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Transport studies near phase transitions in NbSe3
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The nonWhmic transport properties of NbSe, are studied near the two phase transitions at T, and T,.
From the non-Ohmic data a parameter a is obtained which provides information on the fraction of Fermi
surface a8'ected by the phase transitions. By relating a to a BCS-type gap and modifying the calculations of
Fedders and Martin on the spin-density-wave state in Cr we have obtained a theoretical curve for a which
agrees well with the experimental data. This good agreement provides new indirect evidence for the charge-
density-wave (CD%) state in NbSe, . The derivative of the low-field resistivity versus temperature has also
been measured and is shown to be divergent at T, and T,. The index of this divergence is presented and its
significance to the dimensionality of the system is discussed. Finally, we briefly discuss the possibility of
explaining the non-Ohmicity below T, in terms of nonlinear excitations in a CD%' condensate.

I. INTRODUCTION

The transition-metal trichalcogenide' ' NbSe,
undergoes two phase transitions at the temper-
atures T, (142 K) and T, (58 K}. The electronic
conductivity is greatly perturbed by processes
which set in at T, and T„as evidenced by the ap-
pearance of two giant anomalies in the resistivity.
The cohductivity within these anomalies has been
shown's' to be highly non-Ohmic, with the conduc-
tivity increasing rapidly as the applied electric
field is increased. The frequency dependence of
the conductivity is also anomalous. ' At a frequency
of 9 6Hz, no evidence of the T, transition appears
in the microwave resistivity while the T, anomaly
is sharply reduced in size compared to the de case.
In conjunction with other indirect experimental
evidence which will be discussed in Sec. $VA, the
two transitions have been tentatively identified with
the formation of charge-density waves (CDW's).
If this hypothesis is valid, the ngn-Ohmic behavior
and the anomalous frequency dependence raise the
intriguing possibility that nonlinear exeitations are
being observed in a CD% condensate. Such exci-
tations have been the subject of much theoretical
discussion. In particular, Rice, Bishop, , Krum-
hansl and Trullinger' have described the excitation
of solitionlike P particles in a one-dimensional
(1D) CDW system. Maki' has also discussed the
electric-field generation of solitons as a possible
source of non-Qhmicity. The lack of direct experi-
mental evidence (from x-ray or neutron scattering)
for superlattice formation in NbSe, makes the CDW
model rather provisional and it is entirely possible
that the phase transitions are caused by a different in-
stability. (See note added in proof. ) However, all ex-
perimental evidence obtained to date is consistent
with the CD% model and recent Hall-effect measure-
ments' have provided direct evidence of a large loss

n„= /o(a, „o,+„), n=1. 2 (2)

was introduced. Arguing from the fact that the
conductivity is proportional to the FS area we in-

of carriers at both T, and T, . This is to be expected
from a theory in which sections of the Fermi surface
(FS) are destroyed by gap formation.

In this paper the behavior near T, and T, of the
various parameters associated with the non-Oh-
micity are presented and the results are analyzed,
using a model in which a fraction of the carriers
are removed by gap formation at the FS. The tem-
perature dependence of the parameter o, [defined
in Eg. (2)] is interpreted in terms of thermal ex-
citations of carriers across a growing gap. An

equation is derived relating a to the gap function
& and good agreement between experiment and the-
ory is obtained, using appropriately scaled Bar-
deen-Cooper-Schrieffer (BCS)' values for the gap

To obtain the transition temperatures, the de-
rivative of the low-electric-field resistivity with re-
spect to temperature has been measured and shown
to diverge at the two transitions. The critical in-
dex of this divergence provides an indication of the
conductivity anisotropy but the conclusions are not
firmly established because of the rounding off of
the divergence very near T, and T, in the present
data.

