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Multiple-scattering approach to angle-resolved photoemission
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A Green's-function formulation of angle-resolved ultraviolet photoemission spectroscopy is presented for
surfaces with overlayer adsorbed systems. Multiple scatterings of the initial state are included through the
use of cluster wave functions solved from a self-consistent Xa scattered-wave method. The final-state process
is expressed in terms of a scattering T matrix which propagates the final-state electron through surface
layers of the crystal lattice, in the presence of inelastic damping. It is found that major angular asymmetries
in the photoemission intensity profiles arise from multiple scatterings off neighboring ion cores. Our
formulation, in the limit of taking a single wave function from a single ion-core, reduces to the
photoemission theory of a core level.

I. INTRODUCTION

Angle-resolved ultraviolet photoemission spec-
troscopy (ARUPS) has increasingly been recog-
nized as a useful tool for studying surfaces of clean
and overlayer adsorbed systems. ' " Recent ad-
vances in experimental instrumentation and the
use of the synchrotron radiation source result in
the acquisition of much experimental spectra as
functions of photon energy, photon polarization,
incident angle, electron exit angle, electron exit
plane, etc. These data contain potential information
of the direction and symmetry of surface bonds as
well as the location of chemisorption sites."'

In order to interpret the data, it is now esta-
blished that multiple-scattering effects, especially
by the immediate neighbor atoms, are extremely
important. " Both the initial-state wave function
and final-state wave function result from strong
interactions of an electron with a number of atomic
potentials. In this paper, we present a dynamical
theory of angle-resolved UPS based on the multi-
ple-scattering (Green's-function) approach. For
the treatment of the initial state, we solve for the
self-consistent cluster wave function using the Xa
scattered-wave method (Xo. SW)." The final-state
process is written in terms of a multiple-scatter-
ing T matrix which propagates the photoexcited
electron through the surface layer of the system.
Due to strong inelastic damping of the final-energy
electron, only a few (5-10) surface layers are
penetrated. Qur approach, in the limit of taking
a single atomic wave function from a single ion
core, reduces to the core-emission theories pre-
viously reported. @~~ ~

We note that the formulation contains a number
of approximations. Among these, the most im-
portant ones are as follows (i) The effect .of the
positively charged hole is not treated properly.
The extent to which the hole can be included is

through the use of transition-state wave functions
in calculating excitation matrix elements. A

check of phase shifts and excitation matrix ele-
ments computed from ground-state and transition-
state potential showed only minor differences. It
seems that in solids, major angular asymmetries
in the photoemission intensity spectra arise from
multiple scattering by the neighboring atoms. (ii)
Since we use initial-state wave functions of a clus-
ter of atoms, we neglect the k, dispersion of the
initial state. Qur formulation, however, is general
and can include k„-dependent initial-state wave
functions. The selection of cluster wave functions
as the initial state is by choice. We judge that a
proper description of the initial-state surface wave
function requires an accurate and self-consistent
treatment of potential and charge distribution of
the adsorbate and neighboring atoms in the local
region surrounding the adsorbed atom or molecule.
In this respect, the XQ. scattered-wave scheme
seems to produce adequate results. ""Further-
more, experimental measurements of the adsorb-
ate-derived levels for S, Q, and CQ show very
mild dependences on k„."'" (iii) In the treat-
ment of final-state multiple-scattering processes,
differences in scattering factors of the "host" ion
cores, i.e. , ion cores from which the photoelec-
tron is excited, are neglected. Judging from the
differences in scattering factors of transition-state
and ground-state potential, we estimate that for
solids such as c(2 x 2) 0 and 8-Ni(001) systems,
this difference would produce unimportant angular
effects on the photoemission spectra. (iv) Finally,
the muffin-tin form is used for the crystal poten-
tial. To summarize, the basis of our approach
relies on the importance of multiple scattering.
We argue that once multiple-scattering effects are
properly included for initial and final-state wave
functions, major features in the photoemission in-
tensity spectra can be accounted for.
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II. DEFINITION OF GREEN'S FUNCTION AND T MATRIX
FOR PHOTOEMISSION

g( R ) = Go I y& + 2 G. t. G. I e&

In a one-electron description, the wave function
of the photoelectron at the observation point R is

