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Several recently proposed effective potentials for the electron-hole interaction in a polarizable medium are
tested in the calculation of the binding energies of Wannier-exciton-ionized-donor complexes for CdS and
ZnO crystals. The recent contention concerning unsuitability of the Haken potential for this problem is
confirmed. None of the potentials investigated was found to be successful in both crystals. For CdS the
potential proposed recently by Aldrich and Bajaj is able to yield good agreement with experiment. For ZnO
the potential proposed by Pollmann and Biittner is found to be the best but the agreement with experiment is
in general worse than for CdS. The possible causes of the discrepancies are pointed out, and treatments to

account for these effects are suggested.

I. INTRODUCTION

Since the early papers on this topic, there has
been an increasing interest in calculating the bind-
ing energies of various complexes of Wannier ex-
citons® in polar crystals, with special stress on the
exciton-ionized-donor. Calculations with neglect
of the polarizable phonon field have been per-
formed? using a sophisticated variational ansatz,
and satisfactory agreement with experiment has
been attained.

The Coulomb interaction between the charges
is, however, known to be screened in polar crys-
tals due to the polarization of the lattice, or stated
another way, due to the interaction with the phonon
field.® In effect, the dielectric constant turns out
to depend on the distance between the particles.

Calculations based on the assumed Haken (H)
interaction potential® have been started by Elko-
moss,* who has developed an elaborate computa-
tional technique involving averaging of the di-
electric constant over the wave function of the
system in a self-consistent manner. He has found
his results to be in good agreement with experi-
ment.

The Elkomoss treatment has been criticized by
Schréder,' who pointed out that the Haken potential
cannot be used for the interactions with the defect
because of the very large mass of the latter. Since
the coupling constant @ depends on the square root
of the mass, it turns out to be very large as well.
As a result, the intermediate-coupling treatment
which results in the Haken effective-interaction
potential is not valid. In fact, one can check by
direct calculation that the coupling constant for
the defect—phonon-field interaction is at least of
the order of 50, whereas the intermediate-coup-
ling approach is known to be reliable up to o =3.°
In addition, it seems that the Elkomoss treatment
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suffers from some minor inconsistencies in treat-
ing particle masses, the polaron mass being as-
sumed equal to the band mass. Reliability of the
procedure based on extensive averaging also seems
to be worth independent verification.

Mahler and Schrioder® have proposed a competi-
tive approach involving exact treatment of the
donor interactions. They have found the depen-
dence of the effective masses of the particles on
their distance to be an important factor in repro-
ducing the experimental results. The complex
binding energies calculated relative to the exciton
binding energy were found to compare favorably
with the experimental data, although the absolute
values of both energies were substantially over-
estimated. Comparison with the neutral-donor
binding energies has not, to the best of our knowl-
edge, been published so far.

On the other hand, Gorzkowski in his recent
paper’ reports that the Haken potential significantly
overestimates the complex binding energy, cal-
culated with respect to the neutral-donor binding
energy. He finds this situation to be a rule rather
than an exception in polar crystals. He suggests
a possible solution by rescaling the polaron radius
to fit the free-exciton energy, while still retaining
the algebraic form of the Haken potential, or,
alternatively, utilization of a different form of
the potential.

In fact, one should rather wonder why the Haken
potential would be successful in interpreting the
binding energies of exciton complexes, were it
successful indeed. Although the Haken potential
is recognized as an efficient qualitative means
for studying electron-hole interactions in polar
crystals, it has been found to fail in interpreting
quantitatively the exciton binding energies in some
crystals.®® Consequently, new effective potentials
have been developed.1-12
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Barentzen'® has generalized the Haken theory
to cover larger values of the coupling constant.
His approximation scheme yields the interaction
potential as a series in powers of the coupling
constant «, and is capable of systematically (with
increasing powers of o) improving the intermedi-
ate-coupling results for stronger coupling.

Pollmann and Biittner'! and recently Aldrich
and Bajaj'? have taken the correlation between
electron and hole polarons into account, and have
also obtained some corrections to the Haken po-
tential.

The aim of the present paper is to investigate
the possibilities of utilizing the above-mentioned
potentials in calculating the binding energy of the
Wannier-exciton--ionized-donor complex. The
explicit forms of the potentials considered in our
study are summarized in Sec. II. In Sec. III we
describe briefly our computational method. The
numerical results are presented in Sec. IV, and
are discussed in some detail in Sec. V.

