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A modification of KadanofFs lower-bound renormalization transformation is used to analyze the critical
behavior of the semi-infinite Ising model with surface interactions which may differ from the bulk
interactions. The d = 2 square lattice and the d = 3 bcc lattice are considered, Surface critical exponents,
various critical couplings, and a phase diagram for d = 3 are calculated. The surface critical exponents are
compared with the scaling laws relating surface and bulk exponents and the e-expansion results due to Bray
and Moore. The eigenvalues determining the surface exponents agree within 10% with the predictions of
Bray and Moore except in the case of the eigenvalue determining the surface-bulk crossover exponent, where
the dhscrepancy is much larger.

I. INTRODUCTION

The renormalization-group approach, ' which has
been applied with enormous success to problems in
bulk critical phenomena, has also been used to in-
vestigate the effects of surfaces' on phase transi-
tions. On the basis of mean-field theory Lubensky
and Hubin' classified the four types of transitions
(ordinary, surface, surface-bulk or special, ' and
extraordinary) exhibited by the semi-infinite n
vector model with short-range ferromagnetic inter-
actions. For the ordinary transition they calcu-
lated the surface critical exponents to first order
in & =4 —d. In important recent work Bray and
Moore' have obtained results for all four transi-
tions to first order in c and in the limit n- ~. In
addition they propose scaling relations expressing
the surface critical exponents at the ordinary, sur-
face, and extraordinary transitions in terms of
bulk critical exponents. Their considerations are
largely based on a continuum Hamiltonian similar
to that of Ref. 3 except that the system is infinite
rather than semi- infinite. The translational in-
variance is broken by a plane of modified inter-
actions. Bray and Moore argue that this model be-
longs to the same universality class as the semi-
infinite model.

Position- space renormalization- group methods, '
which are applicable to spin systems on a lattice in
integer dimensions, have also been used to inves-
tigate surface effects in the Ising model. With
these methods one can calculate critical tempera-
tures, phase diagrams, and thermodynamic func-
tions as well as critical exponents. Svrakic and
Wortisv have given a general discussion of the po-
sition-space approach in systems with a free
surface and have carried out an approximate calcu-

lation for the d=2 Ising model, where there is
only the ordinary transition. Burkhardt and Eisen-
riegler' applied a similar approach to the d =3
Ising model. Their renormalizetion transforma-
tions, which only involve nearest-. neighbor inter-
actions, exhibit full sets of fixed points for the
various transitions but are too crude to yield re-
liable quantitative inf ormation.

In this paper a modification of an approximate
position- space renormalization transformation due
to Kadanoff is applied to the semi-infinite Ising
model with a free surface. Both the d = 2 square
lattice and the d =3 bcc lattice are considered.
For a variety of models KBdanoff's variational
method describes the bulk critical behavior with
impressive accuracy. '" The new scaling laws of
Bray and Moore relating the surface and bulk ex-
ponents are not built into the position-space ap-
proach in an obvious way. Although they may be
satisfied in an exact calculation, they will not be
satisfied in general in an approximate real-space
calculation. In carrying out the calculations re-
ported here, we hoped to obtain sufficiently ac-
curate numbers to check Bray and Moore's new
scaling laws, which were proposed on the basis of
a model which superficially at least looks quite
differ ent.

II. . RENORMALIZATION TRANSFORMATION

The basic renormalization step transforms the
Hamiltonian 3C(o) for a system of Ising spins o to
an equivalent Hamiltonian K'(p, ) for a reduced num-
ber of Ising spins p. . For the d=2 square-lattice
bulk calculation the o spina (dots) and the p, spina
(crosses) are shown in Fig. 1(a). In devising a
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lower-bound variational transformation for a bulk

system, Kadanoff' considers Hamiltonians of the
form K= —QH~, where the sum is over all squares
of the lattice, and H, only depends on the four
spins making up the square. He introduces a
transfer function coupling the p, and o' spins which
leaves the partition function invariant and which in-
volves a variational parameter P, . He then per-
forms the renormalization transformation on the

