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A solution for the embedding problem in chemisorption is proposed, particularly designed for easy
implementation into molecular-orbital linear-combination-of-atomic-orbitals self-consistent-field calculation
schemes. It is essentially based on the assumption that the perturbation in the electronic states induced by
the adspecies is effectively screened within a certain B region of the adsorbing solid and that this B region is

also large enough to allow for neglect of direct-coupling terms between the adspecies and the defective solid.
An energ„~-dependent coupling matrix M(e) is defined, which may be calculated on the basis of the free-

solid solution and that can be used to correct the local solutions so as to properly connect them to the free-

solid ones. The theory is tested in the case of hydrogen adsorption on graphite in the complete neglect of
differential overlap approximation. Moderately large embedded clusters appear to be adequate for a correct
description of the chemisorption process.

I. INTRODUCTION

A number of recent papers (see for instance
Refs. 1-6 and references therein) report about
calculations performed by ordinary quantum-chem-
istry techniques to study small clusters of atoms
from a solid and their interactions with outer atoms
or molecules. Such kind of calculations are prov-
ing very useful for a preliminary characterization
of the chemical behavior of specific surface sites.
It is apparent however that such models are a
crude approximation to a real surface, the large
majority of atoms included in the calculation usual-
ly having not even the proper surrounding of near-
est neighbors. Boundary effects are therefore
important and convergence with respect to increas-
ing cluster size is expected to be slow. ' On the
other hand, self-consistent calculations of the
electronic structure of solids with a surface, with
or without regular chemisorbed phases thereupon,
are beginning to be performed. " In this case,
one can take advantage of bidimensional transla-
tional symmetry; still, computational problems
are formidable.

If one is interested in the electronic response
of a solid to a local perturbation at the surface,
e.g. , due to an absorbed species, it would there-
fore be desirable to take full profit of such com-
putations by combining a local self -consistent
treatment with an embedding scheme insuring the
proper connection with the rest of the solid.

he formal theory of embedding was developed
and discussed recently by Grimley" " and an ap-
proximate solution scheme has been proposed and
tested relying on Green's-function techniques. ""
An important step towards the feasibility of realis-
tic chemisorption calculations using properly em-

bedded clusters was made by Gunnarsson and
Hjelmberg. "" 'They generalized Grimley's meth-
od and introduced well-motivated approximations
essentially amounting to assume that the perturba-
tion induced by the adatom is confined within a
limited region, where the solution is developed into
a finite set of localized functions. Their method
was developed and implemented within the frame-
work of Kohn and Sham" theory with the local spin-
density approximation for exchange and correla-
tion, and is probably best suited for studying ad-
sorption on nearly-free-electron-like metals.

If local potentials or pseudopotentials are con-
sidered, methods as proposed by Appelbaum and
Hamann for the study of surfaces' can be used:
in the perturbed region, a self-consistent solution
is numerically found, which is smoothly joined to
the solution appropriate for the infinite unperturbed
substrate. However, such a method is not easily
applicable to chemisorption problems and is not
compatible with standard quantum chemistry pro-
grams.

An exampl. e of a possible different kind of solu-
tion to the embedding problem is provided by the
work of Doyen and Ertl'""; in that case, a trans-
formation of the metal eigenfunction is performed
such as to effectively reduce the chemisorption
problem to a surface molecule one; however, their
method is specific of the Hamiltonian they have in-
troduced.

In the present paper, a new scheme for the study
of chemisorption on embedded clusters is worked
out, starting from Grimley's formulation and
based on approximations similar to those involved
in the work of Gunnarsson and Hjelmberg. How-
ever, the choice of the approximations and the de-
velopment of the resulting equations are especially
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designed as to allow a quite simple implementation
of this embedding scheme into molecular-orbital
self-consistent -field linear -combination-of -atom-
ic-orbitals (MO-SCF-LCAO) programs based on
any local or nonlocal effective one-electron Harn-
iltonian.

Besides that, the method presents two attractive
features: first, it is exact in both limits of large
clusters size, and, for arbitrary cluster size,
of negligible interaction with the adspecies; se-
cond, the key quantity used for performing the
embedding is an energy dependent coupling ma-
trix M(e) which only depends on the characteris-
tics of the adsorbing substrate, and therefore may
be calculated once for all when the solution for the
free substrate is known.

In Sec. II the theory is presented and the approxi-
mations discussed; in particular it is shown that
the cluster must be large enough to make it reason-
able to a.ssume that direct coupling terms between
the adspecies and the defective solid are effec-
tivel'y screened. A workable scheme for actual
computations is also introduced.

