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Nonlinear impurity screening in semiconductors
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Nonlinear impurity screening in metals has been widely studied in the literature, and the differences with

respect to the linear results have been found to be important. The screening theories available for
semiconductors were until very recently obtained jn k space, and this prevented the study of nonlinear

effects. We present here for the first time an investigation of nonlinear impurity screening in a model

semiconductor. The Thomas-Fermi theory of dielectric screening, recently developed by one of us, has been

used. Nonlinearity effects are found to be of the same order of magnitude as in metals. A remarkable donor-

acceptor asymmetry is also found.

I. INTRODUCTION

The field of an ionized impurity in a semicon-
ductor is a, subject of relevant interest, which has
been widely discussed in the literature. ' The bare
impurity potential must be screened to account for
the dielectric relaxation of the host, and this has
always been done, according to the authors' best
knowledge, within the linear-response theory. ' '
Linearization is exact, in principle, for vanishing-

ly small impurity charges, ' but the question arises
whether the approximation is good for integer val-
ues of the charge Z (in a.u. ). In the case of metal-
lic screening, the effects due to nonlinear relaxa-
tion have been investigated by many authors and

found to be important. ' '~

Throughout this paper we adopt the homogeneous
and isotropic model solid (HIMS) hypothesis, which
has been adopted in the literature for the study of
nonlinear response in metals. '"" Despite the an-

isotropy and inhomogeneousness of covalent bond-

ing, the HIMS has proved to be a very good approx-
imation for the linear response of a real semicon-
ductor, "' and a very useful tool for the interpreta-
tion of a number of physical properties. "

In this paper we study the nonlinear response of
a model semiconductor to a static-point-charge
external disturbance, whose bare (unscreened) po-
tential is

V, ( )=rZ/r
Until very recently all the approaches to the pro-

blem of dielectric screening in a, semiconductor
were made in k space, ' ' ' starting from the ran-
dom-phase-approximation (RPA) formalism. ~ The
intrinsic linearity of the Fourier transform ob-
viously prevents the possibility of dealing with any

nonlinear effect. In r space, on the other hand,
wave-function approaches have been used within
the cluster approximation for the study of deep-
lying impurity states. " Any wave-function method,
however, seems to be inadequate for the field of a
shallow impurity, since the number of electrons
involved in semiconductor screening is typically
noninteger. If e(0) is the static dielectric constant
of the semiconductor, the screening charge is, in
fact, Z[1 —I/e(0) j.

For metals, linear and nonlinear impurity
screening was widely investigated long ago within
the Thomas-Fermi (TF) model. "' Recent work
has shown the correctness of the TF results. 's"
The statistical TF method is an r-space approach
which avoids the use of a wave function, thus al-
lowing the handling of a noninteger number of elec-
trons. Only very recently this possibility was
fully exploited in a paper by one of us, ' hereafter
referred to as I. In that paper the general theory
of TF screening in semiconductors was developed
and the linearized TF screening equation was ex-
plicitly solved in a closed analytical form. The TF
linear-response functions were found to be in ex-
cellent agreement with the same functions evalu-
ated in the literature within k-space theory. "'
The TF approach yields naturally the way to study
nonlinearity, since the main equation comes out
nonlinear and is then linearized.

We present in this paper the numerical solution
of the nonlinear TF equation for point-charge
screening, for different values of the impurity
charge Z. We found important deviations from the
linear results, and a strong donor-acceptor asym-
metry. The nonlinear screening of an impurity
pseudopotential different from (1) is also briefly
discussed.
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II. THEORY AND COMPUTATION

—[Er+ V(R) —V(r)]~~'), r ~R;
&'V(r) =0, r~ R,

(2)

(2)

where F~ is the valence Fermi energy.
An additional complication arises for negative Z

(see Fig. I of Paper I), since in the neighborhood
of a repulsive impurity a Coulomb hole is origin-
ated, inside which the electron density is zero.
The same problem for metals has been discussed
by Alfred and March. '~ If the radius of the Cou-
lomb hole is Rc, Eq. (2) is valid only for r ~ Rc,
while for r ~R~ the equation is

V'V(~) = (2'~ '/sv)E', "', -

because only the uniform background is present,
with no electron, consistent with the HIMS hy-
pothesis.

The acceptable solution of (2) n a semiconductor
whose static dielectric constant 'is e(0) is

V(r)= Z/e(O)r, r-R.
For a given R, Eq. (2) can be numerically solved
backwards, matching the potential and its first
derivative at R with (6). R is then varied until the
solution has the correct behavior at the origin.
For positive Z this means for the solution of (2)
the condition

(6)lim rV(r) = —Z.

For negative Z, the procedure is only slightly
more complicated. The range of validity of (2) is
further limited by

V(r) - Z/e (0)R+-E
where the equal sign holds for r =R~, the Coulomb
hole radius. Inside this radius the general solu-
tion of (4), with the correct behavior (6) at the
origin, i's

V(r) = Z/r+ (2'~'/Bv)E3F"—r'+ P, ~ & Rc. (6)

3 is easily found by imposing the continuity nf V(r)
at r =Ac. Then the matching of the derivative of
V(r) at Rc is obtained, iterating the whole proce-
dure for different values of the starting screening
ra.dius A.

