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Selection rules are obtained for harmonics of the cyclotron resonance transition in InSb, such as 201,
(hn = 2, hm, = 0), 3', (h, n = 3, hm, = 0), etc. , and spin-shifted harmonics such as 2~, + co, (An = 2,
b, m, = —1), etc. , where b, n and Am, are the changes in the Landau quantum number and the z component
of the spin angular momentum. These transitions are induced by warping and inversion-asymmetry effects.
The complete k P Hamiltonian is obtained to second order in k and to first order in the applied magnetic
field 0 for the coupled conduction band (I 6), light- and heavy-hole valence bands (I,) and split-off valence
band (1,). This Hamiltonian treats the interactions with higher bands as second-order perturbations, and
includes terms proportional to three new parameters which arise from the spin-orbit splitting of these higher
bands. A group-theoretical analysis is carried out for A in the (110) plane including kH &0, kH being the
momentum component along the direction of the applied magnetic field. The selection rules for the intra-
conduction-band transition 2'„2', + co„and 3', are in agreement with experiment but with one important
exception: that a strong Zco, transition observed for At| [0011 in the polarization lkiA is not predicted by
the above group-theoretical analysis.

I. INTRODUCTION

As the result of many magneto-optical investi-
gations and theoretical calculations, most prop-
erties of the conduction and valence bands in InSb
are reasonably well understood. An important
exception has been a number of observations in
n-type InSb of the second and third harmonics
of cyclotron resonance, denoted by 2~, and 3(d„'
as well as the spin-shifted harmonic denoted by
2+,+(d, .~ These transitions have been observed
along with the allowed combined resonance (d, + (d,
transition, ' and the LO-phonon-assisted resonances
(d, + ~«, 2', + ~«, etc." The latter have been
explained by the theoretical work of Enck, Saleh,
and Fan' and Bass and Levinson. ' Bell and Rogers
obtained selection rules for warping and inversion-
asymmetry induced harmonic transitions, for an
applied magnetic field H parallel to a [001]crystal
axis. ' Favrot, Aggarwal, and Lax' recently re-
ported that the intensity of these transitions ex-
hibits marked anisotropy with respect to the crys-
tal orientation relative to the applied magnetic
field, in addition to its dependence on the optical
polarization. %e have obtained the selection rules
for cyclotron harmonic transitions induced by
warping and inversion asymmetry for the mag-
netic field applied along the crystal axes [001],
[110], and [111].' These selection rules are con-
sistent with the experimental results with one
important exception. Favrot et az.' observed a
strong 2~, absorption for the light polarization
vector E&H with H [[ [001]. This is not predicted
either by us or by Bell and Rogers, ' or by the

recent work of Zawadzki and Wlasak" for this
orientation.

In the present work, the selection rules for these
intraband transitions are obtained in the spirit
of the treatment by Pidgeon and Groves of inver-
sion asymmetry and warping-induced interband
transitions. " They treated effects of warping
and inversion asymmetry (the linear k term) as
perturbations in the "quasi-Ge" model of Pidgeon
and Brown. " In this model the energies of the
conduction band, light- and heavy-hole bands and
the split-off valence band a.re calculated in an
approximate coupled band scheme, suggested by
the work of Luttinger" and Both, Lax, and Zwerd-
ling, "which includes nonparabolic and "quantum"
effects" and a, portion of the warping effects, in
such a way that only 4 & 4 matrices had to be di-
agonalized for each Landau quantum number n and
for the a (conduction-electron spin up) and b (con-
duction-electron spin down) sets. This model was
reviewed in detail by Aggarwal. "

The InSb energy bands are illustrated in Fig. j..
For the case of zero magnetic field (H=O), the
k dependence is given schematically for the bands
considered "nearly degenerate" in the quasi-Ge
model, labeled with both single and double group
notations. In a magnetic field (H 40), the coupled
Landau levels are illustrated for the a and b sets,
labeled with the principal Landau quantum number
following the notation of Pidgeon and Brown. "

In order to find all allowed transitions among
the conduction band states of Fig. 1, we have ob-
tained from the tables of Koster, Dimmock,
Wheeler, and Statz (KDWS),"all allowed terms
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FIG. 1. Schematic representation of the InSb conduc-
tion and valence bands at the I point, labeled as both
single-group (I'& and I'4) and double-group (I„, I'7, and
I 8) representations of the T~ group. On the left, the

k dependence is illustrated in zero magnetic field (0 =0}.
On the right are shown, for H& 0, the resulting Landau
levels and intraconduction-band transitions w, , w~ +co~,
and 3' . The 3(d, transition is induced by the coupling
between the n =4 and n =0 Landau levels proportional
to the warping parameter p.

up to second order in k and to first order in H in
the 8 & 8 matrix Hamiltonian for the I', (8=-,') con-
duction band, the I",(8=-, ) light- and heavy-bole
bands, and the I",(J=-,') spin-orbit-split-off val-
ence band. %e find, in addition to the parameters
described by Luttinger'3 for Qe and by Kane'8 for
InSb, three new parameters N„A'„and E,:
contributes to the conduction band g factor, and

E, and N, have effects similar to the linear-k
term and the terms proportional to the Kane para-
meter G." These new parameters are shown in
the Appendix to arise from the spin-orbit split-
ting of higher bands of I', symmetry.