In Sec. III a number of prel. iminary calculations
are reported intended to demonstrate the feasibility
of the method and to assess its limits of applica-
bility. They concern the adsorption of a hydro-
gen atom on a graphite monolayer using a Har-
tree-Fock (HF) Hamiltonian in the complete neg-
lect of differential overlap (CNDO) approximation.
Although the CNDO scheme is still widely used
for studying different kinds of solids and adsorp-
tion thereon, '"'" the main reason for adopting
it here (and indeed for considering the hydrogen-
graphite system) was that we disposed of a very
accurate solution for the graphite monolayer and
had studied its interaction with hydrogen adlayers
in that approximation. ""It may also be argued
that, among semiempirica1. methods, the CNDO
approach bears strongest formal resemblance to
sophisticated ab initio methods, so providing a
good and economical test ground for hypotheses.
The results obtained and possible future develop-
ments are finally discussed.

II, METHOD

A. Embedding equations

The system to be studied is represented schema-
tically in Fig. 1. Assume that a set of localized
functions fy„) is available, centered on the ad-
sorbate (A}, on that (8}part of the solid which be-
longs to the adsorption cluster, and on the "de-
fective solid" D. For definiteness, take these
functions to consist of a small number of atomic
orbitals per each atom; overcompleteness prob-
lems'"" are unimportant for this basis set.

FIG. 1. Scheme for the partition of the basis set.
The cluster {g 0p) will be denoted by C in the text, and
the solid (I3 UD) by $.

A

Consider now any one-electron Hamiltonian E
(for instance the HF or an effective Hamiltonian
derived according to Kohn-Sham theory) and its
representation F in the given basis. Its matrix
elements will generally be dependent on the den-
sity matrix P =((a„n„)J; a, self-consistency prob-
lem arises which, for subsequent reference, is
most conveniently expressed in the formal. ism of
Green's functions"

Q(&)G(&) =f,

Q(f}=iS F[P], t'-= &+f0,

where S is the overlap matrix and the Fermi level
e~ is determined by the number of electrons in the
system. Of course, the system (1) is the exact
counterpart of the more familiar system of equa-
tions

EA =SAF, F-(~ = e(5]~,

P =A*OA, O(~ = 25(~e(ar —e,),
A SA =I.

(2)

The equivalence of (1) and (2) will be exploited in
the following. Note that for simplicity of notation
the whole treatment is developed for a closed shell
configuration, its generalization to different orbi-
tal for different spin (DODS} cases being straight-
forward.

Using the partition schematically il.lustrated in
Fig. 1, Eq. (1) may be developed exactly in the
cluster C region as follows:

@AA AA + @ABGBA + @ADGDA
A

@AAG Aa + AB6BB + @ADGDB

@BAGAA + @BBGBA + @BDG DA

@BAGAB+@aaaa+@BDGDB -I-a

(3)

'The local character of the perturbation induced by
the adsorbed species and the "large size"'of the
8 region wil. l now be taken into account by adopting
the following approximations: (a) Matrix elements
of Q and G involving basis functions which belong
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to the defective solid, are frozen at their "free
solid" value (hereafter specified by an f super-
script): QBD=QBD, GDD=GDD, etc. (b) Compound
quantities such as @ADGDB or QABGBD, involving
A-type and D-type functions, are negligible with
respect to unity. (c) Finally, due to the vanishing-
ly small ratio of the number of electrons provided
by the adspecies with respect to the number of
electrons in the adsorbent, the Fermi level is as-
sumed to stay fixed at the value appropriate for
the free solid: e~ = ef~. In a nonconducting solid
this is made to correspond to the bottom of the
conduction band.

The above approximations essentially amount
to admit that the effect of A is adequately screened
within B, at least if one is not interested in sub-
tle phenomena (for instance, long-range inter-
ference between adatoms}. In metals, screening
of local perturbations by conduction electrons ap-
pears to be very effective and Friedel charge os-
cillations are rapidly quenched; this may be a
reason why, in these cases, local schemes meet
with unexpected success. " Long -range influence
of local perturbations are of course likely to oc-
cur in insulators and semiconductors, but it is
possible that space-charge effects could be taken
into account of in a semiclassical way" after per-
forming the computation.

Approximation (a) and assumption (c) are adopted
in Gunnarsson and Hjelmberg theory. " These
authors do not introduce formally approximation
(b), but some of its implications are contained in
the approximating simplifications leading to their
final formula.