P(R)= d'rG(R —r) H, q,(r),
where

+ Q Go T~Go t~GO
I P&, (10)

where the interaction Hamiltonian is

Hl= — A ' P — P A+ 2
A'+ ep.2mc 2mc 2mc'

(2)

Neglecting the A' term and in a homogeneous
medium with no net charge, a gauge function exists
so that V ~ A=0 and /=0. The interaction Hamil-
tonian in the dipole approximation is

8
~

mc

In Eq. (I), g, ( r ) is the initial-state wave function.
In terms of the free-electron propagator G, and

the T matrix of the entire system (substrate plus
overlayer), G can be written as

A pIg&

is the excited-state wave function. In Eq. (10),
the first term represents the direct-excitation
term with no scattering, the second term is the
single scattering by t, the scattering can be due
to the adsorbate or substrate; the last term in-
cludes all higher-order scattering events.

III. GRADIENT V(r) FORM OF THE INTERACTION

HAMILTONIAN

In Eq. (1), G is the final-state one-electron pro-
pagator describing the motion of the excited elec-
tron in the potential due to the substrate and the
adsorbate. Suppose the entire system is repre-
sented by the Hamiltonian

G = Go+ GOTGO y

where"

(4) H= — V +V
2m

and the eigenvalues of the initial and final state
are q,. and q&, then

In Eq. (5), k,' is the complex "energy" of an elec-
tron in a medium with absorption Z(E). The dis-
persion relation

(6)

holds inside the solid.
If the system is divided into nonoverlapping re-

gions a and the scattering by each region n is de-
scribed by t, then T in Eg. (4) can be written as

and

H(r )G( R —r ) =&& G(R —r ) —5( R —r) . (12)

Using the fact that the initial wave function P,(r)
vanishes at the observation point R, and also as-
suming that G is calculated from the same Hamil-
tonian as the initial state, it is shown in Appendix
A that the forms

T= Q t~+ Q T~Got~,
al le al le

where T' is the matrix to describe the remaining
scattering process after the electron has been
scattered by the region n. T' can be written as

-N A VV
mc

are equivalent. In fact, all three forms of the in-
teraction Hamiltonian

et
e'Ae

et etl
et pett
e'8 e

T'=g t. + g t„G,t. + ~ ~ ~ (8)
A'P

mc (13)

T'= g t, , + g T .G, t, .
etre etre

Combining Eqs. (1), (4), and (9), the outgoing
photoelectron can be expressed as

(S)

e(e, -e() A'r
5c (14)

e 1-iS VV,mc (15)

are equivalent as long as the conditions set «rth
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in Appendix A are satisfied. In practice, the ini-
tial and final wave functions are usually calculated
from slightly different Hamiltonians and Eqs. (13),
(14), and (15) do not produce identical results. In
subsequent calculations using muffin-tin-type po-
tential, out of efficiency, we shall use Eq. (15) for
Hq.

IV. ROLE OF MUFFIN-TIN POTENTIAL IN FINAL-STATE

CALCULATION

In the following, we shall use muffin-tin-type
potentials. %ith this approximation, it is shown
in Appendix 8 that the photoelectron wave function
at the observation point 8 can be written as

q(H)=G. le)+ . /h. g Z(-i) 'h)"(h. lH-H. l)&.(H-H. )»:
al lo L

+, /h, P P P ( i) -' h, ' "(h,. lH —H l)Y~, (H —H, ) P I''~6~~) )

al 1a. L L ' f«j=o
(16)

where R is the location for the center of the nth
muffin-tin sphere; h, = le l

is the magnitude of the
photoelectron momentum; h,"' are the spherical
hankel functions of the first kind; YL are the
spherical harmonics with L = (I, rn); T" and G&" '

are the multilayer scattering matrices and the
structural propagator defined in Appendix B. The
index q(o) represents the qth layer in which the

nth sphere lies.
In the derivation of Eq. (16), we have assumed

that the scattering ion cores have two-dimensional
translation symmetry. In other words, the pertur-
bation introduced by the fact that the potential at
the photoemission site is different from that of
other sites in the layer due to the hole is neglected.
In Eq. (16), the matrix elements M ~ are explicitly