II. INTERACTION POTENTIALS

(i) As a reference potential, we re-examine the
Haken potential in the form?

Vy==(/){1/e. - 1/ex[1 =3(e™"+e™")]}, (1)

where 1/e¥ =1/¢,-1/¢,; €, and €, are the static
and optical dielectric constants, respectively;
Kk;=(2m,;w/F)/?; w is the frequency of longitudinal-
optical (LO) phonons; 2, is the band mass of the
ith particle, =1 corresponds to an electron and
i=2 corresponds to a hole; v is the electron-hole
distance; and 1/k; is the corresponding polaron
radius.

The masses m; of the particles which enter into
the kinetic-energy operator are the polaron mass-
es, renormalized due to the interaction with pho-
nons:

mi=m(l+ta,), (2)
with
o, =(e?/fex)(m ,/2hw)/? . (3)

(ii) Next, we are going to study the Barentzen®®
(B) potential

Ve=Vy+hw[Gsa,)?Ee™ + (FafF Ee™'],  (4)
with
£;=1.26(1 + «;7)+0.84k%r2. (5)

The masses in the kinetic-energy operator are
the polaron masses m; defined according to Tulub'®

mi=m;[l+ia,;+2.24(Fa,)?] (6)

(iii) The potential proposed recently by Aldrich
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and Bajaj'? (AB) has the form

e? /k K
Vap=Vy+oe—0(Le™ 174 2 e"“z”) , (7
ABT TH T 2¢x (71 T,
where
T={l+a/[40+ &0 )1 +Ee)) . ®)

The polaron masses enter again into the kinetic
energy operator but this time they are calculated
from the Haga relation'®:

mi=m(1+&a)/(1-%a,). ®

(iv) Finally, we will study the potential proposed
by Pollmann and Biittner'! (PB)

Ven =Vt (€2/2e¥)(M/am)(1 /7)™ ™), (10)

where
M=my+m,; and &m=my-m,,

m; being the corresponding band masses. Accord-
ing to their original paper, the band masses m,
enter also into the kinetic-energy operator, and
are identified with those observed experimentally.
Strictly speaking, the PB potential is a good ap-
proximation to the actual interaction merely in

the limit of very large exciton radii relative to

the polaron radius. This is usually not the case

in the crystals we are going to study. It may, how-
ever, turn out to be more appropriate than the
Haken potential.

(v) In addition, we will investigate the Haken
potential (1) with the polaron radii rescaled to fit
the free-exciton energy, according to Gorzkowski’s
suggestion.” We will assume the vibrational fre-
quency w to be scaled, but not the band masses.
Such an approach might perhaps be justified by
taking into account the other polarization channels,
not just one phonon branch as in the original Haken
treatment. These might include other vibrations
or even polarization of atomic cores. The fre-
quency w would then be an “effective” frequency
averaged over all contributing modes.

(vi) For comparison, we will consider the phe-
nomenological potential proposed by Bajaj'®

2 2 4
-_€ e €w -“ 7 =®aT \,
Vphen_——_z—;— —_ e 1T e™2
€y 2€*7 \g,

where the phenomenological scaling constant y
is set equal to ¥, according to the prescription
in the original paper. The masses in the kinetic-
energy operator are calculated from (2). When
v is set equal to zero in Eq. (11), the Haken po-
tential V, is recovered.

Following Schréder,! the interaction with the
donor will in this paper be assumed to be renor-

(11)
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normalized in the exact way by means of the trans-
formation given by Platzmann,'® and has the form

Ur))=ee;/€, 7y, (12)

regardless of the form of the interaction potential
between an electron and a hole. In this equation,
7, is the distance of the ith particle from the donor
and e; is the charge of the ¢th particle (e, =~e and
e,=+e).