In approximation (b) the decoupling effect of the
8 region enters more clearly into play. It is not
implied that individual Q„„(e)G„,(e) products are
negligible, although it is certainly true that, with
increasing distance between centers, the G ma-
trix and especially the Q matrix elements are de-
creasing in absolute value (see Sec. III). Rather,
the sjze of 8 insures that from sums such as~B ~D

A"G" D
~ A"G B dominant terms are

absent and destructive interference effects are im-
portant, since they involve a large number of
terms of comparable size and different sign.

At the end, the validity of the proposed scheme
must certainly be evaluated by a critical examina-
tion of the results it leads to. However, it is evi-
dent that all approximations are strictly valid in
both limits of very large size of 8 and of absence
(or negligible interaction} of the adparticle; these
fundamental characteristics must also be found in
the final equations (see See. IIB).

Inserting (a) and (b) approximations into Eq. (3),
we obtain, after observing that I -QBDGDB

f f=@BBGaay

or

QAAGAA + QABGBA
A

@AAGAB + QAB BB

QBAGAA + QBBGBA

@BAGAB+QBBGBB @BBGBBy

f f
(4)

QG =J

IA

QaaGaa

To self-consistently solve the system (4), we in-
troduce an auxiliary C matrix, which is just the
inverse of Qc, and again use approximation b,

QcGc Ic

Gc =Gc~c,

qC gSc Fc[P]
~f

Pc = ——Im deG (f)
ll

GAB GAB (GABQBD+ DB +AB t
f f

(5)
GBA =GaA

BB GB BQBBGBB
f f

0 0

0 LB

pe= pfy & + P

~ Q P~„[(pc~ v. v) ——,'(pg ~av}]

Here I, designs the HF matrix formally calculated
as if the problem were restricted to the cluster,
but using the P matrix appropriate for the em-
bedded cluster. That is, the correction terms
are obtained by subtracting from the free solid
Hamiltonian, those terms which are already in-

At each iteration cycle the P dependent Q matrix
must be redefined. However, since we admit that
quantities involving D-type functions stay fixed at
their free solid values, only those terms which in-
volve P elements within the cluster have to be
changed; the self-consistency problem is so really
confined to within the cluster. For example, for
a HF Hamiltonian we can write

+L



C. PISA%I

eluded in E, . In the last line (and in the following)
Z designates sums which are extended to all bas-
is functions belonging to set &.

It is seen that the correction matrix L is a con-
stant during iterations and contains only quan-
tities which are available from the free solid cal-
culation (E,P ) and integrals involving basis
functions of set 8, which are needed also for cal-
culating I', .

To calculate G, we take profit of the equivalence

of Eqs. 1 and 2, and perform a diagonalization of
E'lpl,

I' A =SAE,

(~) P s~gc„g
(E —8~+ i0)

(the basis set of the eigenvectors are assumed
to be real). Using the formal identity

~IOO f gt
(&@~ (&)G~(L)=~ s P""e+' ' " """'"'= Z d' '"P" ( S E') P-df

(e -e, +i0)(e —e', +f0), ) e -e, " „eI-
4+0

sf Z 5(e —ej)a„)a,~P df (es F~)„-- +(P "" (es F~)„p~ (e) (8)

we obtain, after performing the integration in-
dicated in the last line of Eq. (5},

$7AAsABBA 2, Q n n e(ef e )gP fJ If + f
(9)

and a similar expression is obtained for e&e~.
Introducing the quantities

df g s.,p' (I),
&m

B

n..(f) = g (fS., E.', )p' (f),-
(12}

where
8

m,„(e)=Qp
~00

B

~Qp

(es -E~)„p~~(f)

(ts E)„p~(I) -(10)
t —e

In (8} and (10) 6' indicates "principal part of" and

P in front of the integral sign denotes the Cauchy
principal value: p~(t) is the projected density of
states for the free system at energy t,

p (f)=
df

(a~a„,).

dt S~p~(t)

'
d

(eS., F'.,)p' (&)-a'r cr& 1V

e —t

df S„p~„(f)
~w

"d (fs„-F~ )p~ (&)

Iy

If a finite basis set is used in each crystal cell, p
is different from zero only in a finite energy in-
terval, that is from E„, bottom of the lowest band,
to E„, top of the highest conduction band.