Below T, and T„ the non-Ohmieity of the conduc-
tivity obeys the equation'

(z(E, T}=cr,„(T)+(yq„(T)e s«s,n= 1,2,

where E is the applied electric field„T is the tem-
perature, and the subscripts 1 and 2 identify the
transitions. The activation field E,„ is strongly
temperature dependent. Its temperature depen-
dence as well as that of o, and 0, have been de-
scribed in Ref. 3, where the parameter e„defined
by

17



3244 N. P. OWG

terpreted' n„as measuring the fraction of FS de-
stroyed by gap formation. a„was shown to grow
from zero at T„and saturate to a constant value at
temperatures below that at which the low-field re-
sistivity peaks. However, insofar as the above in-
terpretation of o.„ is not unique, we shall discuss
a slightly different interpretation of e„here. The
new interpretation considers the a„(suitably nor-
malized) to measure the number of carriers ther-
mally excited across a growing gap. As opposed
to the interpretation in Ref. 3, the fraction of FS
destroyed by gap formation is considered to be
temperature independent. The loss of carriers is
still a smooth function of temperatures because the
size of the gap increases smoothly from zero, and
thermal excitation of carriers across this gap de-
creases in relation to the size of the gap.

derivative the temperature was allowed to drift at
a rate of 0.1 K/min pass the transitions, and the
voltage across the sample was measured in 70-mK
steps with an HP standard differential voltmeter.
The derivative was computed by differentiating the
best quadratic fit to the resistance at five adjacent
temperature points. There was a hysteresis of
approximately 0.1 K between cooling and warming
runs, but the two transitions were inferred to be
second order because the displacement between
cooling and warming curves was temperature inde-
pendent to +20 mK.

III. RESULTS

From Eq. (1) we have the conductivity in the two
limits of weak and strong fields

II. EXPERIMENTAL

o(E 0) =o,„,
o(E —~) =o,„+o,„.

(3)

(4)

All the measurements were done in the four-
probe configuration with the leads attached to the
sample by silver paint. The non-Ohmic data were
taken using pulsed currents with a pulse width of
2 p, sec and a duty cycle of 10 4. Typically the
maximum power dissipation across a sample of
30 0 was 5 & 10 '%. This was inferred to be well
within the thermal capacity of the cryogenic sys-
tem because a de current dissipating the same po-
wer in the sample revealed no signs of temperature
increase in the sample. Pulse heights were mea-
sured by means of a bucking variable-voltage refer-
ence as described in Ref. 3. The uncertainty and
reprodueibility of the measurements were 1 in 10',
decreasing to 1 in 10' for the smallest pulses. To
ensure that there was no hysteresis in the mea-
sured conductivity (as the E field was varied at a
fixed temperature) dc measurements using a 10-p, A
current were performed before and after each
pulse measurement. In samples which were inad-
vertently damaged by excessively heavy pulses
(typically 25 mA into a 30-Q sample) the measured
conductivity showed large hysteresis and was not
reproducible. Microscopic examination of these
damaged samples invariably showed the presence
of broken strands which separate from the main
body of the sample. For undamaged samples no
hysteresis under field variation or thermal cycling
was observed to the accuracy of the measurements
and results were reproducible after a warm-up to
room temperature and subsequent cool down. The
temperature was measured by a calibrated silicon
diode sensor and the stability was maintained to
+20 mK for the 20 min required to complete the
non-Ohmic measurement at each temperature
point.

In the measurements of the low-field-resistivity

In Eq. (3), o,„ is just the low-field conductivity. If
Eq. (1) is valid then by plotting In(&y —cr,) vs 1/E,
we should obtain a straight line. From the slope
and intercept of this straight line the values of E,
and g,„may be obtained. The parameter o.„ is then
computed from Eq. (2). In Ref. 3 preliminary mea-
surements showed a„ to increase from zero at T„
and then saturate to a temperature-independent
value at lower temperatures. E,„appears to attain
a large value just below T„, decrease to a mini-
mum, and then increase rapidly as the temperature
is lowered. In this paper more extensive data on
a„and E,„are reported, in particular near T, and
T,. Figure 1 shows n, and E„at temperatures
near T, a, (solid .circles) grows smoothly from
zero as (T, —T)'~' close to T,. The solid line
obeys the equation 2.05 (1 —T/T, )'I'. At lower
temperatures, the experimental points deviate
from the solid line. This behavior, reminiscent
of the behavior of the gap function & in the BCS
theory of superconductivity, has prompted us to
relate a„ to &. This will be discussed in Sec. IVB.
The open circles represent the measured activation
field E~. It may be seen to diverge as T ap-
proaches T,. The source of this divergence is still
unclear. The broken line indicates the low-field
resistivity p (zero suppressed). It may be seen
that deviation from the pretransition linear behav-
ior occurs 2 K above T,. This is ascribed to scat-
tering from fluctuations in the gap in analogy to the
ease in itinerant antiferromagnets (see Sec. IVD).
Figure 2 displays the same quantities Qy and Eoy
close to the T, transition. The larger error bars
reflect the greater uncertainty in the measurements
caused by the smaller change in 0 induced by a
given field. (The activation field near T, is about
an order of magnitude larger than that near T,
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FIG. l. Behavior of the parameter n2 (solid circles)
and activation field Epp (open circles) near T&. The
solid line is the mean-field prediction of the tempera-
ture dependence (T~ —T)» . The broken line is the low-
field resistivity (zero suppressed).