Hamiltonian 3C(v) + V(v) rather than 3C(v), where
V(v) translates all the H, 's and the parts of the
weight function which depend on 0 but not on p, into
the shaded squares in Fig. 1(a) so that the shaded
squares are only coupled by the p, spins. Then the
renormalization transformation only involves the
four o spins in a single shaded square and the four
surrounding p, spins. The transformation has the
form

[,( )]
exp[ p~( p, ,v~+ + p, v )+ 4H, (v~, . . . , 4)]

Since V shifts the interactions about without introducing any new interactions, ( V)@=0 in a translationally
invariant system. From this it follows that the approximate free energy calculated with shifted interac-
tions is a lower bound to the exact free energy. The variational parameter P, may be adjusted to maximize
the lower bound.

The first of two renormalization transformatioris we have considered for the 4 =2 semi-infinite Ising
model uses a V(o) which distributes the o interactions in the shaded squares as shown in Fig. 1(b). First
the interactions are shifted parallel to the surface into columns b, d, f, . . . . Next, half of the interactions
in row 3 are shifted into row 2 and half into row 4. Similarly the interactions in rows 5, 7, 9, . . . are
moved into the upper and lower adjacent rows. We denote by P, and P, the variational parameters which
couple the first layer of p, spins to the first two layers of o spins. Everywhere else the p, and 0 spins are
coupled with the bulk variational parameter P~. The transformation just described generates Hamiltonians
with the form R= —PH, —QH~, where the first sum is over all surface squares and the second is over all
other squares. H~ transforms according to Eq. (1). H, obeys the recursion relation

exp[H,'(p,„.. . , p, ,)]

exp[p, (p,,v, + p,,v, )+p, (p, v, + p, v,)+p,(g,v, + p,v, )+2H„(v„.. . , v, )+SH,(v, , . . . , v, ) ]
~&~ ' "~ ~6 2 cosh[ p, (v + v2) +p2(v3+ v4) ][2 coshp&(v3+ ' ' ' + v6) ]

As long as V only shifts interactions parallel to
the surface, (V)z=0 by translational invariance,
and the lower-bound principle follows as before.
However, in the transformation described above,
V shifts interactions perpendicular to the surface
as well, and the variational principle does not hold
for arbitrary Hamiltonians and variational param-
eters. From a practical point of view it is desir-
able to shift the interactions perpendicular to the
surface as we have done, even though it consti-
tutes an additional approximation. Then no inter-
actions are produced which involve more than
four spins in a square, and one automatically in-
corporates Kadanoff's successful bulk transforma-
tion. However, since the variational principle no
longer holds, the criterion for choosing optimal
values for py P2 and py is no longer clear.

Figure 1(c) shows the redistribution of interac-
tions in a second transformation we have consid-
ered. The interactions are shifted as before except
that the shifts perpendicular to the surface begin
with row 5 rather than row 3. Variational param-
eters P„.. . , P4 are associated with the first four
layers of 0. spins. For the other layers the bulk

parameter P, is used. This transformation gen-
erates an H, which depends on six spins. The sec-
ond transformation is closer to a lower-bound
transformation than the first since the perpendicu-
lar shifts begin farther from the surface, where
the system is more nearly translationally invar-
iant.

The transformations of Figs. 1(b) and l(c) are
the first two of a sequence of transformations con-
verging to a true lower-bound transformation as
the length of.the surface cluster is extended in-
definitely. We have used both transformations to
calculate the critical fixed point and the associ-
ated eigenvalue y„which, as discussed in more"1
detail below, determines the surface critical ex-
ponents. Even though the transformations are not
rigorous lower-bound transformations, the varia-
tional parameters were chosen to maximize the
approximate free energy, since the sequence of
variational parameters so generated converges to
the optimal set for a true lower-bound transforma-
tion as the length of the surface cluster is in-
creased. The, two transformations yield values of
yo 10.8/g and 9.0% larger than the exact value" of
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FIG. 1. Dots indicate 0 spins and the crosses p, spins.
V((T) shifts the 0. interactions into the shaded areas, so
that they are only coupled by the p, spins. (a) Kadanoff's
renormalization transformation for the bulk problem.
(b) and (c) two transformations we applied to the semi-
infinite problem.