The matrix element m, „(e) can be written in a
more handy form. For e& sf~ we have

B f
m.„(e)= Q

we finally have

m,„(e)=

(f)

(13)
~ r ~ f)

dt '"; e&e~ .
(t —e) '

Formulas (12) and (13) are very practical for the
computation of m,„(e) since no poles are left in the
integration interval and all summations over 7'

may be effected preliminarily when cal.culating the
function a (f) and the constant d,„. Note that, in

any orthogonal basis, d',„=6
%e have so arrived at the definition of a nonsym-

metric adimensional energy-dependent coupling
matrix M(e) [with elements m,„(e)], which
through Eq. (9), insures the connection of the
cluster with the defective solid. The size of each
M matrix is n~ & nl, where n~ is the number of
basis functions belonging to set B.

A fundamental characteristic of M is that it only

depends on the electronic structgxe of the free
solid (through E~, p~, e~z); so it is the same for any

adsorbate in any geometrical arrangement and

can be said to summarize the adsorptive proper-
ties of the surface. Ef, pf, and af~ are evidently
independent of the particular cluster (and so is
d,„ in an orthogonal basis) but M depends on the
cluster size because o, (f) is a cluster dependent

8
quantity through the summation Z, .
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Note finally that the dependence of M on energy
is connected to the distribution of the virtual states
of the free solid for e& a~~ and to the distribution
of the occupied states for energies above the Fermi
level. It may be so qualitativel. y stated that the
M matrix introduces hale-electron interactions be-
tween the cluster and the defective solid.

C. Method of calculation

Having derived the basic equations ('7), (9), (12),
(13) a scheme of calculation can be proposed.
First, the free solid quantities I", S, p must be
obtained within 8. If g', g" are general vectors
of the bidimensional translational. group parallel
to the surface, we can write

B. Limiting conditions

We now show that the equations obtained are
correct in the limiting conditions. When the in-
teraction with A is negligible (for definiteness,
take A to be absent), we have, for a cluster of
arbitrary size,

s' =z~

2Zay+aa g etdZatSaa 2

a ff

8 8

Q a„cz (t) = Q a„(t e,}S„pt —(t) .

Substitution in Eq. (9}, and (11)-(12)gives, keep-
ing into account that AA~S =I,

Here a and P correspond to a numeration of the
basis functions within each cell, whereas cr, v re-
fer to a numeration within the whole cluster B.
Similar expressions hold true for S and p .

Usually, the solution for the free sol. id is known
at a discrete number of appropriately chosen" '
k~ points in the irreducible part of the bidimension-
al Brillouin zone. The quantities E,„and S,„may
be obtained by a weighted sum over these points,
after application of all point group symmetry oper-
ators R,"the weights W& depending on the choice
of the sampling points,

(19)

8 8
P„„=2 Q Q „P„d,„—Q 222.,p~)

-gfey&&E& + s F

f
QaZAad Q dt Saapaa

j(e) ~~F)

gf
dip~

f=pt u.

We find, therefore, as we should, that at self-
consistency, the solution obtained by using the
embedding procedure coincides with the solution
for the infinite solid. For instance, if the 8 set
is reduced to the valence orbitals on a single atom,
E is diagonal and S is unity so that A is also unity,
it is then obvious that M is diagonal, and that it
should assume, at e=Ft„, the value P~»/2. In

the other extreme case, when B is very large,
we have, for o near A,

Here h is the order of the point group.
More attention must be paid when calculating the

projected densities of states p,„(t), since they in-
volve integration over a limited portion of the
Brillouin zone. The method due to Monkhorst"
seems best suited to this purpose, and is applied
here to perform integrals of the form I(&)
= fez dk f(k)9(e —&u(k)), e and f being totally sym-
metric functions of k. Conceptually, it requires
reconstructing f and &u at a closely spaced net in
k space, using a truncated Fourier expansion. In
each small domain defined by the close net, linear
interpolation of f and ~ is used" and the integral
is analytically performed. In practice, it is easily
shown that this procedure is equivalent to

f(e) =Q f(k, )a, (z), (20)

where the weights o& depend on the level &, on the
k dependence of co, and, to a certain extent, on the
closeness of the reconstructed net, but are totally
independent of f(k).

In the present case, weights az(e ) may be cal-
culated for each energy band to, (k) at a certain
number of closely spaced energy points e„, and
we have

whence

~(t}= 0, dzz, „(e)= 5 e(e~j, —e),
as expected. t„=p (E„+e„„).
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Using (19) and (21), F, S, p can be calculated once
and for all for an appropriate number of combina-
tions FO, vg covering all non-negligible terms.