In the approximate quasi-Qe model, " the allowed
intraband optical transitions are, for polarizations
E&H, a(n)-s(n+I), and b(n)-b(»+ I) corres-
ponding to the cyclotron resonance transition ~„
and for the E )~ H polarization a(n) —b(n+ 1) corres-
ponding to the combined resonance transition (d,
+ ro„' where ~, is the spin-flip frequency. The
co, and ~,+ co, transitions, which are allowed for

all orientations of magnetic field, are included in

Fig. 1. It should be pointed out that because of
nonparabolicity and quantum effects, the "harmon-
ic" transitions n(d, do not occur exactly at the
frequency ~s times ~,. Therefore the notation
n(d, is used merely for labeling purposes. Second-
ly, we show only transitions allowed for 0„=0,
where kH is the electron momentum parallel to the
applied magnetic field H.

The main effect of the small terms neglected
in the Pidgeon and Brown Hamiltonia. n is to allow
extra weak optical transitions. For k„=0 the

warping terms ltj. and q' allow third-harmonic
transitions a(n) —a(n+ 3) denoted by 3~„as ob-
served for the heavy holes in Qe." The inversion-
asymmetry parameters allow the second-harmonic
transitions a(n) —a(n+ 2) denoted by 2&v, and a(n)
—b(n+ 2) denoted by 2e, + &u, . The inversion-
asymmetry parameters are: the linear-k para-
meter C," the Kane parameter G,"and the new

parameters X, and R, . For k„&0 the warping
terms also induce second-harmonic transitions, '
and the inversion-asymmetry terms induce third-
har monic transitions. The optical polarizations
in which these extra transitions occur depend on
the orientation of the crystal axes relative to the

applied magnetic field.
The mechanism for the warping-induced 3',

transition is illustrated in Fig. 1. For certain
orientations of the crystal relative to the applied
magnetic field, a term proportional to the warping
parameter p, couples the a(4) level to the a(0)
ground state in the conduction band, giving the
a(0) level an admixture of the a(4) wave function.
Then the optical-transition matrix element con-
necting u(4) to a(3) for E &H also gives a weaker
transition a(0) —a(3), denoted by 3&v„as illus-
trated.

The strength of these extra transitions, as a
function of the six parameters p. , q, C, G, X„
and N„ is found by calculating the optical matrix
elements among the levels of the quasi-Qe model,
including the warping- and inversion-asymmetry
perturbations as first-order corrections to the
wave functions. In Sec. II below we find the com-
plete InSb k p Hamiltonian to first order in H and
to second order in k, and in Sec. III describe the
quasi-Qe model for the magnetic field H in the
(110) crystal plane. In Sec. IV we give the warp-
ing- and inversion-asymmetry perturbations, and
in Sec. V we calculate the transition matrix ele-
ments from these perturbations, and the resulting
selection rules for intraband transitions for the
magnetic field in the three principal directions
[001], [110], and [111]. These selection rules
are compared with the experimental results in
Sec. VI.
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II. InSb HAMILTONIAN TO SECOND ORDER IN k

In order to obtain the k. p matrix Hamiltonian
in the quasi-Ge model, that is for the set of
coupled bands illustrated in Fig. 1, there have
been two different approaches based on group-
theoretical techniques. In the first. approach, " -'

one finds interband matrix elements p ~ of the
k p perturbation Hamiltonian hk p Jm and also
of the spin-orbit Hamiltonian. For the case of
InSb, Kane" enumerated all possible combinations
of these matrix elements to second order in k
among the single- group basis states transforming
as 1, (conduction band S) and r, (valence bands
X, F, and Z) of the T, group. The first-order
matrix elements p ~ and second-order combina-
tions involving intermediate states belonging to
different representations of the T„single group,
were adjustable parameters of the perturbation
Hamiltonian. This Hamiltonian was expressed in
terms of linear combinations of the functions X,
Y, and Z and of the spin-functions 4 and 0, which
diagonalize the spin-orbit interaction. This Ham-
iltonian involves matrix elements coupling the
various basis states including adjustable para-
meters multiplying functions to second order in
k. A second approach to obtaining this Hamilton-
ian was made by Luttinger, "who used a group-
theoretical analysis to find all allowed matrix
elements of k and k ~ k among the valence-band
states transforming as the I", representation
of the double group. His result involved adjustable
parameters which were linear combinations of
those of Kane, "but included an additional para-
meter q which is nonzero only in the presence of
spin-orbit splittings of the intermediate states.
Luttinger's results were extended by Both et al."
to include the I', split-off band. Pidgeon and
Brown" included the I", conduction band in their
analysis, combining the results of Kane" and of
Both et a/ '4

In this pa,per we use the second approach to ob-
tain a complete set of parameters for the coupled

I'„and I', bands and find three new para-

meters in addition to those of Refs. 14 and 18,
which have the same origin as Luttinger's para-
meter q." Our group theoretical treatment makes
use of the KDNS tables of coupling coefficients. "
Although their basis functions are not stated ex-
plicitly, we find these by comparing our resulting
aviatrix with those of Refs. 14 and j.8. This set of
basis functions is given below, in terms of the
basis functions used by Kane."

