The main point of this figure is that the damping
rate increases very rapidly when the droplet
velocity exceeds the sound velocity. This sudden
increase is due to the large number of phonon
emission processes which become kinematically
possible when v is greater than U. If a droplet
were moving at velocities greater than the sound
velocity, its motion should be very rapidly
damped.

Comparing with the experiment,!® we find the
effective damping observed in Ref. (10) is smaller
than our theoretical phonon damping by at least
two orders of magnitude. Therefore, the experi-
mental results cannot be explained without
assuming an external force, most likely from
phonon wind.®

Based on our results, we believe that the initial
drift velocities, larger than the sound velocity,
reported in Ref. 10 should be reinterpreted. They
are obtained by fitting the data and extrapolating
to the initial time of droplet motion. The phonon
wind cannot push the droplet to a velocity ex-
ceeding the sound velocity in the crystal. Even if
some other forces, for instance, the pressure

from a highly degenerate electron-hole plasma,
impart the droplet with an initial velocity ex-
ceeding the sound velocity, the droplet should
quickly relax to sound velocity in about 0.1 nsec
for the damping obtained here. Therefore, the
extrapolation to obtain the initial velocity in
Ref. 10 is not valid.

Further, the subsequent motion of the drops
described in Ref. 10 may be explained by the
force provided by the phonon wind generated from
the nonradiative recombinations of carriers inside
the other droplets which were distributed non-
uniformly. The phonon wind generated during the
thermalization of excited nonequilibrium carriers
should not have a significant role in determining
the subsequent motion of drops, because the phonon
wind produced by this process lasts only about
0.3 usec and drop motion is observed for a period
of several microseconds. To give a rough esti-
mate of this phonon wind effect, we can make use
of the results of Bagaev et al.® In that experi-
ment® they find that the phonon wind can push the
drops to a distance of about 1 mm with phonons
produced by a continuous laser with power of
about 40 mW. In the experiment in Ref, 10, the
drops are pushed to a distance of about 2 mm
when the carrier was generated by a YAG:Nd
laser with a pump power of 20 W. The total num-
ber of carriers generated by this pump pulse is
about 3x10®, The recombination lifetime of
drops in Ge is about 40 psec, a significant con-
tribution of which is due to nonradiative process.??
The phonon generated from the nonradiative re-
combination of all drops created by the pump pulse
of 20 W is estimated to be between 40 and 80 mW.
Since the powers going to phonon generation are
about the same in the two experiments, we would
expect the distances the EHD would be pushed
would be comparable. This observation is in
agreement with the experimental results.

C. Summary

We have calculated the phonon damping in the
low- and high-velocity limit. We find that the
theoretical value of the damping in the low velo-
city agrees with that observed in ultrasonic ab-
sorption and stress induced droplet motion ex-
periments. We find that the screening changes
the damping by about a factor of 2.

For high velocities, our calculations show that
damping is very rapid if the droplet goes faster
than sound velocity. Spontaneous phonon emission
dominates the damping. The damping is suffi-
ciently large that we think it unlikely droplet
velocities greater than the sound velocity will
be observed.
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APPENDIX: EVALUATION OF INTEGRALS FOR THE
MOMENTUM LOSS RATE

In this Appendix, we evaluate the rate of momen-
tum loss by electrons in the EHD given by Eq. (5.3)

|

27 -

L= 5 3 (OG- R +3|V, ol NI P[oE R)
k.,q

The term I, includes all the “spontaneous” phonon
emission process. The square of matrix elements
for these processes is the difference of the values
in Eq. (5.1) and Eq. (5.2). We can write I, as

25 (3

xfEN1 - FE&+3)], (A3)

)G(E(k) E®+§) -k Uq)

where the parameters are defined in Eq. (6.2). In

27

-
o

ni

+6(E(K) -

where the 6 function is the Heavyside function de-
fined in the usual way: 6(x)=0 for x<0; 6(x)=
for x>0.