At the fixed point the long-range many-spin in-
teractions present in the second transformation
but not in the first (such as the two-, four-, and
six-spin interactions involving spins separated by
two lattice constants) are very weak, and the in-
teractions common to both calculations change
very little. These results suggest that only a
limited improvement can be expected in the rea-
sonably accurate values obtained from a small sur-
face cluster by extending the cluster deeper into
the system. To obtain a significant improvement
it is probably important to change the width of the
surface cluster as well as the length. Our calcula-
tions for d =3 are based on a generalization of the
transformation of Fig. 1(b) to a simple cubic lat-
tice. The surface cluster consists of three square
layers of four cr spins coupled to a cube of eight
adjacent p. spins.

Difficulties associated with an extra relevant
variable' are encountered if Kadanoff's bulk trans-
formation is used outside the invariant subspace
in which H, (o, , . . . , v, g) is invariant under inter-
change of any pair of spin variables. To avoid
these problems we begin with a square lattice for
d = 2 and a bcc lattice for d =3. We apply an exact
decimation"'" transformation eliminating half

the spins to the initial Hamiltonian to enter the
symmetric subspace before repeatedly applying
the transformations described above. In the d = 2

calculation the decimation leaves a square lattice
with lattice constant increased by a factor W2.

The d =3 decimation eliminates all the spins on one
of the two simple cubic sublattices, leaving a sim-
ple cubic sublattice with the same lattice constant
as the original bcc lattice.

III. RESULTS

The initial Hamiltonian considered in our d =3
bcc calculation only contains nearest-neighbor in-
teractions. The free surface is assumed to be a
(100) plane. We denote by K, =J,/ksT the coupling
between a surface spin and each of its four nearest
neighbors at the centers of bcc cells. All other
couplings are assumed equal to the bulk coupling
K„=J,/ksT. Repeating for the bcc lattice a calcu-
lation for the simple cubic lattice found in Ref. 14,
one finds the mean-field phase diagram shown in
Fig. 2. The bulk transition occurs for K, =K~ = 8.
The region K,&K, marked BF denotes the bulk
ferromagnetic phase. For K~&K', there exist both
surface ferromagnetic (SF) and paramagnetic
phases (P). The critical line of surface transitions
S is given by

K, =(1/4W2)(1+[(1 —8K„)(1+8K,) ]' ']' '. (3)

The line of ordinary transitions 0 separates phases
I' and BF. The line of extraordinary transitions E
separates phases SF and BF. All three critical
lines intersect at the multicritical point SB of the
surface-bulk or special transition. Mean-field ex-
ponents for the four transitions S, 0, E, SB are
given in Ref s. 3, 5, and 14.

The intersection of the critical line S with the .

K, axis gives a value for the critical nearest-
neighbor coupling K,"=' of the d =2 square-lattice
bulk Is&g model. K,"=' = —, in mean-field theory.
The coordinates of point SB [Kss = (1+&,)K;, K~s

=Kt] determine the critical surface enhancement
For 4, = (1+ &)J» with && &„ the surface tran-

sition precedes the bulk transition as the tempera-
ture is lowered. For 4& &, there is no surface
transition. Only the bulk transition takes place.
It follows from Eq. (3) that A, = ~2 —1 in mean-
field theory.

In our renormalization-group approach each of
the four transitions for d = 3 is associated with a
different fixed point. ' Because of the two-dimen-
sional nature of the surface transition, one expects
d=2 bulk exponents for the corresponding fixed
point. With our transformation the surface fixed
point, which occurs for H, =0, p, =p, = 0, is iden-
tical with Kadanoff's d = 2 bulk fixed point' and
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TABLE I. Optimal variational parameters for fixed points.