13)=(&'3/, , /, = — (X+ il')&,

15)= $,'/, , /, —— [(X—iF) t + 2Z 4],3/2, 1 /2

17)= g', /, , /, = ——[(X—iF)t —zk],
3

6 set

~z/2, -x /a

16) = $3/2, /2
= — [(X+iF) 0 —2Zt],3/2, 1/2

Z

[(X+iF) 4+ Zt].l 2ql

The states 13) 14) 15) and 16) are the same,
except for an overall factor of (—i), as those used
by Pidgeon and Groves. " These four states form
a representation of the 4= —,

' (I',) valence band,
and, as stated by Pidgeon and Groves, the 4 X4
k p matrices involving these states agree with
those given by Luttinger. " The valence-band
states are equal to those of Eqs. (23) and (A3)
of Roth, Lax, and Zwerdling'4 except for an over-
all factor of (-i) and an additional factor of (-1)
in states 14) and 16), so that our a-set matrices
for the valence-band (states 13), 15), and 17))

TABLE I. Parameters of the k p Hamiltonian among the Insb 16, 17, and 1"8 band-edge states.

k„,k, kz (2k —k —k) ~3 (k —k) (/„&~/, (&:„,& J,(&„&,) i[k„k,l, &[k„k„l,2[k„,k, ]

«, If(k) Ir,)

«, i f(k) I&,)

(1 ( f(k) )1')

(r, ~
f(k) I r,)

(r If(k)lr ) P'

e'

Yf

goal

Ng
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mill agree with the equations in the Appendix of
Ref. 14, but the b-set matrix will have opposite
signs in the off-diagonal elements of the last row
and column. The states ~1)- ~8) are identical with
a set used by Groves, Pidgeon, Ewald, and%ag-
ner, 2' except for a factor of (-1) in state t6).
Thus the 4=2 subset of Ref. 21 does not give the
same matrices as those in Ref. 13.

Finally, the states ~1)- ~8) differ from those of
Pidgeon and Brown" and of Aggarwal. " Our re-
sults for the 8x 8 k p Hamiltonian will be related
to those of Ref. 12 by a unitary transformation
which is nearly the same as the one given by Ag-
garwal" from Reine's work. " The resulting 4
&& 4 matrices for the a and b sets are real. Apart
from overall factors, our states differ from those
of Ref. 16 by a factor of (-1) for the states ~4)
and ~5), which gives a factor of (-1) in the off-
diagonal elements in the third row and third col-
umn of each 4X4 matrix.

As can be seen from the above discussion, our
basis states are not identical to those of any of
the important papers on InSb. However, it is also
clear that this previous work involves several
inconsistent basis sets. The considerations in-
volved in choosing our set were: (i) to make the

4 & 4 matrices for the a and k sets real; (ii) to
agree with the widely available KDWS tables";
and (iii) to agree with the most extensive previ-
ous work in the quasi-Ge model (a} Luttinger, "
(b} Both, Lax, and Zwerdling, "(c) Pidgeon and

Brown, " and (d) Aggarwal. " Our set satisfies
(i), (ii), and (iiia); it differs slightly from (iiib) to
satisfy (ii), from (iiic) to satisfy (i), and from (iiid}
to satisfy (iiia).

The character tables for the T~ group are given
by Dresselhaus, ~ and by KD%S" on p. 88. It
should be pointed out that the definition of I; and
I', are reversed and that the column S, in Ref. 1'7

and Ix C4 in Ref. 23 shouM have the same charac-
ter, which means that the definitions of F, and F7
are also reversed. The spin--,' basis set belongs
to the KDWS 1, or Dresselhaus F, representation.
We will use the Dresselhaus notation. Using the
KDWS tables of coupling coefficients for the T~

group, we find the matrices involving terms to
second order in k among these basis functions.
For example, two terms in k&&k are E3 2k k„.
—k'„and F', = &3(k', —k', ) which belongs to the two-
fold 1", representation. The matrix elements of
these functions among the F„ I'„and F, states
are proportional to the complex conjugates of the
table entries on p. 91 of KDWS. The resulting
matrices must be Hermitian and be invariant un-
der time reversal ~ These conditions require
certain parameters to be either zero or else pure-
ly real or imaginary.

F' -=2k'- k' - k' F' -=&8(k' k')

F~ =(k„k'] =—(k,k'+ k'k, ), E4 = fk, k,],
ff, = ilk„, k, ], &'= ~[k', k,] .

(2)

For simplicity, Table II is given in atomic units
ft =ng =1.

III. QUASI-GERMANIUM MODEL FOR H IN

THE (110)PLANE

For a magnetic field H in the (110) plane at an
angle u from the z axis, we perform the coordinate
transformation given by Luttinger"

k„= 1/W2(ck, —k + sk, ),
k, = 1/v 2 (ck, + k, + sk, ),
k, =-sk, +ck, ,

where s =- sine, c —= cos0. The coordinate axes are
labeled 1, 2, and 3, where H is along the three
axis, and the iwo axis is the [110]crystal axis.
The corresponding rotation of the basis states
results in a transformation of the k p Hamiltonian
according to X(8) = U~~XU~. ' We then set