E ls shown, The data for both n„and E,„at the
two transitions may be fitted to straight lines in
the log-log plot against the reduced temperature
r = (T/T„—1). The slope of the straight lines pass-
ing through a, and a, (circles) is

while the maximum relative increase in 0 is three
times smaller near T,.) Nevertheless, behavior
similar to that of e, and E„is obtained for n, and
E». The solid line has the equation 0.849(I —Tj
z' )1/2

In Figs. 3 and 4 the critical behavior of n„and
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9, = 0.50~ 0.03,

(5a)

(5b)

where a„~
I
r

I
~ In antic.ipation of the discussion

which relates e„ to the order parameter the crit-
ical index of o„has been identified with g. The
slope of the E~ lines is -0.45 + 0.05 (for Eo,) and
—0.45+0.03 (for E»). Due to the larger error bars
in the E,„data the case for a power-law behavior
near T„ is less firmly established than for a„. As
is well known in the interpretation of such data the
slope of the "best fit" is affected by the choice of
'the critical temperature T„. In Fig. 3 the solid
circles correspond to choosing T, as 57.96 K while
the open circles correspond to T, = 57.94 K. How-
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T2 is taken to be where dp/dT peaks.

ever, precision resistivity measurements" on the
ferromagnetics near the Neel point have shown
that the derivative of the resistivity is divergent
at the Neel point. Recently, similar measure-
ments "~"on the one-dimensional CD% metal tet-
rathiafulvalene-tetracyanmiuinodimethane (TTF-
TCNQ) and its selenium analog have shown the ex-
istence of a divergence in the derivative of the re-
sistivity with respect to temperature. The tran-
sition temperature T, in these systems is taken to
be where the divergence occurs and it is found ex-
perimentally that the derivative of the resistivity
behaves as a power law in the reduced temper-
ature on either side of T,. The critical index is
different on both sides of the transition. As an aid
to locating T, and T, in NbSe, the low-(electric)-
field resistivity ha, s been measured at VO mK in-
tervals near the two transitions. Figures 5 and 6

show for the T, and Ty transitions the derivative
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duced temperature t = (T —T2)y2. The solid (open) cir-
cles correspond to choosing T2 equal to 58.05 K (57.95
K). The slopes of the two lines are -1.0 and —1.5.