III. COMPUTATIONAL METHOD

The generator-coordinate method (GCM) was
originally introduced by Wheeler et al.!” in nuclear
physics studies. Next, it was adapted and general-
ized by Somorjai!® with the name integral trans-
form method for use in atomic and molecular
problems,’® and recently was further developed
by Thakker and Smith to generate compact wave
functions for two-electron ions.?r2

In the present paper we will take advantage of the
formal similarity between a two-electron atom
and an ionized-donor-Wannier-exciton complex,*
and will therefore adopt a similar procedure. We
have only to make allowances for (i) change of
the charge of one of the mobile particles (a hole
instead of an electron), (ii) different effective
masses of the mobile particles, and (iii) the po-
tential, screened according to the appropriate
formulas of Sec. II instead of the Coulomb poten-
tial for the interaction between the mobile charg-
es. The static dielectric constant €, is included
in the definition of our energy (m¥e*/e27%%) and
length (€,7%2/m¥e®) atomic units.* In these atomic
units m¥=r=e?/e,=1 (Ref. 4) and the neutral-
donor binding energy is 3 a.u. The Hamiltonian
for the complex reads

H=-3A,-300, - 1/r,+1/r,+ V(r,,), (13)

where o=m¥/m¥; 7,,7,,7,, denote the donor-
electron, donor-hole, and electron-hole distances,
respectively; and V(r,,) is approximated by one

of the potentials described in Sec. II expressed

in our atomic units. The donor is assumed to be
static.

Hamiltonian (13) was first derived by Mahler and
Schroder.® They started from the Frohlich-type
Hamiltonian involving explicitly the phonon-field
operators. The donor-phonon coupling was re-
moved in the exact way by means of the transfor-
mation proposed by Platzmann.!® Next, the pho-
non-field operators were approximately elimin-
ated by means of the intermediate-coupling varia-
tional treatment, as originally developed by
Haken.® (For more details see Refs. 1 and 6).

Given the problem of finding the eigenfunctions
of an N-particle system with Hamiltonian H, the

basic idea of the GCM or integral-transform
method is to systematically generate trial func-
tions by the prescription

W(xy, Xy 0o, X)) =H(Xy)
= [ s@e@ulodh, . (9
Dy

where D, is an M-dimensional integration domain
for the parameter space (fspace), ® is some known
function (and can be thought of as an exact eigen-
function for some model Hamiltonian), and the
weight or shape function S(FM) is to be determined.
We shall assume that ¥, &, and S are real.

Insertion of the ansatz (14) into the variational
principle yields

E f dt, f at, 1(t,; €S, s
= [dt, [t K@ T)SE)SE), (15)
where
16580 = [ dRy (2 828G Tl »
Kt T)= [ diy (e Gy WHE Gy Bl (17)

(f02)gym=fOg+ gOf , and hence the Hamiltonian
kernel K and the overlap kernel I are Hermitian.
By varying Eq. (15) with respect to S(E,), one

obtains the Fredholm-type integral equation

Efdful(-{m F;l)s(-{M) =fd{MK(-{M;t7l)S(EI) ’ (18)

for the unknown S(FM). Equation (18) may now be
solved by approximate numerical integration.
This produces the familiar secular equations

->

L
f; W SE)K®E; T) - EIF; )]=0, (19)

for j=1,2,...,L. The W, and ¢; are weights and
abscissas, respectively, for the numerical inte-
gration. If the sets {¢;} and {t/} are chosen to coin-
cide, one obtains a convergent sequence of upper
bounds to the true energy.?® This is the procedure
that we will follow in the present paper.

In order to apply this method to a specific prob-
lem, one must choose (i) a functional form for
&(X,; §,,) in Eq. (14), (ii) an appropriate integration
domain in Eq. (14), and (iii) a quadrature scheme.

As we are interested in the ground state of the
ionized-donor-Wannier-exciton complex, we chose
®(X,; t,) to be
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(I’(Tu V3 V125 @, B,7)

=(4m)" exp(-ar, - Br, = v7,,), (20)

where 7,, 7,, and 7,, are the donor-electron, don-
or-hole, and electron-hole distances, respective-
ly.

This choice of & corresponds to the variational
ansatz

L
Y(ry, ¥p 12) = (41r)"Z C, exp(=0,7) = By, =7 710) -
k=1

(1)

In effect, the nonlinear parameters are chosen
to be the lattice points of a three-dimensional
quadrature formula, and the linear coefficients
are found by solving the secular equation.