All the real, independent parameters found in
this manner are l.isted in Table I. We find ma-
trices for all the previously defined parameters.
The 1",& F, parameters y„y„y„ I(., and q were
defined by Luttinger. "

yy y2 y3 and I~ were
shown by Roth, Lax, and Zwerdling' also to in-
volve the split-off band 1", when one starts with
single-group representations. In the full double-
group picture the 1",& I', and I', x 1, parameters
are independent of the I', x I', ones and are de-
noted by y,', y,', y,', ~', and v". The conduction-
band (1',) effective-mass parameter F. the "linear-
'" parameter C for I', and the 1,& F, parameters
P and G were defined by Kane" and by Dressel-
haus, Kip, and Kittel' in terms of single-group
basis states; the F, & 1, and F, && I', parameters
are denoted by C', P', and C'. We also obtain
three new parameters: A', contributes to the con-
duction-band g factor, similar to v in the valence
bands; Ã, and N, represent additional couplings
between the F, conduction band and the I', valence
bands. In the Appendix we show that these new

parameters, like q, arise from the spin-orbit
sp1.itting of higher bands. The complete 8 & 8 ma-
trix X for the parameters listed in Table I is given
in Table II, which also includes the band-edge
energies E, and b, relative to the 1", valence band,
and the parts of the free-electron terms not in-
cluded in the definitions of y, and ~.' '" Other'

terms used in Table II are

k =—k +k +k k'=—k +ik
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k, = (a+ a'), kz
—— (a —a'), k, = k„—, (4)

1

X2

where X.= (ff—cJeH)z~' is the Landau radius, c, is
the velocity of light, SkH is the component of the
momentum along the direction of the applied mag-
netic field, and a', a are raising and lowering op-
erators for harmonic-oscillator functions qb„

a Q„=(n+1) ~ Q„,z, ap„=Wn(f)„z,

Rf„=-a'gf„= nf,

The Hamiltonians of Table III are equivalent~
to those of Pidgeon and Brown" [their E(ls. (10)
and (11)]when account is taken of the different
basis sets. Table ID is also equivalent to Eqs.
(B9) and (B10) of Both, Lax, and Zwerdling'z for
the 1", and I', band energies except, as indicated
above, for a sign change in the matrix elements
involving the 1 „b-set state.

The solutions to the Schroedinger equations
3C Ia)=E Ia) and 3C/If)&=Ey If)& are of the form

and

[a, a']=—aa' —a'a= 1. (8)

The resulting 3C(e) separates into two 4 & 4 ma-
trices for the a and b sets

Ia(n)) =

~x 4n
ff~3 4n-i

~5 An+1

&7 0-i

Ir (n)&=

~
bn

b6 A.-i

b~ (t)n. i

bs 4.-i

(9)

if one neglects terms proportional to k„, q, C, G,
E„and R, and most terms proportional to the
warping parameter p, -=-,'(y, -y, ). One can include
some warping by way of two valence-band effective
mass parameters"

3 2 —1y' =y. + (y. —y.)
(8)

3c —1y" -=3y, + sy, + —', (y, -y.)

where, again c =-cos~. The resulting 4 x 4 ma-
trices X, and K~ are displayed in Table III, where
the terms involving y„y', and y" in the fourth
rows and columns are included in the single-group
approximation P' =P, y,

' =y„etc. Also in Table
ID, P is included using the interband energy F~

2IP'/h', and -pz)=—ek/2nzc, is the Bohr magneton.
Table III is now in ordinary energy units since
~„4, E~, and p. ~H have the dimensions of energy
and I', K, N„and the y's are dimensionless.

with n ~ -1 and with a, ' = b, ' = g 3' = a 3
= b g' = b, = b8'

= O'„-=O. For n ~ 1, there are eight independent
solutions Ia(n)), I b(n)& for each n, which are de-
noted, in order of decreasing energy, conduction
band [!a'(n)»

I
fz'(n)&] "cavy hole I:!a (n)» If) (n)&»

light hole [Ia'(n)), Ib'(n))], and split-off band

[ !a '(n)&,
I
f)'(n)&]. Pidgeon and Brown' renumbered

all valence-band states n-n+ 1; since we are con-
cerned with conduction-band states only, such
renumbering is unnecessary. Although a number
of authors"*' *"have given approximate analytical
solutions for the states !a(n)&, If)(n)& and the cor-
responding energies E,(n), E,(n), the numerical
solutions obtained by Pidgeon and Brown" were
necessary to give an accurate fit to their inter-
band magneto-optical experiments in InSb.

The strongest allowed optical transitions among
the states of Ezls. (9) are those proportional to
the interband matrix element P; that is, we find
the optical perturbation 3C'„by replacing k by (k
+ eA/kc) in the matrix for P, where A is the light-
vector potential in the radiation gauge. The re-
sulting transition- matrix elements are

I /2
(a(n') !3C'„(P)Ia(n)) =2 ~ ([u 3a,"'a,"-a,"'(a,"-v2a,")Je 5„. „„+(n —n')j, f)„,„,}

j. /2

&k(n') I3C'.(P)!k(n)&=2 ' f[(k,"'+~&k,"')k," &Ykz~k,"]c 8-„, „„+(n- n')~, v„, „,},
Z/2

()(')l~'. ()')l (»))=- —(~', [)l'(~& l ~ l)+(~&)l'-)l l)]"..n. . , „.„
(10)

where E is the optical electric field. R. and ~

are the unit polarization vectors for, respectively,
right and left circular polarization a„, a~ trans-
verse to the magnetic field H, and k, is a unit

polarization vector parallel to H usually referred
to as the m or E (( H polarization. Thus the selec-
tion rules for both inter- and intraband transitions
(before renumbering of the valence bands) are
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0& atf a&+» An Az+»

0'„:a„-an 1, j-')n An-j. &

n An+» An n-y '

For intraband transitions, the o~ transition occurs
at the cyclotron frequency (d = (d„and the m trans-
ition at the "combined resonance" frequency ro

= (d, + ~„where ~, is the spin-Qip frequency.