Second, the actual 8 cluster is chosen. The M
matrix is calculated according to Eq. (11) and (12)
a.t energy points e, sufficiently closely spaced
for a linear interpolation procedure to be adequate.
In principle, we do not know the interval of energy
that must be spanned by the sampled points to con-
tain all possible e, values that will be encountered.
In practice the behavior of M is very smooth out-
side the interval (E -E„), and few energy points
widely spaced outside this interval are sufficient.
On the contrary, very close spacing should be
chosen near the Fermi level; not only M elements
are discontinuous there, but their variations are
more rapid in its vicinity. The M matrices should
be stored in order of increasing energy for further
use.

The cluster calculation can now be performed.
The correction matrix L must first be calculated
[see Eq. (6)]. It is easily seen that in the CNDO

approximation and for an homonuclear solid L
is zero.

In the SCF step, a subroutine must be supplied
for the iterative recalculation of the P ma-
trix according to Eq. (9); instead of m, „(e~)
we can use a weighted mean of m~(e, ), m~(e„,),
e „and e„,being the energy-sampled points im-
mediately below and above e&. The time taken by
the triple matrix multiplication in (9) is of the
same order of magnitude of the diagonaiization (7),
since about n' operations and required in both
cases. In future work, advantage could be taken
of the quasidiagonal structure of M near the center
of the cluster (see below), to reduce the number of
operations.

Finally, differential quantities can be obtained
from the solution, by admitting, according to ap-
proximation (a), that the P matrix and the F ma-
trix are unchanged except within the cluster. In
particular, for the chemisorption energy we have,
in the Hartree- Fock approximation,

is the chemical potential of electrons in the free
solid.

III. RESULTS AND DISCUSSION

As anticipated, chemisorption of a hydrogen
atom on a graphite monolayer was chosen for a
preliminary test of the method, using the NDO

approximation in the CNDO-2 version of Pople
and Beveridge. " Qnly closed shell configurations
were studied. On-atom adsorption was considered,
so a, reasonable though not mandatory choice of
the B cluster comprises a certain number of shells
of neighbors of the reference 0 atom on which ad-
sorption takes place {see Fig. 2).

The CNDQ approximation uses Slater-type val-
ence orbitals as basis functions, but treats them
as orthogonalized Lowdin orbitals, "so the S ma-
trix is unity. The E~ matrix elements for graphite
were calculated from the solution previously ob-
tained" according to Eq. (19), for all the relative
positions (o'0, vg) occurring in the 13-atoms clus-
ter labelled as IV in Fig. 2; all other E~ elements
are negligible in practice. For calculating the
projected densities of states p„„-;at the same
relative positions, the procedure discussed in Sec.
IIC was used. The energybands sr~(k) were recon-
structed following the Monkhorst scheme at the in-
tersection point of a commensurate net in the recip-
rocal space, comprising 2304 points in the Brillouin
zone. In each triangular domain of this net, linear in-
terpolation was used. It was then possible to cal-
culate the weights u&(e„) at 51 energy points c„
uniformly spaced from the bottom of the lowest
band (-2.12 a.u. ) to the top of the highest conduc-
tion band (+0.60 a.u. ) for each i band and for the

(22)

Here Tr~ and Tr~ mean that matrix multiplica-
tions and summations are performed within C and

8, respectively, E" is the formation energy of the
species A from its nuclei and electrons calculated
in the same approximation as the rest, and LE„is
the electrostatic interaction between the system of
nuclei in A with those in B.

In this formula, it is assumed that the cluster is
neutral; if a charge 4g is left on the cluster, a
correction term p, 4g should be added where p,

FIG. 2. Numeration of the carbon atoms of graphite
and identification of progressively larger J3 clusters:
I (1 atom); II (4 atoms); III (9 atoms); IV (13 atoms);
P (19 atoms). The hydrogen adsorption takes place at
the central (0) atom.
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FIG. 4. Diagonal elements of ~~ as a function of en-
ergy; nondiagonal elements are zero. F & is an ab-
ridged notation for I ~~, and analogously for the other
symbols.

FIG. 3. Projected densities of states p~o ~(&) (top
figure) and p~«,~(e) (bottom figure). The index m,
which labels the different curves corresponds to the
numeration of atoms in Fig. 2; z indicates the orbital
p, , orthogonal to the graphite layer. Densities of states
above the Fermi level are not drawn.

19 k& points included in the irreducible part of
the first Brillouin zone where an explicit seU-
consistent. solution for graphite was available.
The projected densities of states were finally ob-
tained at the 50 intermediate t„points according
to Eq. (21).