(17)M ~= —( i)' -d'r[e+r 8",(l r 0, l)- j—,(h, lr —0 l)]I'~(r —H„)(-/8) A ~ v V(r))(), (r) .
f

In the above equation, 5, is the 1th phase shift of the nth sphere at the final energy /. f. j, is the spherical
Bessel function. R, is the normalized radial part of the solution to Schrodinger's equation inside the ath
sphere with energy &&. Physically, the function inside the first bracket in Eq. (17) represents the wave

function scattered by the spherical potential of the ath sphere alone. We shall now write Eq. (16) in an

integral form. This is done so that we can eventually use plane-wave boundary conditions. Using the
integral form

h&, '&(h, lr H. l)I', (H —H.) = ~ AC «Rg I|I «R~d'h, , y, (k),
0

we write Eq. (16) as

s)&) Gls) ('"*' '.=' *'-~ I." "'" I.)'@M""P "')k) E ("""")'"")2m' (19)

2&rs
= GO

I 4) — f-2 (2 2)

d 3ye (if. ~ 8
, 4(k).

0
(20)

Before studying the scattering amplitude A(k), we
first look at the matrix elements, ~I L in more detail.

V. MATRIX ELEMENTS NL AND ROLE OF THE

MUFFIN-TIN POTENTIAL IN THE INITIAL STATE

In Eq. (19), the only place where the initial state
wave function g& comes in is through matrix ele-

)J),.(r) = Q e(h, —x, )f8(r, )+5;~,f„(r),
B

(21)

where e(x) is the usual step function: 8(x) =1 if x

ments A1 L. In order to evaluate ML, we first give
an explicit form for g, . Since we have assumed the
muffin-tin-potential model, /), (r) has the following
form
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~ 0 and e(x) =0 otherwise; b~ is the radius of the
Lgth muffin-tin sphere; r~ = r —88 is the position
vector relative to the I3th sphere center; 5; „is

t
the Kronecker function in the sense that 5; „=1 if
r is in the intersphere region II and equal to zero
otherwise. The initial state in the intersphere re-
gion is described by fez(r), while inside sphere 8
it is described by

f (r ) = QCBR~(r )Y (r ).

Here we use the real spherical harmonics because
it is commonly employed in the initial-state calcu-
lations. Since we are considering the photoem-
ission from an adsorbate-induced initial state, C ~
is nonzero only for I3 belonging to the cluster from
which we calculate the initial state. Thus the sum-
mation in Eq. (21) is over spheres in the cluster
only.

Substituting Eq. (21) into Eq. (17) and using the
fact that VV=0 in the intersphere region, we obtain

M ~ = —(-i}'(-ik) g d'r„[e~e&R~(y ) - j(k Or )]Yz(r ) A ~ V V(rz)
' p e(b8 —r~ )f8 (r~)

In the above equation, y' indicates that the integral
over sphere y has to include the surface contri-
bution due to the discontinuity of the potential
across the muffin-tin- sphere surface. This sur-
face term would be discussed in more detail in
Sec. VIII.

Noting that e(bs —rs) = 0 if r is not inside sphere
f3, we have

n(LL,L') = Y~(r) Yz (r) Y~~.(r) dQ, (27)

In Eq. (26), a(LL,L') are the Clebsch-Gordan coef-
ficients defined by

M =D
gCC

d'r~[e" i R~~(r ) j,(ky' )]— H~g = B~ —H~. (28}

where

x Y~~(r, )A ~ V V(r~)f~(r~), (22) With the above expansion theorem, Eq. (22) be-
comes, after separating the summation into two
parts

D= —(-i)'(-ik)
PBC

(23) M~=m +~~~~t G~ S~
L L ~~ t ILj Iy

gt- a
(29)

It is shown in Appendix C that for goo. , we have
the following expansion theorem

[e"TR~ (r, ) j,(k,r )]y—~~(r, )

where

= i, (k,) QG~~~ (k,)j, (k,r~) Y~ (r~), (24)
1

n~~ =D d'r„[e' r R~~(r, ) —j,(k,r, )]

where x Y*(r )A &V(r, )f, (r ) (30)

fi (ko) = — —e l sindhi

Pz' 1 q~e

Q

(26)

G"' (0,) = —4 '( , )0,

Sl, =D d'r~j, k,r~ Y~ r~ A ~ &Vr» r~ .