(i) terms proportional to k„and k„', (ii) the so-
called warping terms proportional to p, =-,'(y, —y,}
and q, both considered by Luttinger"; and (iii)
the inversion-asymmetry terms proportional to

C, G, and the new parameters 6', and N, . All of
these extra terms are given in Table IV. The
terms involving k„are proportional to the effec-
tive mass parameters F py and y', and to

IV. VfARPING AND INVERSION ASYMMETRY

PERTU RBATIONS

The terms not included in the quasi-Ge Hamil-
tonian of Table III divide into three categories:

err —2y" -=-. y, +3y, --'(y. -y, )

The warping terms are proportional to

(12)

p. , = —-', p p s H(3c2 —1)[s2(a 2+ a ') —2 use M z(a+ a ')]

p2 =
& ~SAP s H/s (32' c—l}(2N+ 1 —2X'k„) —(c2 —3)(3c —l)a + 2&2scik„[(5 —3c )a —(3c2 —1)a']j, (13)

P~ = —~~P4s H/sc[(3c2 —1)(2lV+ 1 —2X k2s) —(5 —Sc )a2+ (3c' —1)a ']+ 2&2s (Sc' —1)Xkza},

and to e, =--,' M6 —s(3c' —1)(a-a'),

3
q, -=—

& q p s H(3c' —2c'+ 8), c, =——', M2 —[5s(3c' —1)a' —Ss(1+c')a

q, -=——. v 3 q p, as'(3c' —1), —2v 2 c(3c'-1)Xk„],

q, = 4 ~&q Ps Hsc(3 e' —1),

3
qg=- —~ qP sHsc(3c' —5),

q, -=—4 q W, H(2 fc' 18c' 10),

qP s Hsc(Se —1)

(14)

e, -=8 v 2 —[12s'ca'+2c(3c' —1)a

—M2 s(3c' —1)tk„],
(15)

c, =--, v6 —[2c(Sc' —1)a'+ 3 M2 s(1+c')Xk„],

c, -=—,' —[s(3c' —l)a" + 3s(1+c'}a

—M2 c(Sc' —l)xk„],

The terms from Egs. (13) and (14) in the I', x I',
portions of Table IV (involving states ~3} —~6))
are identical to those given by Luttinger, "but with
the opposite signs throughout, since Luttinger's
equations involved hole energies. Table IV includes
additional couplings proportional to p, between the
I', and I', bands.

The inversion-asymmetry terms are proportional
to

c, =———,
'

MS —[s(3c' —1)(a+a')+ 3 M2 s'cXkz]

c, =- —,
' —[Ss'ca' —c(3c' —l)a

—~2 s(3c' —1)zk„],

and to
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g, =— s [ —s(3c' —1)(2N+ 1 —2X'kz' + a')Gp, H

—Ss(1+c')a" 6v 2 s'czk„a

+2v 2 c(3c' 1)tk„a'],

g, = [ Ss'c(2N+ 1 —2X'k'„)2Gp, M
M6

—c(3c' —1}(a' + a")
—2v 2 s(Sc' —l)Xks(a+a+)]

(16)
bn- an+

a„-b„

n n+3

a„-a„

5„-a„„

(2~, —u&,},
(2 (d + (d~)

(3u),),
(2 (u, )

(Su&, —u&, ) .

intraconduction-band optical transitions were
weakly allowed

a„-b„((o,)

e, -=—,' N, P sH [—s(3c' —1)(2N+ 1 2Z'k2 + Sn2)

+3&(1+c )n' —12' 2 s'ckkHa]

c, —= —~3 N, p, ~[c(Sc'—1)(a' —a+'} (1&)

+ v2 s(Sc' —l)Xk„(a —a')],

TABLE V. Couplings among the quasi-Ge states of
Eq. {9), proportional to the warping parameters )(t and q
and the inversion-asymmetry parameters C, G, N2, and
X3 for k 0=0 and extra couplings for k 0 & 0.

kH &0

e, =- —N, psH[ c(Sc —1)(2N+ 1 —2X'k+2) —6s'cu' '

+ 3 M2 s(l + c')Xk„a+ SM2 s(Sc' —1)kk„a+];
H ll [0011 p, an ~ Q„4

bn' 'bn~4

f, -=N, p, +s(Sc' —1), f, —= —SMS N, p.sHs2c,

f, —= —N, p, sHc(Sc2 —1}.

This rotation in the (110) plane includes the three
important directions H II[001], [110], and [111].
The portions of the matrix in Table Pf for couplings
within the I', band proportional to C [Eqs. (15)]
for these three orientations, and for k„=o, are
the same as those given by Pidgeon and Groves"
with an overall sign change since they, like Lut-
tinger, "consider hole energies. Similarly, their
result for couplings proportional to q for H II[111]
is identical to ours [Egs. (14)] with the sign re-
versed. However, our result for p, [Eqs. (13)]
for H II [111]is identical to that of pidgeon and
Groves with no sign change, so that their results
for the p. matrix differ in sign from that of Lut-
tinger. Our results, as indicated above, agree
with that of Luttinger with an overall sign change.