Note that for the ansatz of Eq. (21) all integrals
required for the calculation of the energy and
various other expectation values, probability den-
sity functions, and lower bounds can be done anal-
ytically.??®5 This ansatz is also particularly well
suited for handling the Haken-type potentials
containing exponential factors such as those des-
cribed in Sec. II. No averaging of the dielectric
constant is necessary as in the Elkomoss pro-
cedure.? Evaluation of the corresponding integrals
is simply done by renormalizing the coefficients
in the exponents, and then following exactly the
same procedure as for the familiar integrals for
the Coulomb interaction. Except for the potential
proposed by Barentzen,'° the additional integrals
to be evaluated are of the same type as those need-
ed for the generation of the Hamiltonian matrix
in the case of the Coulomb potential. For the
Barentzen potential, the only “new” integrals are
the same ones that are required for the calculation
of {(r,,) and (r2,). They are also easily evaluated
according to the well-known scheme.??"%

Next, the integration domain must be chosen.

It is evident that we may restrict our attention to
finite values of «,, B,, and 7,, and so D; can be
chosen to be a parallelotope in three-space. Thus,
we may write

ake [Alyf.Az]’ Bke [BU Bz]; 7’;, S [Gp Gz]

for k=1,2,...,L. The paralleloptope is not com-
pletely arbitrary. Since we are considering bound
states we must have

(22)

mina,>0, miny,>0 (23)

where the minimum is to be taken over all & {1,
2,...,L}. We allow B,’s to take on negative val-
ues.?®27 However, in order to ensure that all of
the integrals required for the computation of the
energy and other properties exist, we impose the
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following constraints:
min(a,+ ¢, +7 ,+7,) >0,

min(B,+ B;+7,+7¥,)>0, (24)

min(a,+ B, +7,+7,)>0,

where the minimum in all of the above cases is to
be taken over all k={1,2,..., L} and all I€
x{1,2,..., L}

Thus, D, is chosen to be a parallelotope defined
by Eq. (22), withA,, A,, B,, B,, G,, and G,,
being variational parameters subject to the con-
straints of Eqgs. (23) and (24).

Finally, it is necessary to choose a quadrature
scheme.?® Monte Carlo methods?®2° seem to be
most appropriate because the number of quadra-
ture points required for satisfactory accuracy is
smaller than in traditional methods. We use one
particular method®® that is found to be quite suc-
cessful.??! In this method the quadrature points
are pseudorandom numbers in the unit cube which
may be mapped into the required parallelotope by
an affine transformation. In this scheme the 3L
nonlinear parameters are generated by the follow-
ing equations:

a,=(A, - A)GR(k+1)V2)+A,,
B,=(B, - B,)(3k(k+1)V3 )+ B,,
Yp=(G, = G)GR(k+1)V5 )+ G, ,

for all k=1,2,...,L. In the above (x) is defined
to be the fractional part of x. A,, A,, B,, B,, G,,
and G, are the variational parameters that define
the parallelotope of Eq. (22).

In our calculations all overlap and energy inte-
grals were computed with the recursion relations
given by Sack et al.2*?® The optimization of the
variational parameters A,, A,, B,, B,, G,, and
G, [cf. Egs. (22) and (25)] was carried out using
Powell’s algorithm3' modified by the inclusion of
a barrier function to handle the constraints given
by Egs. (23) and (24). All of the algorithms used
for the solution of the secular equation were taken
from Wilkinson and Reinsch.®* The sequential
combination of veducel, tredl, and ratqr wasused.
The calculations were carried out on a Burroughs
B6700 computer using a 78-bit (~23 significant
figures) mantissa.

(25)

IV. RESULTS

We have studied the binding energies of the
exciton-ionized-donor complex in crystals of
cadmium sulfide and zinc oxide. Our input data
are collected in Table I. There is relatively good
agreement between the sets proposed for CdS by
different authors. We decided to use the one
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TABLE I. Input parameters.

mx? my? €, fiw (mevV) References
Cds 0.18 0.7 9.83 5.24 38 1,4,11,12,34-36
ZnO I 0.27 0.58 7.88 4.59 73 1,11, 36, 37
ZnO II 0.271 0.95 8.15 72 12, 38

2In the case of PB potential (Ref. 11) we use m} =m;.

quoted by Schréder.! For ZnO on the other hand,
the variance between the different sets proposed
in the literature is considerable, especially re-

garding the hole mass.!”!2 For this reason, we

performed the calculations for ZnO with two al-

ternative data sets.!r!?