(open circles) after the subtraction of the flat pre-
transition background B. As may be seen, the de-
rivative peaks at a temperature below where the
derivative changes sign. In both figures the solid
circles represent the low-field resistivity (with
zero suppressed). Unfortunately, substantial
rounding of the divergence occurs, especially at
T„and it is not possible to ascer'tain the transition
points to better than 0.1 K. For the T, transition
the divergence is at 58.00+ 0.05 K. Although this
is consistent with the value of T, (5"l.96 K) used in
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unambiguous measurement of the critical exponent
near T, . But at temperatures several K above T&, the
exponent is -2.0. This extends to about 15 K above T&.
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studying the critical behavior of a, the uncertainty
of 100 mK prevents an unambiguous determination
of the critical index of dp/dT In. Fig. 7 the deriv-
ative (after background subtraction) is plotted
against the reduced temperature t in log-log scale.
(Theopencircles are for T, =5'l.95 K and the solid
circles are for T, = 58.05 K.) The critical index
lies between -1.0 and -1.5 depending on the choice
of T2. The flattening of the curves for t& 3 && 10 '
reflects the rounding off of the divergence. A sim-
ilar situation obtains for the T, transition. The
peak determined by the derivative data occurs at
141.0+ 0.1 K. This is substantially lower than the
value of 142 K used in the analysis of the critical
behavior of n, . This discrepancy is larger than
the uncertainty in both measurements and is not
understood. Figure 8 shows the log-log plot of the
derivative versus t. As in Fig. 7 substantial
rounding occurs near T, and it |.s not possible to
extract a critical index in this region. However,
for t& 2 x 10~ the derivative obeys dp/dT (f-t "
over an interval of 15 K above T,. The index is in-
sensitive to any reasonable choice of T,. This
fluctuation contribution to the resistivity over such
a wide range of temperature makes the T, tran-
sition appear much "broader" than the T, tran-
sition in the resistivity-temperature profile.

IV. THEORETICAL AND DISCUSSION

A. Charge-density-wave model

The arguments in favor of the CDW model in
NbSe, have been reviewed in some detail in Ref.
3. Briefly, these are based on data from the pres-
sure dependence' of T, and T„ the detection of a
heat-capacity anomaly' at T„ the rapid rise of the
superconducting transition temperature" T, under
pressure, and the extraction of the parameters'
n„which are consistent with gap formation at the
FS. Recently, the Hall effect' and Young's mod-
ulus" have been measured. The Hall constant R„
shows an abrupt rise at both T, and T„ indicating
a decrease in carrier concentration at these tran-
sitions. The elastic modulus along the chain direc-
tion shows a small anomaly at T, (but none was de-
tected at T,}. Both these experiments are consis-
tent with the CDW model, since the Young-mod-
ulus measurement indicates a structural change
(at least at T,} while the Hall measurement pro
vides direct evidence for a loss of carriers assoc-
iated with these structural transitions. In the face
of the accumulated indirect evidence it appears
worthwhile to pursue the CDW hypothesis further
even though more direct evidence (x-ray or neu-
tron-scattering data) is not available.

We consider the Frohlich electron-phonon (e-p)
Hamiltonian

H = Z e-cf cf+ + h()f-b~b-
k k R Q q Q,

k Q

1
(I)

ksq

where c~ and b~ are the creation operators for
electrons and phonons, respectively, N is the
number of ions, and w; is the unrenormalized pho-
non frequencies. Within the random-phase approxi-
mation (HPA) the phonon frequencies will be renor-
malized" to

(8)

Q f(&~) -f(~;-o)
g r ~k —~k-4

(9)

Extensive calculations on the SDW state exist in the
literature. With a slight modification the results
may be applied to CDW systems as well. From the
paper by Fedders and Martin" (FM) the stability
criterion for the SDW state is

V(0)w' p f.(&g) -f(,(&~-o} 0
E,(k) —Eq(k —Q)

(10)

V(0) = 4ve'/("2~,

where 0 is the volume, V(0) is the long-wavelength
screened Coulomb interaction, y is a matrix ele-
ment, e is the electronic charge, and 8» is the
Fermi-Thomas screening length. The subscripts

In Eq. (8) the second term is proportional to the
electronic susceptibility and f(e~} is the Fermi-
Dirac distribution. Equation (8) may be derived
by" computing the lowest-order contribution to the
phonon self-energy and examining the pole of the pho-
non propagator computed within BPA. In most me-
tals the correction is small except at Q= 2k~ where
the derivative of the correction with respect to q
becomes infinite and Eq. (8) gives rise to the Kohn
anomaly. " A much larger effect may arise in some
systems if band pathologies allow the susceptibility
to diverge for certain values of q. As first pointed
out by I.orner, "the existence of large pot'tions of
FS that are parallel (nest) would cause the denom-
inator of the summand in Eq. (8) to vanish over a
large fraction of phase space, for the value of q
(called the spanning vector Q) that brings about
this nesting condition. This has been established
as the mechanism which stabilizes spin-density
wave" (SDW} state in Cr, and is also presumably
the case in the layered compounds where CDW's
occur.