V. SELECTION RULES FOR CYCLOTRON-HARMONIC

TRANSITIONS

an '''bn-1 bn+3

6 Qn- bn 1 b+3

V2 a„..bn, , b„

&3 an '''bn-1

H ll [110j p Q„~ ~ ~ an, ,a„,
bn ~ bn~2, bn

Q 'Q

bn ' ' bn~2

Qn an+1~an*3

b. ''' b..1 b"3
an '''an~1 an~3
bn ' ' ' bn+1 b«3

AV2 Qn an+1~ana 3

bn '' bn. i.b" 3

bn '''bn. 1

an ' ' an~2
bn ' bn

an+2b„.bn

n
' bn-1, bn+3

an. bn

a„~ ~ ~ bn, bn+2

an b„2,b„,
bn+2

Bell and Rogers' calculated transition strengths
for intraband optical transitions, for H II[001]
only, by diagonalizing the Hamiltonian of Table
III in the single-group basis set, without the pa-
rameter q and the new parameters Ny N2 and

N, . Because this Hamiltonian couples an infinitely
large number of oscillator functions y„, they ob-
tained numerical solutions by diagonalizing two
120 ~ 120 truncated matrices. In addition to the
fundamental cyclotron resonance ~, for the o~
polarization and the combined resonance ~,+ v,
for the r polarization, they found that the following

H Il ~lllj P Qn ' ' bn -2q bn +4

Qn bn -2

Qn '''an~3
bn. 3

N2 an ' ' 'an~3 Qn ' ' bn+1
bn ' ' bna3

Qn ' bn+1

an ~ ~ ~ bn

e an ' ~ ~ Qn, 3 Qn ' bn+1 an '''bn-2
bn bn+3

an an +3 an bn +1

bn '''bn~3
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They showed that these were the result of warping-
and inversion-asymmetry effects. We use a per-
turbation treatment to find the intraband selection
rules for H (([110], and [ill] as well as [001], as
outlined below.

Using the Hamiltonian K' in Table IV as a per-
turbation in the basis states of Eq. (9), we find
new states

a'n = an

E( j(n)') —E(a(n)) ~

(20&

And similarly for Ib'(n)), where we consider only
conduction-band states a =a' and b =b', and coupled
state j =a', b' Since the couplings of Eq. (20) are
all very small compared to the energy differences,
it was not necessary to include the energy correc-
tions. The actual expressions for these couplings
are very lengthy. All such couplings, propor-
tional to the warping- and inversion-asymmetry
parameter, are summarized in Table V.

Using these coupled states, the allowed optical
transitions originating in the state a(n) are pro-
portional to the square of the matrix element
(f '(n')

I
K „'

I
a'(n) ) which becomes

(f'(n')
I
~„' Ia'(n)& = (f(n') I3c„'

I
a(n)) + g (f(»') Ilc'

I
j(n "» (j(n"& I&'Ia(n»

i =atb

(f(n ')
I
gf' '

I j (» ")) (j (&I")
I
~ „'

I
.a(n) )

E( f(n )) E( j(n")) (21)

with a similar expression for transitions origi-
nating in the state b(n). The summation runs over
all intermediate states in the conduction band.
The first term in Eq. (21) represents an "allowed"
transition. The matrix elements of K„' propor-
tional to P are given in Eqs. (10). These and all
other matrix elements are calculated using the
approximate numerical solutions [Eqs. (9)] to

the quasi-Ge Hamiltonians in Table III.
The intraconduction-band transitions allowed in

Eq. (21) by the couplings in Table V are listed in
Table VI. We use the notation of Eq. (19): a
transition from a„ to a„, is denoted by n~(d„
from a„ to b„, by m(d, + e„and from b„ to
a„, by»~(d, —co, . We would like to point out again
that, in fact, the conduction-band Landau levels

TABLE VI. Intraconduction-band transitions in InSb for a magnetic field H II [001], [110], and [111]crystal axes, for
A H=0 and extra transitions for A H 0, for optical polarizations crI, 0~, and 7(, both allowed (A) and induced by warping
(W) and inversion asymmetry (1).

kH -0 &H "0

All
orientations

H II [001]

+Ct)

+ (Ai

8"'

5u' +(A'

2~c

H II h10] 3u, 5

2c 4~C

~c 3~c
3(d

5h) + (Aj

~s 2'c+'s
4(Aj + (Aj

cu, 24' —ci
4(d +M

3(d + (d

2 (Aj + ct'

u)c + (ds

2wc

H II [111] —Ca)

5(d +4)

2M +(8
4a

+CtJ

, 2A 2(Aj

44' +(Aj

LLc s

2M

jc ~s

2 'c ~s
4~c +(A'

3'
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are not equally spaced, so that the transitions are
not precisely harmonic transitions; we use the
mes, notation for convenience. In Table VI we have
grouped together the try, nsitions induced by
warping (p and q) and by inversion asymmetry
(C, G, N„N, ) and have included the allowed transi-
tions as well. For H II [001] and k„=0 our results
are consistent with those of Bell and Rogers, '
summarized in Ec(. (19).

A calculation of selection rules for the cyclotron-
harmonie transitions has recently been made for
the H II [001] orientation by Zawadzki and Wlasak. "
Their analysis includes transitions proportional
to the parameters p, , C, and G, but not q, X„or
N, . Their perturbation treatment is similar to
ours, but includes some weak transitions allowed
to second order in the warping, inversion-
asymmetry, and k„40 effects. Zawadzki and

Wlasak obtain for H II[001] the transitions we list
in Table VI, and, in addition, other transitions:
6~,(v), 4&v, + v„and 8~, + ~, (c~ and os) allowed
by a combination of p, and C effects, and also
4~,(v), 2ur, s v„and 6~, + &u, (o~ and o'„) allowed by
p, and kH WO. %e expect these transitions, which
arise only in a third-order perturbation treatment,
to be considerably weaker than those in Table VI.