(31)

x gi'a(LL, L')k', ."(koR ~)Y~,(R e). (26)
Substituting Eq. (29) into Eq. (19), we obtain for
the scattering amplitude A(k)
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A(k) = y8(k}e ' 'am'+ g g Y8(k)e
' ' n g g t, G8z Si

C, III L BRee L~

+ g g y (k}e-i}(~ Rn g Z Vg)a(a) g m a
e L I' i,j=o L'L

+ gg y (k)e-if R Z ifgia(n) g g g t aga8 g 8

e L L' , =0 LL B&f)f
(32)

In the last term of the above equation, note that Gj' is the multilayer structural factor with j, q denoting the
jth and qth layer, while C 8 is the three-dimensional structural factor with e and p denoting the nth
and Pth atomic sites.

Employing the matrix representation Y for (Y8) and G for (Gzz, ), etc. , we have

A(k) y(k) Q e n-an~ p e-i}( %n Q tngn8g8
alla Qlf}(

+ g e-if Rn T(igJ'a(n) ma+ e-ik. Ra Ti»(g((a(n) ] &gf)tBg8
Ill a i, j=0 ail a i,j=p

In Eq. (33), we note that m 8 and Si are nonvanishing only for o, belonging to the cluster The. n Eq. (33}
reduces to

A((e)=('((e( Q e '"'" ' ~ ' '" Q ('a eae y -'"' Q (' a"'}m"'

aq-C I)( 8( c ai C i.i= o

-il( R n Q Ti)g)a(a) Q t agn83 8

a a ia j=o
888 a

= Y(k)(A l +A2 +A3 +A4} . (34)

In the following, we change the summations
over different atomic indices (Q +8, etc )into.
summations over layer indices (Q, , etc.). Doing
this, we can express QH) in terms of the multi-
layer scattering matrix and structural factors.

Al =
q-KC

where

(35)

(Q«rc). The terms Al, A2, AS, and A4 in Eq.
(34) are now considered separately

VI. CHANGING SUMMATIONS OVER ATOMIC INDICES
TO LAYER INDICES

In Eq. (34), the summations are over different
atoms belonging to the cluster Pane. In the fol-
lowing, we separate this sum into two parts: the
first sum is over different atoms in a given layer

(Q „(,) „&), and then the sum is taken over all
layers (KC) that contain atoms of the cluster

) a Q e-el( Rnm a
a(e)a. C

Similarly, AS in Eq. (34}becomes

As for A2, we have

(37)

-iF R 8 ta| -i(('R 8ga8 Q ta e-iF ~ RaBGag g 8

8&c e(e,(8)) (I 0((e)
a &ed(S)

(38)
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In Eq. (38), we have separated the sum inside the
bracket into two parts: one is over the different
atoms (except P itself) in the layer ('t, (P} where P
lies, the other is over other planes (f & (f,(p}. In
each layer we sum over a1.1 the atoms contained in
the layer. Then by definition (Appendix C), we
have

A4= Q Q Q T G")"t' "Gt)"
q~~-fCC q=o i, j=p

Adding the four terms 41, A2, A, 3, and A4 to-
gether, we have

A(k) = T(k) Q 1 Q T"G"
)

4'
q~~lcc && j=p

and

q- &.R~SG~B Gq, (8)q, (8)

a(qq(8)) ~ E p 1. E 1"G-)
q1EEC q=o && j=p

,-i ~ R~8~~8 G«, (E))

a(q)
(40)

)( ]qGqqyqqy (44)

which are the multilayer structural constants.
Note also that we have used the subplane concept
where all ion cores in a subplane are of the same
kind. Thus, we can put I,