This integral in Eq. (A4) can be carried out
straightforwardly. Applying the standard ap-
proximation of neglecting phonon energy,®® the
result is simply

1,=-C,F,(S)v, (A5)

where the dimensional constant C, is given in Eq.
(5.6) and the dimensionless integral F,(S) is
given by

+S
Fi8)= [ R(»AG,S) dy. (A6)
1-S

Here the variable y is the wave vector of electrons

—E&+Q)+hU +6(ER) -E&+d

ER+§)+hUQ)] 6(kp, —
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in the high-velocity case. Similar results hold
for the momentum loss rate by the holes.
It is convenient to divide the sums in Eq. (5.3)
into two terms and to rewrite Eq. (5.3) as
dP,

o “hth. (A1)

Here I, includes all the phonon absorption and
stimulated phonon emission process. Since the
square of stimulated phonon emission matrix
element equals that of phonon absorption, I, is
given by

-nUg f®)[1-f(&+d)].

(A2)

the high-velocity limit, I, makes a larger con-
tribution to the momentum relaxation than /,. How-
ever, we will estimate I, before I, because some
of the results for /;, can be used in evaluating 7,.

The sum of the terms in I, which contain the
product f(K) f(k+3) is identically zero. In the
high-velocity limit, the small thermal spreading
of the electron distribution function is unimportant,
and we replace this distribution function with its
zero-temperature value. The integral I, then
becomes

Iy 5 ) Z D NG - 1k +8|V,_lks NI (6(EE) ~EE +d) -1 Uq)

K —m /1 }, (A4)

measured in units of Fermi wave vector k;,,i.e., y=
k/ke.; Sis defined in Eq. (5.7). The function
A(y,S) is given by

A(y,8)=1-[(y*+S%-1)/2yS]*. (A7)

The function R,(v) is an integral given by

1 e A
(§ )5 f —65_1 az ’ (As)
e 0

where ¢, is defined in Eq. (4.11).

The summation of the f( ) f & +§) product terms
do not vanish for ,. In the high-velocity limit, we
can neglect the small temperature spreading of
the electron distribution function in I,, and also
neglect the phonon energies. The sum of the
f(K) f(k +§) product terms vanishes in this ap-

Re( VV) =
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proximation, and the integral I, can be put into the
same form as in Eq. (A4)

27 o (B3R e £+
L= Z (7q) (—2%)6(50{) -E(k+3)
k.q

< e(k”— k- mﬁ/iﬂ) . (A9)

The result of the integration of Eq. (A9) is
I,==C.E(S), (A10)
where the integral E(S) is given by

1+S
ES)= [ @Ay, s)dy . (Al1)
1-

The function @ ( y) is given by
Qe(M=1y°. (A12)

The above results are valid for drift velocities
considerably larger than the sound velocity. For
the case when the drift velocity nearly equals the
sound velocity, the approximation of neglecting
the finite phonon energy for I, is still valid. The
limits of integration on two contributions (phonon
absorption and spontaneous phonon emission) to
I, are such that the first-order terms in the ratio
of sound velocity to Fermi velocity vanish.
However, for I,, this approximation is not valid.
For the spontaneous phonon emission process,
the effect of finite phonon energy is important
when the droplet velocities are comparable with
the sound velocity.

We can obtain a qualitative interpolation of the
results for I, between the low- and high-velocity

limit. The dominant contribution for the momen-
tum loss rate comes from carrier scatterings
from thedirection of the drift velocity to the opposite
of that direction. For a Fermi sphere shifted by
S, S=v/vg, as defined in Eq. (5.7), those carriers
in the states with Kk in the direction of the velo-
city v can scatter into a vacant state in the oppo-
site direction. Carriers undergoing this scat-
tering must have a momentum larger than a
minimum value Z (measured in the units of
Fermi momentum), where Z is determined by
the energy conservation equation

(F%k%,/2m )(1 = SV + 21Uk, = (B2K%:,/2m )Z 2.
(A13)

To express Z in terms of S, we have
Z=[(1 - SY +4U/vg,]"2. (A14)

Therefore, the carriers with momentum less than
7 Zk; should not make a significant contribution
to the momentum loss rate. Because of the finite
phonon energy, it is a much better approximation
to exclude that contribution than to include it

with the neglect of phonon energy. An improved
approximation for Eq. (Al1) is therefore to re-
place E(S) by E(S) such that

1+8

Fy(8) = fl Q. MA(Y, S)dy. (A15)

This replacement of the lower limit of integra-
tion from 1 - S to Z provides a reasonable inter-
polation between the results from the calculations
of the low- and high-velocity limit.
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