In Fig. 3, some p~ elements are reproduced as
a function of energy; only energies below e~~

(-0.13 a.u. ) are considered, since the oscillations
above &~ are so rapid as to make the graph unread-
able there. It is seen that the decrease of pf„„,
(hence, ImG„„}with increasing distance between
p, and v centers is not very rapid. However, due
to the oscillatory character of Q (c}and p~„(a)
at given energies for different relative positions,
large cancellations of terms do in fact take place
when effecting the sums Q s or Pn, so making
it more justifiable to accept approximation b of
Sec. II.

Having chosen the actual B cluster, the M(e)
matrices were calculated according to formulas
(12) and (13}at V2 energy points within the inter-
val E -E„not uniformly spaced but more densely
concentrated near e~~. Two additional matrices

SO

ZO

.5

OI

S1

Z1

0 So e (a.u. )

FIG. 5. Diagonal sm amd zm elements of M, m
labelihg the two different types of atoms, 0 and 1, in
the cluster (see Fig. 2).

were calculated at —10 a.u. and + 10 a.u. in order
to encompass all possible values for e&. This
choice was adequate to justify linear interpolation
of M matrices between adjacent energy values.
Figures 4-6 are introduced to give an idea of the
structure of the coupling matrices, of their de-
pendence on energy and on their variation with the
choice of the cluster B.

Figure 4 represents the extreme case of the
diagonal M matrix, corresponding to a one-atom
cluster: each basis function is here at the same
time a "central" and a "border" function; it is
shown that MI,(E~ „) equals one half the electron
population in infinite graphite, as discussed in
Sec. IIB.

In Fig. 5, referring to the four-atom clyster,
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ZO, S1

SO

5-I

Z2, Z3.
l

S3
/

S2

S2
Z3

S3

'SO, Z1

'S1

e (a.u. )

FIG. 6. Diagonal sm and zm elements of M (see
Fig. 2).

it is seen that the diagonal elements on the cen-
tral atom already approach quite closely the as-
ymptotic e(e~r-e) behavior [see Eq. (17)]. Note
that also diagonal elements on border atoms have
a e-like behavior, more clearly so at least than
in M, each border atom being here directly con-
nected to the internal atom.

These trends are further enhanced in M', as
shown in Fig. 6. The e-function behavior is ap-
proximately perfect for the four internal atoms,
especially for the central one; in this sense also
border atoms seem here to be more "internal"
than border atoms in the cluster II. In fact, each
border atom is here directly connected to two
other atoms in the cluster, whereas, in II, the
atoms of type 1 had only one nearest neighbor
belonging to the cluster.

Out of diagonal elements of the M matrices are
generally much smaller than diagonal ones and
become progressively less important as the dis-
tance between the centers of the related functions
is increased. Both these characteristics are more
pronounced for s-type than for m-type functions.
Their dependence on energy, except for the dis-
continuity at the Fermi level, is quite smooth.

As a general comment, it may be observed that
the coupling matrices exhibit a dependence on en-
ergy which is much smoother than expected from
the complicated behavior of the p functions from
which they derive; and also the asymptotic 6-func-
tion behavior is found to be obeyed, in first approx-
imation, by all but the border functions. These
findings are encouraging and could suggest the
use of more efficient interpolation techniques than
the 1inear one, with saving of computer time and
storage.

A test of the numerical accuracy of the calcula-
ted M matrices and of the correctness of the meth-

TABLE I. Comparison of J'„„matrix elements for
graphite, embedded cluster (IV) and nonembedded cluster
(IV) in the absence of adsorbates. Symbols for identify-
ing the basis functions p, v are chosen with reference to
Fig. 2. For instance, x2a denotes the P» atomic orbital
on atom 2a.