' =t'. Thed the term
&2 becomes

We can further expand

1+ g T'~G" =1+ g T'~G '
i, j=p i, j=.p

jW q

where

g e '~ B g taGaak(8)S8
Sec q=p

Q 1'G"') 4"
qlEYC q O

(41)
+ Q T'~G" T'G" + T'G"

i, j=o
jWq

1+ T'jG j' 1+7.qGqq 45
i, j=p

&1 Q e- )4 R8g8
8(qI )
f3~ C

Similarly, A.4 can be written as

(42)
~a (1 taGaa)-kta

Then, it can be shown that Eq. (44) becomes

(46)

where v' is the layer scattering matrix constant

OO

A(k)=T(k) E 1+ E T"G")(1+ ' G' ')tk'+1 G tl )'' ''
q PEC - i, j=p1

jWq

1+ P T "G" (I+raGaa)taGaa»ta&
q= i, j=p

(47)

Noting that

1 r +G aa(a1 —t'G") '=(1-X') ',
where

X'=I,qGqq

and

(1+T'G")t'=(1 X') 'ta=aa, -
then Eq. (4't) becomes

(48)

(49)

(50)

A(k)=I(k) g
q g=Ec

TijGj & 1-X x )(i.qz+t ~G j.'xg x +
q=o

q~qg

+ g T'~G&

jPq

7 qGqqxgqx

Picking up the nonscattering term in Eq. (20), we have
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GG
~
p) = d3r GG(R- r)(-ig) A VV(r)(('r, (r)

PlC

d'rG (R —R -(r —R ))(-ih) — A'&V(r, )f (r )mc Ej —4)

d'~. g F, (R - R.)(-if,)hg)()t.
~

R- R. ~)g2 L 0 l 0 O

r r (r, ) (jrk, )( ')(k-) A ' rr(r, )j,'(r, ) .

Using the integral form of Eq. (18), we have

(5&)

g Y~(k)e '" aG(-'i)'(ih) d'r j,(k,~ )Y~(r, ) A VV(r )f (r, )
nE L

=-
h2 2m2 t,2 k2 Yk q

putting Eqs. (53) and (51), into Eq. (30), we have

(53)

1+ Q r iGi )(1 —X")''(1"+1"G""r")
j ~ j=O

(54)

The first two terms of B(k) consists of a nonscat-
tering term and a term with at least one single-
scattering process. The sum of these two terms
corresponds to including all different scattering
paths and is equal to

Equation (56) can be further simplified by noting
that

))G+ fa GGGqe P e-i'%()~j) y fGGarj g e iRBSk(j .-
8&q) 8(q)

t)'r g 1+ g r"G")r G r)'-
qeO i, j=0 From Eqs. (30) and (31), we see that

(57)

= 1+ T'jGjqj. gqi.
$, j=O
jAq

mL =FL —SL,8 8 8

where

Then

k (k) = r(k) F 1 ~ F X GG k)
qr KC g, j=0 x Vl*.(r,)A ~ V V(rj))f(j(r, ) . (58)

x [q +(1 —GX') '(XG+ fGGGGqk)] . (56) Thus we obtain
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a+ (I -Xa) (fg a+fag aaa) )a=+ e i)1 RBIS +(I-Xa) [FB —(I —fagaa)SB]}
8(q)

Using Eq. (49), we have

(58)

i} a+ (1-X') '(])a+ I'Gaga]a)= g e '"' B[S'+ (1 X')-'EB —(1-X') '(1-X')SB]
8(q)

(1 Xa)-& Q e-if RBFB

8(q )

Putting Eqs. (60) and (56) into Eq. (55}, we obtain

e jkBR

g(R)=—,g'k, , Y(k) Q (k Q 1" G"1)( )X') '1",

(60)

(61)

where

Fa g e i)g' RBFB-

8(q)
(62)

where the (+ ) sign is for layer i above and (-)
sign for layer i below layer j. Also, ZG= (Sv-'i

/A)(2m/I'), A is the area of the unit cell and

and E is defined in Eq. (58). Equation (61) is
reduced to the core-state photoemission formula-
tion if the cluster consists of one atom at the orig-
in.