For cadmium sulfide, the calculations havebeen
carried out in the basis of L =20 functions for the
complex and L =15 functions for the bare exciton.
As follows from the convergence test,3? this en-
sured the accuracy of the binding energies to be of
the order of four significant digits for E/E®*, For
zinc oxide, where the input parameters as well
as the experimental data concerning the binding
energies seem to be less well established, we
confined ourselves to L =15 for the complex and
L =6 for the bare exciton. As we have found con-
vergence in this case to be better than for CdS,
the resulting accuracy in this case is of the order
of three significant digits for AE®* and AE®, and
is certainly good enough to allow comparison
with experiment.

The results are presented in Table II-IV. They
essentially confirm Gorzkowski’s observation’
that the Haken potential gives overestimated com-
plex binding energies with respect to the binding
energy of the bare neutral donor. On the other
hand, the binding energies with respect to the
exciton binding energy tend to be underestimated.
This effect is most clearly manifested for the CdS
crystal.

It is perhaps most striking that the Haken po-
tential fails to reproduce the proper sequence
of binding energies. The experimental sequence
is E*<EP < E, whereas that obtained for the Haken
potential is EP<E®*< E. It is therefore in error
even in accounting for some qualitative features
of the system under consideration.

In CdS, the AB potential is the only one to re-
produce properly the sequence of binding energies.
It also turns out to be quite successful in provid-
ing the quantitative estimates of the “relative”
quantities AE? /EP and AE®*/E®*. The complex
binding energy with respect to the neutral-donor
binding energy is still slightly overestimated (as
compared to Refs. 39 and 40), but already not by
an order of magnitude as in the case of the
Haken potential. The absolute values of all ener-
gies are slightly underestimated, not surprisingly,
however, since the difficulties in accounting prop-
erly for the absolute values are a well known
nuisance in many problems.

The PB potential turns out to yield reasonable
results, but slightly worse than the AB potential.
In particular, it fails to reproduce the experi-
mental sequence of the binding energies. Just as
for the AB potential, all energies are slightly
underestimated. These discrepancies were to be
expected, since the form of the potential is in
principle valid only for excitons of very large
radius with respect to the polaron radius, and
this is not the case in cadmium sulfide.

TABLE II. Binding energies (in meV) for various potentials (see text) compared with ex-
perimental data for CdS. AEP=E - EP| AE®™®=E - E°*,

Method EP E= E AEP  AEP/EP (%) AESX AE*/E*™ (%) E/E®*
H 25.36  34.83 35.44 10.09 39.79 0.61 1.75 1.0175
AB 25.36  24.23 26.97 1.62 6.39 2.75 11.34 1.1134
PB 25.36 25.54 27.91 2.55 10.06 2.36 9.25 1.0925
B 25.36  33.72 34.40 9.04 35.63 0.68 2.02 1.0202
H-scaled® 25.36 28.84 30.38 5.02 19.81 1.54 5.33 1.0533
phen 25.36  28.85 30.45 5.09 20.08 1.60 5.55 1.0555
Expt.1® 32 2 29 32.8 0.8 2.5 3.8 13.10 1.131
Expt. 2¢ 32.1+04 29.8 35.6  3.45 10.75 5.75+0.02 19.30 1.1930

2Scaled for E®* =29 meV.
bReferences 39 and 40.
°References 41-44,
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TABLE III. Binding energies (in meV) for various potentials (see text) compared with ex-
perimental data for ZnO I. AEP=E - EP, AE*=F — E**,

Method EP EeX E AE?  AEP/EP (%) AE®™ AE®™/E™ (%) E/E*
H 59.38 64.03 68.37 9.00 15.2 4.34 6.8 1.068
AB 59.38 46.27 59.34 -0.03 —-0.05 13.07 28.3 1.283
PB 59.38 50.86 60.43 1.05 1.8 9.56 18.8 1.188
B 59.38 63.70 68.10 8.72 14.7 4.40 6.9 1.069
H-scaled® 59.38 58.98 65.31 5.93 10 6.33 10.7 1.107
phen 59.38 55.67 63.33 3.95 6.7 7.66 13.8 1.138
Expt. 1° 59 70.5 11.5 16.3 1.163
Expt. 2°¢ 52 42 57 5 9.6 15 35.7 1.357

2Scaled for E®*=59 meV.
bReferences 45-49.
°References 50-52.