Fixed point

d=2
0, transformation

of Fig. 1(b)
0, transformation
of Fig. 1(c)

d=3
S
0
SB

pg = 0.7660
pg = 0.2419
pg

——0.6250

pg 00

p2
——0

p2 = 0.3697
p2

——0.2340
p2

——0

pg = 0.5818 p2 = 0.6720

p( ——0.5704 p2
——0.6716

pp = 0.7660

p3 = 0.7067

p@
——0

p~ ——0.4034
p~

——0.4034
p~

——0.4034

p4 ——0.6277 pg = 0.7660

TABLE II. Relevant eigenvalues of the renormaliza-
tion-group (RG) transformation at the various fixed
points.

Eigenvalue RG result Exact value or best estimate

d=2

yd =2

da2

0
yI,

1.001

1.875

0.5541,
0.5452 "

ig
8

g
C

2

yd 3

yd 3

yd =2

d»-2
yl

0
ya(

ySB

SB
yap

ya(

1.590

2.465

1.001

1.875

0.7363

0.8664

1.745

1.56+0.04

2.50 + 0.02

15

~

~

1.0 +0.2
=

2
(d —yg ) =0.72+0.02

SB yd =3 1 = 0.56 + 0.04t

yI,
——2 ——e + 0 (q ) = 1.667

Calculated with the transformation of Fig. 1(b).
"Calculated with the transformation of Fig. 1(c).

Exact result (see Ref. 11) which is also consistent
with the scaling law of Bray and Moore for y& ~

Calculated from estimates of P~ reviewed in Ref. 14.

yields the same excellent values for the tempera-
ture and magnetic-field eigenvalues y",=', y„"=',
which determine the critical exponents. ' The fixed
points for the other three transitions are found in
the hyperplane H, =H,*, where the bulk couplings
have their fixed-point values. In the hyperplane
the ordinary and extraordinary fixed points are
completely attractive, whereas the surface-bulk
fixed point has one repulsive eigenvector with
eigenvalue yss, consistent with its multicritical
character. In the position-space approach the sur-
face exponents at the ordinary and surface-bulk

transitions are determined by the buick temperature
and magnetic field eigenvalues y",=' and yd=', the
eigenvalues y„, y„corresponding to a magnetic
eigenperturbation in the surface cluster H„and
y, . We refer to Ref. 8 fpr mpre details.

The variational parameters which maximize the
free energy at the various fixed points are shown
in Table I. The corresponding critical exponents
are shown in Table II. Since Kadanoff's success-
ful bulk transformation was incorporated in our
approach, the bulk y, 's and y~'s are all in impres-
sive agreement with the exact values or best esti-
mates. For d=2 the surface only undergoes the
ordinary transition. No surface transition takes
place since such a transition would be.one-dimen-
sional. For the ordinary and surface-bulk transi-
tions Bray and Moored propose the scaling relations
y~o =2(d —y, ), y8s =y, —1, and yes =2 ——,'a+0(&'},
where c =4 —d. Our calculated eigenvalues for
d= 2, 3 agree with these predictions to within an
accuracy of about 10% except for the case of y,
where the discrepancy is much larger. We discuss
this disagreement in more detail in the next sec-
tion. The eigenvalue y~~ =2 we firid is consistent
with the existence of a nonzero surface magnetiza-
tipn ' ' ' at the extraprdinary transitjpn. We have
not been able to predi. ct the critical exponents of
the leading singularities at the extraordinary tran-
sition with our approach.

Results for several critical couplings, computed
with the variational parameters in the renormali-
zation transformation equal to the optimum values
for the fixed point in question, are given in Table
III. The bulk critical nearest-neighbor couplings
are within 4% of the accepted values. For the bcc
lattice we find &, to be about 2.4 times its mean-
field value. The series work of Binder and Hohen--
berg' yields a similar result for the simple cubic
lattice.