VII. EVALUATING FINAL-STATE SCATTERING
IN K-SPACE REPRESENTATION

The expression given in Eq. (61}may be used to
evaluate the photoemission amplitude. However,
evaluating the final-state scattering can be a
lengthy computational operation. From lessons
learned in dynamical I,EED calculations, in the
presence of inelastic damping, it is much faster
to evaluate final-state scatterings using perturba-
tion schemes. We shall now transform Eq. (61)
into K-space representation.

The interlayer structural propagator G" (i 4 j)
expressed in K-space representation is"

e i)f+(if) ~ (dj-d j)
Gif (k) ~ e-if'(Bl-ff) QLL' 0 I)k(g)

x y*(k'(g})Y,(k'(g)),

(63}

k'(g) = [k„+g; f:(k', —(k„+g)')'f'] .

kf =(kf +kf) (65)

from the origin, then through scattering from the
crystal lattice, only electrons with momenta k
given by

k~, = kf~~+ g (66)

have a chance to be collected. Using the relation

(2)Y '
(67)

where N is the number of atoms in a layer, the
integral in Eq. (61) becomes

In Eq. (63), g is a two-dimensional reciprocal
lattice of a layer and the coordinate system is
chosen such that k'(g) propagates outward and
k (g) propagates into the crystal. The vector d,
is from the origin at the surface into the crystal
to the origin of a given layer i. The positive d,
direction is pointed away from the solid.

If the photoemission detector is placed at direc-
tion given by

j)f'(g)RR CX)

[g(R)] f k=-(, — k'(g), —, Y(k(g)) Q 1++ r'~Gk)() —X') '1" .
q6EC j, j=O

j=q

This integral is done in Appendix E, Ref. 26, and

(68)

(g(R)];i.= " "" E 1 ~ E r"G"}(( X )'r-
jffq

—g(kk(g))e«'(I) It

(68)
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~ yg(k'(g, ))&gg (&.)Vi (k'(g, )) (7l)

we can write multiple scatterings in Eq. (69) as
a series of matrix products such as

The factor e' '~' represents a set of outgoing
plane waves towards the detector at directions
k;, + g. Thus the coefficients C(k'(g)) are the photo-
emission amplitudes in these directions. Evaluat-
ing the coefficients in Eq. (69) results in the
photoemission amplitudes of a set of directions,
related by g, including for g= 0 the k& direction.

Using the E-space representation of 6'~ in Eq.
(63), and defining layer scattering matrices for
the qth layer as"

where ()(0= (2~/ h2)(2vi/NA) and

I d ( ) g -i)s (g) ~(R()-R )PB
8(e)

(75)

where Ro is an origin in the qth layer. It could
be one of the p(q) atoms. The quantity Qg(k'(g})
represents electron amplitudes excited from the
qth layer in directions outwards (+ sign) and
inwards (- sign). Subsequent scattering are done

by matrices M,",' at layer q and propagations by

P,', in between layers. Summing the layer scat-
1 2

terings to convergence can then be done by pertur-
bation methods, such as RFS or layer doubling. "

[P'M"P'(I+ M")P'],

In Eq. (72), the P' are diagonal matrices cor-
responding to outward (+ ) and inward (-) propa-
gations defined by

VIII. EVALUATION OF F~

From Eqs. (58) and (23), we have

Fi =D gf'r((e' ) R, (r ()}1'z"(r(()A ~ &V(r())
p+

~gk (gi) ag
(('y(j'2 Eyg2

' (73)
(76)

In Eq. (73}, a =8„,—((, is an interlayer spacing
and I", of course, depends on the layer index i.
Note that a =(a)), —a, ) and k (g) =(k), +g;
—ki(g}) points into the crystal.