Graphite
Embedded Nonembedded

cluster cluster

sO, sO

gl, gl
g2, g2
g3» s3

zD, z0
zl, zl
z2 z2
z3, z3

xO, xO

xla, xla
x2a, x2a
x3a, x3a

sO, sl
gQ, g2
s0, s3

zo, zl
zO, z2
zO, z3

s0, xla
sO, x2a
s0, x3a

0.9806
0.9806
0.9806
0.9806

1.0010
1.0010
1.0010
1.0010

1.0092
1.0092
1.0092
1.0092

0.312
0.004

-0.040

0.524
-0.000
-0.184

0.478
-0.238
-0.016

0.9807
0.9807
0.9807
0 ~ 9809

l.0004
1.0005
1.0006
1.0008

l.0097
1.0097
1.0100
1.0100

0.311
0.004

-0.040

O. 524
-0.000
-0.183

0.478
—0.239
-0.015

1.0107
0.9680
1.2309
1.1081

0.9546
1.1291
O.7086
1.1341

1.0524
0 ~ 9264
1.1988
0.6805

0.331
0.013

-G.002

0.527
0.012

-0.234

0.458
-0.229
-0.052

od was performed by applying the embedding pro-
cedure, Egs. (7) and (9), to a cluster of graphite
atoms in the absence of any adsorbate, and com-
paring the results with those obtained for infinite
graphite agd for the nonembedded cluster. Table
I shows the outcome of such a calculation for
cluster IV, similar results having been obtained
for all clusters I-V. It is seen that atomic-or-
bital populations reproduce those obtained for in-
finite graphite to within one-thousandth of an elec-
tron, and a comparable accuracy is found for ex-
tradiagonal elements of P. On the other hand, the
electronic state of the nonembedded cluster is
very different from that of graphite even in neigh-
borhood of the central atom, so making it quest-
ionable, from the start, whether the adsorption
characteristics of clusters of that size adequately
reproduce those of the infinite solid.

The adsorption of hydrogen above a carbon atom
of graphite was studied in particular for the em-
bedded clusters II and IV; the results obtained are
displayed in Figs. 7-9.

In performing these calculations, difficulties
were encountered in the attainment of convergency,
of the type often reported in literature. '""s"
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Q ~ r

The problem was more serious with large clust-
ers, due to the increase in degrees of freedom;
it is also possible that imposing boundary condi-
tions corresponding to the connectivity with an
infinite solution makes, in general, the conver-
gence problem more critical than with a finite
cluster. The classical expedients were used
here of using as trial starting solution that one
found at a nearby configuration where conver-

.3- 3t

total .2t-

p.
0
1

pl

2
z (A)

FIG. 8. Net charge on atoms as a function of hydro-
gen distance from the surface calculated for the four-
atom (left-hand side) and the 13-atom (right-hand side)
embedded clusters. The numbers (0, 1,2, 3) which label
the curves correspond to the numeration of graphite
carbon atoms in Fig. 2. The dashed curve is the total
net residual charge in the cluster.

FIG. 7. Chemisorption energy DE as a function of
hydrogen distance from the surface. The full curve
is a best fit to results obtained for the 13-atom em-
bedded cluster, the circles refer to results for the four-
atom embedded cluster. Dashed curves a, b, c give the
chemisorption energy per atom in regular on-atom chem-
isorption for 1:2 (Ref. 11), 1:1 (Ref. 33) and 1:18 (Ref.
31) hydrogen-to-carbon ratios.

-2

I

)
I

, I a

8 (a.u.)F

FIG. 9. Spectrum of hydrogen contributions to the
density of states: for each eigenvector the quantity
~a tt, ~t is reported at energy e;. Full lines refer to
chemisorption on the 13-atom embedded cluster for a
hydrogen distance of 1.1 A from the surface, dashed
lines refer to the same case for the four-atom cluster.

gency has been attained, and of mixing P matrices
from different iterations during the self-consis-
tency step. Still, some difficulties were left de-
serving further critical work, especially concern-
ing the chemisorption energy ~, which is the
near-zero difference between two very large quan-
tities [see Etl. (22)].

In Fig. 7 the chemisorption energy is given as a
function of distance of H from the surface, calcul-
ated according to (22) with correction for non-neu-
trality included. The full curve is the result of
a best-fit procedure performed on 17 solutions ob-
tained for cluster IV after eight iteration cycles in
the interval 1.0-1.4 A, starting from different
trial P matrices; the related standard deviation
is 0.01 a.u. The results obtained for the four-
atom cluster fit rather nicely, perhaps fortuitous-
ly, with this curve. In any case the equilibrium
configuration is identified at about 1.15 A from
the surface, which is the same value obtained in
the case of regular on-atom chemisorption. Com-
parison with the results obtained in that case
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seems to indicate that the chemisorption energy
for the isolated atom is nearer to the values ob-
tained in the 1:1 (Ref. 33) than in the 1:2 (Ref.
11) concentrations and approaches the value ob-
tained by Bennett et a/. " in the 1:18concentration
using the periodic boundary condition method and
the same CNDQ-2 parametrization. Even if pos-
sibly subject to revision because of the uncertain-
ties just mentioned, this result is interesting,
since it seems to confirm the fact that chemisorp-
tion energy is a quantity strongly dependent on
structure and that extrapolation of results from
more to less dense phases or vice versa is haz-
ardous. 2

While from the point of view of the chemisorp-
tion energy the four-atom embedded cluster seems
to give unexpectedly good results, the need for a
sufficiently large 8 cluster where to allow for
self-consistency becomes apparent when looking
at quantities more specifically related to the elec-
tronic state of the system, such as the net atomic
charge on the atoms calculated according to a
classical Mulliken analysis. In Fig. 8 the net
charges on the different types of atoms are re-
ported as a function of the distance of H from the
surface, together with the total charge in the clus-
ter.