The stability criterion may be taken as the con-
dition Qo =0. From Eq. (8} this is equivalent to
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a, 5 refer to the electron and hole bands, respec-
tively. The occurrence of two (or more) types of
carriers is indica. ted in NbSe, by the Hall effect'
which reverses sign at 15 K. It is possible that
nesting may occur between hole and electron poc-
kets as in Cr. In any case, the results we shall use
from the FM calculation will not be affected by
this assumption. The energies measured from the
FS are given by

e,(k) = E,(k) —Er = v, (k —k,),
e ~(k) = Es(k+ Q) —EF = vs(k —k, ),

(12)

(13}

where v„v~ are velocities at the FS in the two
bands and k, is an average Fermi momentum. The
FM results are analogous to those of the BCS the-
ory' of superconductivity. They obtain for the
transition temperature T„

ks T, = (2y,Vkj'/w)e 'i "snv,

where

Ilif = (E + 2Ek —Gk', )/4ks„

(14)

g = [a'(T —T)/b]'i'.

The specific-heat discontinuity is given by

C /0= 1',a "/b = —2T (F „—F„)/(T, —T)'.

(22)

(23)

Using FM's result" for the decrease in the free
energy near the transition

Asnw = [PV(0)k /2w v]y ln'r 0 577
~ (16)

k', = k, (E —k,), V= (v,v~)'i', v = —,'(v, + v,}. (17)

The assumptions made in evaluating Eq. (10}are
that the surfaces of constant energy in both bands
are spherical and congruent. The first Brillouin
zone has also been approximated by a sphere of
radius E. FM also derive an equation for the gap
function &. In the two limits T -0, T —T„& is
given by

L(T- 0) = wvks T,/y, V = 1.76(v/v)ks T„(18)
&(T-T,) = 3.06(v/V)(ks T,)(1 —T/T, )'i'. (19)

The results in Eqs. (14)-(20) may be applied to
a CD% system provided we change the coupling
constant Xs». Comparing Eqs. (9) and (10) we may
define the equivalent coupling constant given by

Xc» =g o Qk, /bio o N2w v. (20)

In Eq. (19) the gap increases as (1 —T/T, )'i'
near T,. This may also be derived from the I an-
dau expansion" of the free energy

Fc» F„=a/'+ (-,' b)g', —1( ~ &, a = a'(T —1',).
(21)

Minimizing (Fc» —F„)with respect to P we have

F „-F„= (k-,'v'/4w'v'k' T', )[-',g(3)]&',

we have for the specific-heat discontinuity

C„/ II= [4/7&(3)](k', / ')(k' T,)

(24)

(25)

B. n parameter and the energy gap

In NbSe, the non-Ohmic results reported here in-
dicate a strong correlation between the behavior of
a„in Figs. 1 and 2 and the order parameter de-
scribed by Eq. (22). In the following, arguments
will be developed to establish the relationship of
o with the gap &. Although the non-Ohmic behavior
is still not understood it is possible to extract in-
formation on the FS by examining the E= 0 and E
= ~ limits of the conductivity. %e make the as-
sumption that the drop in conductivity at T, and T,
is due to the loss of FS area which results from
gap formation over the nesting fraction. Since the
gap is very small for temperatures near T, there
will be substantial thermal excitation of carriers
across the gap at these temperatures. As the gap
increases, these excitations will drop rapidly in
number. In the low E-field limit we may express
the conductivity as" (suppressing the n subscript)

o(E- 0) = o&+o&2f(»),

f(«) = (e"+I) '.
(26)

(27)

In Eq. (26), 6 = (ksT) ', & is the gap size, and o „
(o G} represents the conductivity associated with
the FS area not affected by the gap (destroyed by
the gap). Comparing Eq. (26} with Eq. (3) we have

o, =0~+ ccrc. (28)

In the strong-field limit excitations induced by the
infinite field saturate the non-Ohmic mechanism
and we recover the pretransition behavior [obtained
by setting D = 0 in Eq. (26)]. From Eq. (4) we have