We now define the photoexcited source from
layer q as

(74)

where

D = -( i)(( i—Ii)-
Bf C Ey —E'q

First we note that because of the muffin-tin-type
potential, there is a discontinuity of V across
the sphere surface. Thus, in the evaluation of
E~8, the integral should be written as

b8-r,
vsg(gs)VV( )=1) d'vsg(rs)VV'( s))

0

+ d'r8g r8 V'V' r& +
b8

gf'r, g(r())%+V'(r~) (77)

where we have replaced V(r) by the smooth po-
tential V'(V' —V as e-0). The first term is just
the integral inside P and the last term is equal to
zero because VV =0 in that region. The radial

integral of the second term can be shown, by the
mean theorem, to be g(b())[V„—V(f)„)], where V«
is the constant potential in the intersphere region.
Thus, we have

f d*r, g(r, )VV(r) =
8+

d' sgt s)VV( s) fg(S, )[V„—V(S )ld() . ss (78)
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Secondly, we note that although the vector potential A is spatially dependent, i.e. , X(r) =Xae "', for
ultraviolet light frequencies, )k~)» l@ and X may be taken as constant inside the cluster. Then Eq. (76}
becomes

F.'=Op Cs,e"~X.8

I„)

We note that

&'r( R ((r(()I';(r(()&V(r((}R, .(r (,)I;,(r ~) . (79)

4w '~ dV

P= -1

where e, = x, e, = j and e, = i. Then we have

(80)

F~ =D g Cz, e' ' — g (-I)'A,I(L;I,p;Lq) drer'gRf(rs) s R (((r )
Lg 1

g+ dr&
(81)

where

I((.„L L, )= fd„I(~ F',( ~lY ( ~)Y (r~(,

and

A~=A„, A ~=A.„,

(62)

(63)

of the two mediums Note that p p n are corn
plex and the positive roots are taken in Eqs. (90)
and (91). The light travels from material with E,
into e, . The photon field below the interface, i.e.,
the reflected wave can be written as

A,"(P) = u, cosgA, (p); A,"(s)= 0; (92)

A,"(p) = a, (n' —sin'8)'~'A, (p); A,"(s)= u, A, (s);

IX. REFLECTION AND REFRACTION OF A AT THE
INTERFACE

If the incident photon makes angles (8, (((} with
the surface coordinate system (8 mes. sured from
the surface normal), then we define P (parallel)
and s (perpendicular} polarization components of
the vector potential by

A, (P) =A sing; A, (s) =0; (84)

A, (p) =-A cos8cos(t(; A„(s) =-A'sin(t(; (85)

A„(p)=-Acosgsin(t(; A, (s)=A'cos(((. (66)

At the interface of two mediums, the photon field
above (incident plus reflected X} and below (re-
fracted A) are different. For the photon field above
the boundary,

A r(p) = (1+p, )A,(p); A r(s) = 0; (67)

Ar(p) =(1— p) A(p); Ar(s) =(1+p, )A„(s); (66)

A„(p) = (1 —p, )A,(p); A,r(s) = (1+p, )A, (s); (69)

where

P = cosg —(n —sin'8)'I
cosg+ (n' —sin'8)'I'

P =
n2 cosg —(n —sin'8}'~~
n' cos8+ (n' —sin'8)'~' '

(90)

(91)

and n = (e,/e, )'~' is the ratio of dielectric constants

2 cos8
cos8+ (n' —sin'8)' ' '

2
Q

n cosg y (n~ —stlP8)&

(96)

(96)

In Eq. (63), the proper components of the X vector
given in Eqs. (87)-(89}and (92}-(94)are to be
substituted.

Finally, the energy and momentum factor to be
multiplied to the coefficient lC(k'(g)} l' given in

Eq. (70) to obtain the measured photoemission in-
tensity per incident photon is

l«k( ))I'
yh

where k&"' is the outside electron momentum and

co,„is the photon frequency.

(97)

X. RESULTS OF c(2X2) 0 AND S ON Ni(001) OVERLAYER
SYSTEMS

Photoemission intensity spectra using Eq. (97}
are calculated from the adsorbate induced p levels

(93)

A„"(p) = n, (n'- sin'8)'~'A, (p); As(s) = c(,A„(s).

(94)

Here again, o,, and a, are complex and defined as
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FIG. 1. Polar emission plots for c(2x 2) 0-¹(001).
Solid line: theory; circles: experiment.