Some qualitative features of these results are
similar for the two clusters. A group of positive-
ly charged atoms is found at the center of the

cluster, the positive charge being particularly
high on hydrogen, surrounded by a ring of neg-
ative atoms. Beyond these two regions, an ex-
ternal ring of positive charges of small entity is
observed in the larger cluster so suggesting the
occurrence of quenched Friedel oscillations; a
test effected on the 19-atom cluster (labeled V
in Fig. 2) for a H distance of 1.2 A has given neg-
ligible, but still positive, charge on the six atoms
of type 4. An alternancy of positive charges on the

hydrogen atom and the underlying carbon atom and

of negative charge on the other carbon atoms was
also observed in regular 1:2 chemisorption. " A

progressive decreas@ of the positive charge on the
H atom and, a parallel increase of the charge on

the underlying carbon atom with increasing dis-
tance is also found in both cases.

Apart from these qualitative similarities,
quantitative results are very different for the
two clusters. In particular, we must consider
the net residual charge in the cluster, which is
found as a consequence of fixing the Fermi level
at its free-solid value. In the small cluster the
residual charge is at least three times as large
as in the bigger one; at the equilibrium distance,
in the latter case, a net charge of only 0.06 elec-
trons is observed, which is a very satisfactory

result, if one considers that a total of 53 valence
electrons are assigned to the cluster; further-
more, it is still an open question whether this
residual charge is essentially to be attributed
to an insufficient size of the cluster or to numer-
ical iriaccuracies. In any event, for cluster IV,
the P-matrix elements at the border are already
close to their free-graphite values.

The structure of eigenvalues and eigenvectors
can contribute to the description of the electronic
state for the different solutions. In Fig. 9 the
spectrum of the hydrogen contributions to the dif-
ferent eigenvectors is provided for a distance of
1.1 A, in the two cases. As expected by elemen-
tary symmetry considerations, only few eigenvec-
tors have an appreciable contribution from the hy-
drogen atom: 6 out of 1V and 10 out of 53 for the
two clusters respectively; all of them are found to
correspond not to localized states but to resonant
ones, asymptotically merging into free-solid solu-
tioos. A comparison of the two spectra suggests
that the smaller cluster has still too poor a basis
to adequately simulate the density of states on

hydrogen; this may be the main reason why the
charge on hydrogen is so different in the two
cases. Another characteristic of the spectrum
which is worth mention is the concentration of
important peaks near the Fermi level. This fact
had been observed in previous studies of on-atom
adsorption of hydrogen on graphite"s' and may be
in part responsible for the problems of conver-
gency that were encountered.

In summary, these preliminary tests seem to in-
dicate that the embedding scheme here proposed
is workable in practice, although further work is
surely needed to speed up the computing proced-
ures and to devise more efficient numerical tech-
niques for reaching and testing convergency. The
approximations which are at the basis of the meth-
od appear to be adequate for moderately large
clusters, such as the 13-atom one, labeled here
as IV; for smaller clusters, such as the II one,
the approximation corresponding to admit that the
influence of the adsorbate on the electronic state
does not extend beyond the B region is surely in-
correct. It was not possible to effect, for the sys-
tem here considered, a comparison with chemi-
sorption on the nonembedded cluster in the same
approximation, since an odd number of electrons
would be involved in that case so preventing any
closed-shell solution. This fact in itself is an
argument in favor of the superiority of the em-
bedding scheme with respect to an isolated cluster
approach; in any case, the electronic state of the
isolated cluster with no adsorbate was so different
from the state of infinite graphite for the sizes
here explored, that the boundary effects would be
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surely important in characterizing chemisorp-
tion.

Concerning further developments of the method
apart from obvious extensions to other systems
and geometries, it would be possible to extend it
to study strictly local geometrical rearrange-
ments of the adsorbent atoms induced by adsorp-
tion. Finally, a formally identical scheme could
be used to connect a surface solution to the solution
for a tridimensional solid, '"' so reducing the self-
consistency problem to few layers, within a crys-
talline orbital SCF formalism.
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