(Tg + 0'g = 0'p + (z c. (29)

Using Eqs. (28) and (29} in Eq. (2), n may be writ-
ten

Q = [ltd'/(G~+ 0'c)] tanh(s, 3+). (30)

o.,(0) = 0.63 s 0.01 (32)

Insofar as a„and gc have the same temperature
dependence, the coefficient of tanh(s «) in Eq. (30)
will be only weakly temperature dependent. . Near
T, we may expand [using Eq. (19)]

(T)/ (o) = l 8. =1 53(1 —T/T )""( /v) (»)
This accounts for the behavior of a(T) shown in
Figs. 1-4. In Eq. (31), ( a)i0thse lvanefao(T) at
T=0 and 9,= (kT,) '. Taking the experimental val-
ues appropriate to the T, transition
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compared with the 1.7 && 10' erg/cm' K anomaly at
the CDW transition" in 2H-NbSe, . Using Eq. (34)
in Eq. (35) we compute a discontinuity in C„/fl of
9 & 10' (3 && 10') erg/cm' K assuming a carrier den
sity of 10" cm ' (10"cm ), and an effective mass
of 0.3 times the free-electron maps. " The elec-
tronic contribution is clearly too small to account
for the large observed anomaly, and one has to in-
clude the lattice contribution. However, a large
lattice contribution would appear to be inconsistent
with the Young's modulus (e) measurements'~ which
detected no change in & to 3 parts in 10' at T,.
More-accurate measurements of the heat capacity
at both transitions are necessary before a realistic
estimate of the electronic contribution can be
made.

FIG. 9. Temperature dependence of n2(7')/t'a2(0). The
line is the theoretical expression tanh (~p 5) [see Kq .
(30)] with 5=2.12 AB&s. The solid circles are the data
from Fig. 1 while the open circles, which have more
scatter, are from previously published measurements
(Ref. 3) on another sample.

o2(T) = 2.05(l —T/T2)'~
&

T T2, (33)

we have for (v/V), the value [using Eq. (33) in Eq.
(31)]

(v/V), = 2.12+ 0.05. (34)

Equation (34) expresses the ratio of the gap mea-
sured in NbSe, (at T,) and the BCS gap. From Eqs.
(18) and (34) we derive a theoretical value for the
zero-temperature gap,

&,(0) = 3 73ksT, = 19.meV. (35)

At the T, transition the corresponding numbers are

(v/V), = 2.8, a, (0) = 60 me V. (36)

In Fig. 9 we compare the experimental data on n2
with the BCS-FM model. The. measured values of
o,(T)/a, (0) for two samples are compared with Eq.
(30). The line is the theoretical curve tanh(-,'9&).
Values of & were obtained by multiplying the values
of &~cs provided by Muhlschlegel" by the scale fac-
tor (v/V), given in Eq. (34). The solid circles are
the data in Fig. 1 while the open circles which
show roore scatter are from earlier published re-
sults3 on another sample.

The Landau-type mean-field theory predicts that
the electronic specific heat shows a discontinuity
at T, with a contribution given by Eq. (25). Al
though therxnal measurements on NbSe, are sparse
we may venture a comparison with the early results
of Chaussy et a/. ' The specific heat shows a large
anomaly (6 x 10' erg/cm'K) at 52 K. This is to be

C. Activation field Eo and nonlinear excitations

In many ways the non-Ohmicity of the conduc-
tivity below T, is the most interesting and puzzling
property of NbSe, . Efforts to interpret the ob-
served behavior of o given by Eq. (1) have not been
successful. The activated form of o strongly sug-
gests an electric-field induced quantum tunneling
process. However, the very small E-field values
(0.1- 1 V/cm) needed to induce non-Ohmicity have

posed great difficulties in comparing theoretical
expressions with experimental data. The simplest
theory which reproduces Eq. (1) is that of Zener
tunneling4 across a gap at the FS. However, the
magnitude of the gap arrived at using measured
values of F., is two orders of magnitude smaller
than k~T. The E-field creation of soliton-antiso-
liton pairs in a one-dimensional CDW condensate
has been discussed by Maki. ' In this model the
electric field induces a tunneling from a region in