Our quantum- mechanical calculation confirms
the results of Zeiger, Lax, and Dexter, "who ob-
tained the intensities of the harmonics of heavy-
hole cyclotron resonance in Ge and Si from a
semiclassical Boltzman treatment. They found
that the third-harmonic intensity should be zero
for E&H II [111]and for E II HII[001] and [110],
and the second-harmonic intensity, allowed for
AH W 0, should be zero for X J HII [001] and [110]
and for EII HII [001] and [111];these selection
rules are consistent with Table VI, where ELH
induces both o'~ and e„ transitions.

VI. COMPARISON WITH EXPERIMENTS

Experimentally, only the lowest-energy harmonic
transitions 3~„2u,+ ~, , and 3~„ from the ground
state a'(0), have been identified. ' ' The experi-
mental results of Favrot et al. ' are compared in
Table VII with the results in Table VI for kH =0.
As can be seen, the predicted selection rules for
these transitions are confirmed experimentally,
with one important exception. Favrot et al. ob-
served a strong transition at 2&v, for E &HII[001]
which is not explained by our calculations, even
for kH WG. They also found very meak absorptions
in the X II H polarization, for example, 2m, for
HII [110], and somewhat stronger absorptions at
2~, + &u, for HII [001] and [111]axes, which are
not yet understood. It is evident from the spectra
of Ref. 5 that population effects (k„e 0) are not

TABLE VII. Comparison of the theoretical selection
rules for kH-—0 for the lowest-energy harmonic, transi-
tions 2&„2a',+ ~„and 3v „with the experimental re-
sults of Favrot, Aggarwal, and Lax.~

E&H

H jj [001]

H jj [110]

H jj [111]

Theory
Exp.

Theory
Exp.

Theory
Exp.

2(d + (d, 3(d

, 2m + (d, 3M

2~c 3~c
2(d, 3M~

2' 'c 2~e+ ~s
2(d, 2M + Eo

g(z) + CO

+ 4P~

important, since the strongest k& WO line pre-
dicted in Table VI, 2', + (d, for E ~H in all orienta-
tions, is not observed for E&HII[110]. The re-
sults of Favrot et a/. ' were recently confirmed
over the wavelength region -7.5 to 18 p, m by K.
Lee,"for HII [110] and [111]axes, except that
Lee did not observe the weak 2(d, + ~, line for
E IIHII [111].

A calculation by Miyake27 of impurity cyclotron-
resonanee harmonics suggests a possible explana-
tion for the 2&v„E& H II [001] transition observed
by Favrot et al.' If the ground-state electron oc-
cupies an impurity state associated with the s'(0)
Landau level, the impurity potential acts as a
perturbation which allows the electron to make
transitions to all a'(n) levels, n =- 1. Miyake's cal-
culations indicate that the strongest harmonic is
the second (v =2 or 2&@,), about 10 times stronger
than the third harmonic. Thus the impurity poten-
tial could have a strong effect on the 2~, absorp-
tion but have og.ly a small effect on the 3', absorp-
tion. However, the impurity-induced coupling
a'(n) ~ ~ ~ a'(n') and b'(n) ~ ~ h'(n') cannot induce
the 2', + co„E&El transitions or the 2~, and 3~,
XII H transitions listed in Table VII.

McCombe et al."observed cyclotron resonance
absorption at ~, as mell as the harmonics 3~, and
3', in n-type InSb for the "inactive" sense of
circular polarization o„. They interpreted these
results, particularly the position shift (8 the
harmonics with carrier density, in terms of elec-
tron-plasmon interaction. This interpretation mas
disputed by Blinowski and Mycielski" and defended
by Quinn et a/." These may also have a contr&bu-
tion from inversion-asymmetry effects. MeCombe,
et al."do not specify the sample orientation; if
they had HII [110] one would predict from the cou-
plings in Table V for k„=0, weak transitions for
o~ at 2'„3'„4(d„and 5~„and for o„at z, ,
2(d„and 3~,. The o~ transitions mere evidently
obscured by the overabsorbed cyclotron-reso-
nance transition, but the o„ transitions follow
these selection rules.
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We have made numerical calculations of the
peak absorption coefficient e~ for each of the
transitions listed in Table VII. Using the expres-
sions of Wallis ' we find, for a transition a(n)- (n')

n, (~) = „, . i(f'(n') i&„'is'(n)) i', (22)

where the matrix elements of X„' are given in
Eg. (21), fq is the free carrier density, r the life-
time of the transition, and n the index of refrac-
tion. The observed absorption coefficients' for
the three inversion-asymmetry-induced transi-
tions 2&v, (EiiHii[001] } and 2~, + ~, (EzH ii [001]
and [ill]) which are independent of the impurity
and plasma couplings, are consistent with the
following three sets of parameters: set a:
C =-3x 10 ' eVcm, G =-0.21, N, =-0.61;
set b: C--3x10 "eVcm, G=-3, N, = —1;
set c: C —3x10 ' eVcm, G= —0.9, N, =-0.4,
all assuming N, =N, and G( 0. For the other
three inversion-asymmetry-induced transitions
listed in Table VII, which may have contributions
from the impurity and plasmon couplings, set a
gives approximately the observed absorption co-
efficients, but the calculated results for set b are
too large, and for set c, too small, by up to a
factor of about V. The results for C in sets a and
c are about an order of magnitude larger than the
result of Pidgeon and Groves, "C=9.3 x10 "
eV cm. The results for G and N, are fairly close
to the values estimated in the Appendix (G = -3.1
N, = 0.23} except that in the Appendix we estimate
N, and G to have opposite signs. Overall, set b