The Barentzen potential®® is only slightly better
than the Haken one. This is again consistent with
the expectations,!® since this potential was in-
tended to provide generalization for strong elec-
tron-phonon coupling, and in the case of CdS (weak
coupling) it should yield only some minor correc-
tions.

The phenomenological procedure of rescaling
the polaron radius does not seem to be very suc-
cessful either. Moreover, it requires very seri-
ous rescaling of the phonon effective frequency
(from 38 to 88 meV), that does not look reasonable
from the physical viewpoint.

The phenomenological potential proposed by
Bajaj'® yields results close to those obtained for
the Haken potential with the scaled polaron radius.

The comparison with experiment seems, how-
ever, to be difficult in the case of ZnO, due to
the incompleteness and controversies in inter-
preting the existing data.?*"° Provided that set
“Expt. 1” is correct, and that the neutral-donor
binding energy exceeds the exciton binding energy
as is believed to be usually the case,? the Haken
potential with the rescaled polaron radius seems

to be relatively successful. Also, the scaling of
the vibrational frequency is not so serious in this
case (from 73 to 110.5 meV), and may perhaps
be physically acceptable.

The scaling of the coefficient of the exponential
part in the Haken potential (phenomenological), as
proposed by Bajaj,' yields slightly worse results,
although the proper sequence of binding energies
is still preserved.

Among the potentials involving no adjustable
parameters, the Pollmann-Biittner potential®!
turns out to be the best in this case. It is the only
one to interpret the proper sequence of the binding
energies. It should be noted, however, that if
Hutson’s result®® for the neutral-donor binding
energy is accepted, the binding energy of the
donor is then smaller than the exciton binding
energy. Such sequence of binding energies would
be uncommon but not impossible.* In that case,
the Haken and Barentzen potentials would turn out
to be the best of a poor lot. It should be also noted
that the AB potential fails in this case to yield any
binding at all. For reasons that are not clear to
us, this potential seems to be strikingly inap-

TABLE IV. Binding energies (in meV) for various potentials (see text) compared with ex-
perimental data for ZnO 1. AEP=E— EP, AES*=E _ E**,

Method EP E®x E AE®™ AEP/EP (%) AE™ AE®/E®™ (%) E/E*
H 55.51 87.99 88.23 32.72 59 0.24 0.3 1.003
AB 55.51 58.63 62.15  6.64 12 3.52 6 1.06
PB 55.51 60.51 63.82  8.31 15 3.31 5.5 1.055
B 55.51 86.45 86.75 31.24 56.3 0.30 0.4 1.004
H-scaled® 55.51 59.05 63.08  7.57 13.6 4.03 6.8 1.068
phen 55.51 67.42 70.11 14.6 26.3 2.69 4 1.04
Expt. 1° 59 70.5 11.5 16.3 1.163
Expt. 2°¢ 52 42 57 5 9.6 15 35.7 1.357

2Scaled for E®*=59 meV.
PReferences 45—-49.
°References 50-52.
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propriate for this system, as might already have
been gathered from the enormous error in the
bare exciton energy.

Since the results for all the potentials are gen-
erally in rather bad agreement with experiment
for ZnO II, we conclude that this data set is in-
appropriate. However, it does fit the bare exciton
energy if the potential of Aldrich and Bajaj'? is
used.

V. DISCUSSION

Our calculations confirm Gorzkowski’s result’
that the Haken potential is not sufficient to account
properly for the experimental binding energies of
the exciton-ionized-donor complex. Unfortun-
ately, no one of the other effective electron-hole
interaction potentials proposed so far in the litera-
turel®'#15 jg generally successful. The Aldrich-
Bajaj potential'? seems superior to the others al-
though it tends to overestimate the electron-hole
effective repulsion, just opposite to the Haken
potential, which disregards it.

The AB potential yields reasonable agreement
with experiment for CdS, but completely fails in
the case of ZnO. The reason for this breakdown
is not clear to us. It might perhaps be conjectured
that in this case the corrections to the Haken po-
tential due to the coupling to degrees of freedom
other than the LO phonons, are more important
than those due to the electron-hole polaron cor-
relation. This conjecture is supported by the rela-
tive success of the method based on the use of the
Haken potential with rescaled polaron radius. To
test this hypothesis, one should investigate in
some detail the effects of the interaction between
the charges in motion and the other vibrations, **
and estimate the possible contribution of the polar-
ization of atomic cores. For this interpretation
to be accepted, the effects mentioned above should
be demonstrated to contribute much more in ZnO
than in CdS.