P space (where P is the CDW phase) to another re-
gion which corresponds to the appearance of a so-
liton-antisoliton pair. Interpreting Eq. (1) in terms
of Maki's mechanism again leads to values of the
soliton rest energy two orders of magnitude smal-
ler than k~T. Thus, the thermal creation of these
solitons would appear to overwhelm the quantum
creation at temperatures near T, and T,. Recently,
Larkin and Lee" (LL) have considered the problem
of a one-dimensional CD% pinned by impurities,
and the nonlinear conductivity arising from the
quantum tunneling between impurity sites. In the
strong pinning case they obtain for the non-Ohmic
resistivity

p ~ exp/[2nv~(m*/m)'~' 'Inc]/eEI'j, z = Vl/v~,

(37)

where v~ is the characteristic velocity related to
the elastic energy for deformation of Q, E is the
electric field, V is the impurity strength, and l the
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average distance between impurities. Applying
their calculations to NbSe, LL conclude that the ob-
served value of F., would require l to be extremely
large. Furthermore, as in the previous two cases,
thermal energy would dominate the energy supplied
by the field. LL conclude that their impurity-pin-
ning model is inapplicable to NbSe, .

(3.9) of Ref. 27]

~Re df exp(-in+, --I —I' f)

D. Critical divergence of dp jdT
&& Z@o,f(f) ~ (39)

1,5 (d I)
(o oo I 1 ~ 0 (d 2)

fo»(d3)
(38)

The derivative of the resistivity arising from the
Iong-range fluctuations may be written as [cf. Eq.

The divergence of the derivative of the resistivity
in pure metals and alloys at a phase transition ap-
pears to be very widespread. In ferromagnetics"
such as Ni the derivative of p diverges logarithmi-
eally at the critical point T„. In antiferromagnetic
materials the divergence has a higher crit-
ical index). Fisher and Langer" (FL) have pro-
posed that the divergence is due to critical scat-
tering by the short-range spin fluctuations and have
proposed a divergence ~f

~

' (where n is the spec-
ific-heat index) above the Neel point T„. Below 7„
the scattering is dominated by the growing order
parameter and dp/dt oo P» ' (where, 3 is the order-
parameter critical index). This agrees with what
is experimentally observed iv Ni. However, in an-
tiferromagnetics the divergence above T~ has a
higher critical index. Suezaki and Mori" (SM) have
pointed out that the long-range spin fluctuations
are dominant (above T~) in the case of antiferro-

agnetics, where fluctuations occur around the
wave vector Q, leading to large angle scattering
of conduction electrons. This is particularly true
in SD% metals such as Cr where Q= 2k~. The mi-
croscopic calculations of Takada' point to the
same conclusion, namely, long-range fluctuations
are dominant in antiferromagnetics while short-
range fluctuations are dominant in ferromagnetics.
Recently Horn and Guidotti" (HG) have studied the
divergence of dp/dT in the pseudo-one-dimensional
organic metals [TTF-TCNQ and tetraselenafulval-
ene-tetracyanoquinodimethane (TSeF-TCNQ)] at the
Peierls transition T~ They found .that (above T~)
the critical index is -1.0 along both axes in TTF-
TCNQ and -1.5 along the 5 axis in TSeF-TCNQ.
These indices are substantially larger than those
found in the magnetic materials (0.0 to -0.3). To
explain their results they considered the effect on
dp/dl' of restricting the allowed final states for
scattering due to the reduced dimensionality d of
the metal. Using mean-field values for the critical
exponents HG obtain the results"

where Q is the spanning vector of the CD%, g@ is
the electron-phonon coupling constant, f; is the
Fermi-Dirac distribution, I' ' is the lifetime of the
electrons, and

@ () xg(f)
8T (4o)

In Eq. (40), XR is the density-density correlation
function which diverges at; T = T, for K = Q. To ev-
aluate Eq. (39) the assumption of critical slowing
down is made so that we may neglect27 the time de-
pendence of 4'-„ in Eq. (40) and it is valid to use the
static scaling laws, '