is closest to these estimates.
Similarly for the warping-induced transitions in

Table VH, we find that from the intensity of the
impurity- and plasmon-independent transition
3~„EIIH II [111]we have p, =2 using the pidgeon
and Groves value q =0.4 (the results are not sen-
sitive to q), giving, for the other two 3&u, transi-
tions, peak absorption coefficients about a factor
of 5-7 too large. Conversely, the Pidgeon and
Groves result p, =0.59 gives an absorption for the
Ei[H[i[111] transition which is about an order of
magnitude too small.

In view of the large uncertainty in the experi-
mental results, as well as the approximate nature
of our calculations, we regard the above numeri-
cal analysis as establishing that the observed
warping- and inversion-asymmetry-induced tran-
sitions can be accounted for in an approximate
way using parameters roughly consistent with
their estimated values.

In conclusion, we have obtained the complete
8 x 8 R p Hamiltonian, to first order in magnetic
field, for the coupled conduction and valence

bands at the I' point in InSb. We find selection
rules for weak cyclotron harmonics in n-type
InSb which explain the experimental observations
except for one unpredicted absorption line. These
weak transitions depend on two new parameters,
N, and N„as well as on other previously defined
parameters. Another new parameter N, repre-
sents a small correction to the conduction-band g
factor. It might be possible, once the origin of
each experimental cyclotron-harmonic transition
is explained and more accurate intensity measure-
ments made, to use a comparison of the experi-
mental and theoretical intensities to determine
the six small parameters p, , q, C, G, N„and
N8.

APPENDIX: ESTIMATES OF NEW PARAMETERS

The parameters N„N„and N, are defined by
the matrix elements given in Table II or as follows

8

z(r„r,) —E(r, )
8

where the summations are over all higher-band
I'8 states, and E(I'„1"6}is approximately the
average energy of the coupled I, and I", conduc-
tion and valence bands.

Since these parameters vanish if the spin-orbit
coupling is zero, we find estimates for their
values to first order in the spin-orbit coupling,
starting with the single-group representations.
It turns out that, like q, they arise from interac-
tions with higher I, bands. We denote the conduc-
tion band by I', = (S), the valence band by I',
=(X, Y, Z) and consider the effects of one higher
band r~ =— (X', Y', Z '). We define, following Ogg,

'2

f(ffim)(s ip„ix ),
q=- —f(ffi»i)(x iP„iz') . (A2)
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~

p ~'/~n[z(r, ) ——.
' n E(r,)],

C = P q*/~ri [E(r,') ——,
' n'- E(I'„I',)],

a, =- 2
i qi'/m[z(r, ') -E(r,)],

with

(A3}

~, =P{-,'n'/[E(r, ')- —,'n'- E(I',)]},
G{,'n'/v 2 [E(r,')--,'-n'-E(r, „r,)]},

N3 —N2 )

ff,{' 2n'/[E(r, ) -E(r,)]} .
The result for q agrees with that of Hensel and
Suzuki. ~3

(A4)

Including spin-orbit coupling the I'4 band splits
into I", and I", bands, with energy separation
E(I",) —E(r,') = n—'. Performing the spin-orbit
transfox'mation on both I', and I", and then con-
sidering the couplings to second order in I" and

among the states I'„ I"„and I', gives the k p
matrices of the forms in Table II proportional to
the parameters F, G, and H, as well as Ny IV2,

N3, and q, whe re H, is the paramete r def ined by
Both et al."which contributes to the valence-
band parameters y, , y„y„and ~. If these pa-
rameters arise from only a single I'„' band, we
find

Pidgeon and Groves" measured H, = —5.6 and

q =0.39 which gives

n '/[E(1",') —E(r~)] =0.31, (A5)

compared to their estimate of 0.21 using ~'=~
=0.8 eV and E(I",, I",') —E(I',) = 3.8 eV. Values
which preserve the 0.31 ratio for Eq. (A5) are
b, ' = 1 eV and E(I",) —E(I',) = 3.2 eV. Then Eg.
(A3) for H, gives

~ Q ~'/m =8.9 eV; we estimate
~P' '/m = ~P ~'/m =11 eV, and obtain for Egs.
(A3 and (A4)

E~- 3.4, G- —3.1,

N~ —0.23, N3 —0.23 .
N, =-0.35,

'(A6}

More recently, Glosser, Fischer, and Sera-
phin'4 observed electrorefiection structure in n-
type InSb at approximately 3.1 and 3.5 eV which

they attributed to transitions for the I', to 1",' and
I", bands, giving E(I",) —E(I',) = 3.1 eV and n' =0.4
eV. This value of 4' is about half the I',-I',
splitting 4 and half the value calculated recently
by Varea de Alvarez et al. ,

"but agrees with a
calculation by Bloom and Bergstresser. " The
above values of &' and E(I",) —E(I",) give a ratio
of 0.12 in Eg. (A5), and, given H, = —5.6, imply

q =0.15 rather than 0.39 as found by Pidgeon and
Groves. "
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