It is, however, interesting to note that the bind-
ing energies obtained for the scaled Haken poten-
tial do not critically depend on whether the ex-
ponents or the coefficient in front of the exponen-
tials (phenomenological) are scaled. Scaling of
the vibrational frequency seems to be a bit easier
to rationalize in physical terms. On the other
hand, the advantage of the Bajaj'® phenomenologi-
cal potential is its universality, since the same
value of the parameter y is maintained for all
crystals, while the vibrational frequency has to
be readjusted for each crystal separately.

Leaving for a moment the complex binding ener-
gy aside, it should also be established why the
neutral-donor binding energy, calculated in the
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electrostatic model in CdS (25.4 meV for our set
of material parameters), differs so much from
the experimental value (32 meV).2**! This dis-
crepancy may be due to the additional stabilization
gained because of the interaction with the local or
resonant modes,*® and to the local strain®® caused
by the donor misfitting to the host crystal lattice.
Both effects have already been suggested to in-
fluence optical spectra of the defect.55¢

Provided the above interactions do contribute
to the stabilization energy of the neutral donor,
they should also have some effect on the binding
energy of the excitoh—ionized-donor complex.
Perhaps this is the reason that the complex bind-
ing energy with respect to the donor is substantial-
ly overestimated in CdS, and that the dramatic
discrepancies with experiment arise in the case
of ZnO.

The difference between the approaches proposed
by Elkomoss* and Schrioder! seems to be relevant
in this connection. Schroder is treating properly
the donor-mobile-charge interactions, but the
price to be paid is that he is forced to assume
the donor to be static. However, it does oscillate
with respect to the lattice, since one can hardly
imagine an impurity atom that might be considered
infinitely heavy with respect to Cd or S atoms.
Elkomoss,* on the other hand, treats the donor
center, the electron, and the hole on equal footing,
but fails to include correctly their interaction
via the polarization field, since it is no more
tractable within the intermediate coupling theory.
Inclusion of the donor vibrations should result in
some changes in the lattice phonon field, and some-
times in the appearance of localized or resonant
modes that have to be included in the treatment.

It seems, therefore, that the future theory should
be in a sense intermediate between the two ap-
proaches. The other effect to be included is the
local static lattice deformation due to the donor
ion.

It should be noted that the comparison of our re-
sults as well as the previous ones™* with experi-
ment is by no means straightforward. The chem-
ical shift and central cell corrections are known
to affect the binding energies of the complex.*!
For CdS we refer our results to the I donor where
the corrections are minimized. Based on the ex-
perimental energy difference between the S and P
states of the neutral donor, the corrections are
expected to contribute to the energy of the order
of 0.5 meV, and hence are not likely to affect our
conclusions very much. For the ZnO crystal,
however, where the corrections are known to be
substantial, the comparison is less reliable.

The computational method presented in this
paper can yield the binding energies up to any
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desired accuracy for the exponential-type poten-
tials. No averaging is necessary and all integrals
are calculated exactly. Final accuracy is there-
fore limited merely by the energy-minimization
procedure and by the length of the basis set. The
wave functions are compact,?*? and we get about
the same accuracy in E/E®* with L =20 as Elko-
moss does by diagonalizing 50 X 50 matrices.*
This reduces the time of the calculations, and
also seems promising in future analysis of the
wave functions by reducing the computational ef-
fort in calculating the expectation values. It
should also be noted that the method is capable
of optimizing for any chosen root of the secular
equation, not just the lowest one, and is therefore
well suited for the study of the excited states.
However, before any more extensive calculations

are started, the experimental evidence regarding
the input data and binding energies should be
thoroughly reinvestigated. Considerable variance
in the experimental data'™* regarding the binding
energies of the complex in CdS makes the situa-
tion difficult. The variance in experimental re-
sults for ZnO is even more striking.**"°° The
accurate masses from cyclotron resonance experi-
ments would be of great assistance in both cases.
We suggest, therefore, that some model systems
be ultimately reinvestigated with maximum avail-
able experimental accuracy.
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