){o,-„(0)= t~F (I»/z). (41)

In Eq. (41), y is the susceptibility critical index,
I" is an unknown function, and I{." is the inverse cor-
relation length which behaves as (for T -T,)

x~t". (42)

The dimensionality d of the electron gas enters
when we evaluate ~4'g. -„. Using Eqs. (41) in Eq.
(40) and performing the sum over k we have

(43)

Substituting Eq. (43) in Eq. (39) we finally have [us-
ing Eq. (42)]

+Ox
OO Q Q f Y 1+Od

dT (44)

Using mean-field values (y=1, v=-»') we have HG's
results [Eq. (38)].

In NbSe, the critical exponent lies between -1 and
-1.5 at the T, transition. Using the above theory
this implies that the dimensionality of the system
is 2 or 1, the data being insufficiently unambig-
uous to decide between the two. However, g, value
of -0.5 or smaller for the critical exponent can be
excluded rather definitely. At the T, transition the
rounding of the divergence very near T, prevents
an extraction of the index. For t &2 & 10~, how-
ever, an exponent of 2 is obtained. This is larger
than the result in Eq. (44) using reasonable values
of y, v, and d. It is possible that the assumptions
underlying the derivation of Eq. (44) no longer hold
at temperatures well above T,. In particular the
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critical slowing-doom assumption is expected to be
invalid far above T, and one needs to examine the
dynamics of the fluctuations without this simpb-
fying assumption.

V. SUMMARY AND CONCLUSION

The non-Ohmic conductivity of NbSe, has been
measured at temperatures in the vicinity of the two
phase transitions at T, and T,. At each temper-
ature the conductivity may be decomposed into a
field-independent part 0, and a field-dependent part
cree 'is (suppressing the subscript n, which iden-
tifies the transition). From o, and o~ a parameter
a is obtained which (at T = 0 K) gives the fraction
of FS affected by the gap. (In a multiband model
the pockets of FS which do not participate in the
CDW formation are included in o,.) At elevated
temperatures (particularly a few Kbelow T, and T,)
thermal excitations across the growing gap reduce
the value of n from its T = 0 K value. Therefore
the temperature dependence of n provides infor-
mation on the temperature dependence of the gap.
By applying Fedders and Martin's theory to a CD%
system we have theoretically computed the temper-
ature variation of n using a BCS-type gap. Good
agreement between the calculations and the data is
obtained. This agreement may be interpreted as
new evidence for gap formation at the FS at both
transitions. The loss of carriers due to gap for-
mation has also been observed directly in recent
Hall measurements. From the fit of oj. to the BCS
gap theoretical values for the zero temperature
gaps have been calculated. The magnitude is 60
meV (19 meV) for the gap corresponding to the T,
(T,) transition. The transport measurements re-
ported here also provide some information on the
dimensionality of the electronic band-structure.
By studying the divergence of the resistivity de-

rivative at T, we conclude that the dimensionality
is less than three. In conjunction with the large
Hall effect and strong galvanomagnetic response
at low temperatures, and the absence of a metal-
to-insulator (Peierls) transition we believe that the
dimensionality is closer to two than to one.

Although some progress has been made in inter-
preting the non-Ohmic data the actual mechanism
for the striking electric breakdown of the anom-
alies remains a puzzle. A number of theories
based on quantum tunneling are successful in ex-
plaining the electric-field dependence of the con-
ductivity, but numerical comparison with the ex-
perimental data seems to come up against the
paradoxical situation that the energy supplied by
the electric field is much smaller than the thermal
fluctuation energy at T, and T,.

Note added in proof. Electron diffraction evi-
dence of superlattice formation in NbSe, at Ty
has been reported by Tsutsumi, Takagaki, Yama-
moto, Shiozaki, Ido, Sambongi, Yamaya, and
Abe, Phys. Rev. Lett. 39, 1675 (1977). X-ray
diffraction evidence for a new superlattice at T,
has also been obtained by Fleming and co-workers
[P. A. Lee (private communication)]. Ayrolles and
Roucan have also observed the superlattice at T,
by electron diffraction . [P. Monceau (private
communication) j.
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