Since the variational parameters for the various
fixed points are quite different, one cannot expect
a globally accurate phase diagram for a single
choice of the variational parameters. The dashed
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TABLE III. Various critical couplings calculated with the renormalization-group (RG)
transformation. Qc denotes the value of Dc in mean-field theory.

Coupling RG result Exact value or best estimate

2
C

K C

z"='
C

&C

d=2, square lattice
0.458

d=3, bcc lattice
0.162

0.458
0.976 &c/&c =2 36

—ln(1+ ~2) = 0.441

0.157

—ln(1+ v2) = 0.441
0.6 ~0.1,' Z, /Z," = 2.4 ~0.4

. for simple cubic lattice

Series estimate from Ref. 14.

lines in Fig. 2 indicate the phase diagram calcu-
lated with P, adjusted for the bulk fixed point H~
and with P, and P, obtained by averaging the opti-
mal values for fixed points S and SB. The arrows
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FIG. 2. Phase diagram for the semi-infinite Ising mo-
del with nearest-neighbor interactions on the d = 3 bcc
lattice. ~, denotes the surface coupling and &q the bulk

coupling. The solid lines show the results of mean-field
theory. BF, SF, and P refer to the bulk ferromagnetic,
surface ferromagnetic, and paramagnetic phases. S, 0,
E label the lines of surface, ordinary, and extraordinary
trans itions. SB labels the surface-bulk multicritical
point. The dashed lines show the results of the renormal-
ization-group calculation with p~ adjusted for the bulk
fixed point and with p& and p2 obtained by averaging the
optimal values for fixed points S and SB. The arrows
show the accepted bulk critical couplings ~," and K'b

=&c=3~where the exact phase diagram intersects the &~
and Kq axes. The empty points 1 and 2 show the ends of
the. line of surface transitions when the variational
parameters are optimized for fixed points S and SB,
respectively.

show the accepted values of K",=' and K',=', where
the phase diagram should intersect the K, and K„
axes. Calculated with the optimal variational pa-
rameters for fixed point S, the diagram intersects
the K, axis at the empty poirit 1, closer to the ar-
row. Calculated with the optimum variational pa-
rameters for fixed point SB, the multicritical
point SB drops down to the empty point 2. (The
two empty points correspond to the values of K,='

and &, in Table III.) To obtain a better global de-
scription, one should treat the variational param-
eters in each application of the renormalization
transformation as independent variational param-
eters and change the p's as the coupling constants
change. Kadanoff and co-workers' found that this
procedure improves the results obtained for the
thermodynamic functions of the d =2 Ising model.

IV. CONCLUDING REMARKS

The only scaling law of Bray and Moore which
our results appear to contradict is the relation
rf& =1 —v or yas =y, —1 for the crossover exponent
Q=yss/y, . This scaling law is certainly correct
for an infinite system with the surface simulated
by a plane of modified interactions. ' In this model
the ordinary and extraordinary transitions are ob-
served for interactions in the special plane weaker
and stronger than the bulk interactions, respec-
tively. The surface-bulk transition corresponds
to the pure bulk transition with no special plane at
all. All the surface-bulk exponents can be readily
worked out in terms of bulk exponents, since the
response to the appropriate perturbations is de-
termined by bulk quantities. One finds the above
scaling law for y~~ and also y~a =y» —1 twhich im-
plies P8 =P or y s=(1 —q)v, for example]. At the
surface-bulk transition the infinite and semi-in-
finite models clearly do not belong to the same
universality class. For the semi-infinite system
Bray and Moore find a different result for y„ to
first-order in E. Our results suggest that there is
also a difference in y, for the two models. How-

ever, to first order in & Bray and moore find no
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difference. Unfortunately it is difficult to judge
the accuracy of our approximate transformation.
The reasonably good agreement of the calculated
values of y~o, with the exact result for d =2 and the
scaling law for d=3 (for d=2 the scaling law is
consistent with the exact result) gives us some
confidence in our procedure. However, one cannot
completely rule out the possibility that the trans-

formation yields a less reliable result for the
eigenvalue yg .
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