We refer to Paper I for the derivation of the
Mott equation' for TF point-charge screening, as
well as for the discussion of the semiconductor
boundary conditions. We use atomic units: e' = 1,
jq = 1, u~, =1. The displaced charge density in a
semiconductor has finite radius 8, and the equa-
tions to be solved for the self-consistent screened
potentia. l V(r) are

V'-V(r) = (2'-'/sv) Ji E',"

In numerical work, the initial-value problem for
Eq. (2) was solved with the use of Hamming's mod-
ified predictor-corrector method, " and the final
matching of functions was always obtained within
10~.

III. RESULTS FOR DIAMOND, SII-ICON, AND GERMANIUM

The e(r) resulting from the present calculation are
shown in Figs. 1—3. It is easily seen that nonlinear
effects tend to make the screening more effective
for attractive potentials, while the opposite happens
for repulsive ones.

The deviations from linear behavior appear to be
of the same order of magnitude as those found for

TABLE I. Relevant figures for nonlinear screening.
The linear results have been labeled as Z =0. For the
difference from Ref. 13 in Ge see text.

Z Diamond Silicon Germanium

Screening
radius R

(a.u. )

2.44
2.64
2.76
2.93
3.30

3.74
4.06
4.28
4.63
5.28

4.02
4.33
4.54
4.86
5.47

Coulomb -1
hole

radius Z,

0.53

1.21 1 ~ 98

The valence Fermi energies used in Paper I
were all relative to four valence electrons per
atom. Actually the filled 3d orbitals of Ge are
partia, lly involved in the valence charge density.
According to the Phillips —Pan Vechten theory of
ionicity an effective number of valence electrons
per atom can be defined in a wide class of solids. "
In the present paper we use the Fermi energies
corresponding to these effective numbers, which
turn out to be 4, 4, and 5, respectively in diamond,
Si, and Ge.

It should be noted that the linear-screening radii
A evaluated in Paper I were slightly smaller than
the single bond length in diamond and Si, while the
opposite happened for Ge (see Table I of Paper I).
With the above assumptions about the valence-elec-
tron density Ge is no longer anomalous, but on the
contrary it follows the general trend.

The nonlinear problem discussed in Sec. II has
been solved in diamond, Si, and Ge for Z= +1, a4.
The screening radii R and the Coulomb radii R~
are shown in Table I. In order to display the
screened potential V(y), it is convenient to intro-
duce an effective spatial dielectric function e(r),
defined simply by

V(r) = Z/e(r)~. —
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FIG. 1. Effective spatial dielectric constant for dia-
mond. The dotted line is the linear result, from Paper

I I
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FIG. 3. Effective spatial dielectric constant for Ge.
The dotted line is the linear result. The Fermi energy
has been changed from Paper I, see text.

metals in the literature. ' " A strong asymmetry
occurs when the sign of Z is reversed. This donor-
acceptor asymmetry cannot be found in the linear
context, and should be accounted for in the calcu-
lation of the impurity levels.

IV. SOME FURTHER CONSIDERATIONS

A. Charge densities and pair correlation

The charge distribution around a monovalent
repulsive impurity has been sometimes compared
to the pair-correlation function. 9 The two quanti-
ties hgve a different theoretical meaning, since the
former is purely static effect, while the latter in-
cludes dynamical information. Nonetheless, these
two quantities have been found to be close enough
in metals, ' and this fact has the appealing meaning
that the correlation hole around a given electron of
the solid resembles the charge distribution around
a static negative point charge.

In Fig. 4 we show the charge distribution around
a Z =-1 point charge in Si, as given from the pres-

ent TF calculation, and divided by np It is zero
for x - R~, then it increases and it reaches 1 at
r =R. For a comparison the pair-correlation func-
tion of an electron gas at the same density is also
shown in two different approximations. One is the
well known RPA pair-correlation function, ' which
has the serious drawback of becoming negative at
short r. The second one is the most accurate
available pair- correlation function, calculated by
Singwi et al."

It should be noted that the total charge of the cor-
relation hole is 1, according to the number sum
rule for the electron gas, "while the static-induced
charge in a semiconductor is 1 —I/e(0), as pointed
out in Sec. I.

B. Pseudopotential screening

The bare impurity potential considered so far in
the present paper was the pure Coulomb one, Eq.
(1). In more refined impurity calculations' a.

pseudopotential approach is adopted, where the
Coulomb potential (1) is modified by a short-range

1.0—

11.94
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FIG. 2. Effective spatial dielectric constant for Si.
The dotted line is the linear result, from Paper I.

FIG. 4. n(x)/no for Z= —1 in Si, solid line. The pair-
correlation function of an electron gas at the same den-
sity is also shown. RPA, dashed line. STSL, Ref. 17,
dotted line.
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part, given by the difference between the core
pseudopotentials of the impurity and of the host.

%e point out that the present TF theory of non-
linear screening in semiconductors is by no means
limited to the Coulomb potential (l). On the con-
trary, it can be straightforwardly generalized to
any local bare impurity pseudopotential. %e short-
ly outline here the route to be followed.

Given a local pseudopotential V,(r), one can easi-
ly find the classical electrostatic charge distribu-
tion which generates V,. Then this charge distri-
bution can be inserted in the Poisson equation of
TF theory (2) [and eventually (4)] on the right-hand
side, like an external rigid charge density. The
whole procedure of Sec. II can be applied to the
modified equations.
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