0.2

of c(2 x 2) 0 and 8 overlayer systems on Ni(001).
The initial states are obtained from cluster wave
functions of one adsorbate (S or 0) and five nickel
atoms. The adsorbate sits at a four-fold site at
vertical spacing 0.9 A for 0 and 1.3 A for S." The
nickel atoms are arranged with four atoms in one
plane forming a square and the fifth atom occupies
the four-fold location in the layer below. Bulk
bond distances are used between the nickel atoms.
Dynamical inputs used in LEED calculations are
employed here for the final-state electron scatter-
ing process, i.e. , inner potential V0= 11.2 eV and
inelastic damping V, = 2.5 eV. Below the vacuum-
solid interface, the refracted vector potential A"
given in Eqs. (92) (94) are used. The optical con-
stants ~„~,are taken for nickel from Ref. 29.

In Fig. 1, we show the calculated polar emission
plot for c(2 x 2) 0-Ni(001) at 8„=50', K&u = 21.2 eV,
using unpolarized light. The calculated results are
compared with the data of Weeks and Plummer. '
The convention used to describe the azimuthal di-
rection of the photon incident plane is shown in
Fig. 2.

The dependences of polar emission profiles on
photon incident azimuthal directions are shown in

RE|"lPROCAL SPACE

(001) fcc LATTICE

,/=45
o 0 o 0

~ 0 '
0 0 P 0

e 0-m---- — o
0 0 0 0

0 0 ~
O 0 0 o

c(2x 2)
FIG. 2. Convention used to describe the azimuthal

direction of the photon incident plane.

0.0
0 50 60

Polar Angle of Collection
90

FIG. 3. Polar emission plots for c(2 x 2) 0-Ni(001)
using s-polarized light. Photon incident along P = 0 .
(a) Emission parallel to the incident plane; (b) emission
perpendicular to the incident plane.

Figs. 2 and 4 for c(2 x 2) 0-Ni(001) and in Fig. 5
for c(2x 2) 8-Ni(001). For the 0-Ni(001) system,
s-polarized light is used with the A vector along
the Q = 0' and P = 45' directions, respectively. For

c(2 x 2) 0-Ni (001)

1.0

cO

0)

00
s~
C)
0)

0.1—

QO
0 50 60 90

Polar Angle of Collection
FIG. 4. Polar emission plots for c(2 x 2}0-Ni(001}

using s-polarized light. Photon incident along ft) = 45'.
{a) Emission parallel to the incident plane; {b) emission
perpendicular to the incident plane.
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FIG. 5. Polar emission plots for c(2 x 2) S-Ni(001)
using p-polarized light. Emission parallel to the
incident plane. {a}Photon incident along p= 0', {b)
photon incident along Q = 45'.

FIG. 7. Variation of electron emission as a function
of photon incident angle for c(2&2) S-Ni{001). Emission
parallel to the plane of incidence. {a) Photon incident
along P = 0', {b) photon incident along Q = 45'.

c(2x 2)
'les= 2l.2 N

II plane emission

unpolarized light

0-Ni(OOI)
Oo

8 =50'

CO

40
+ l.2-
C

QO
0 50 60

Photon Incident Angle
90

FIG. 6. Variation of electron emission as a function
of photon incident axgle for c(2 x 2) 0-Ni(001). Emission
paraOel to the plane of incidence. Photon incident along

Qo

the 8-Ni(001) system, p-polarized light is used. In
the case of O-Ni(001), we note that for the A vec-
tor along P =45, the emissions along the plane
parallel to A (P ll A) and the emissions along the
plane perpendicular to A (P &A) separate complete-

ly contributions from a, and e states for 8, ;„;,„
between 30 and 45'. This is a good example
when surface states having different symmetries
are separated by measuring along different polar-
ization directions.

The variations of electron emission as a function
of photon incident angle are shown in Figs. 6 and
7 for c(2 x 2) 0-Ni(001) and c(2 x 2) S-Ni(001), re-
spectively. We use unpolarized light h += 21.2 eV
for both systems. For 0-Ni system, the plane
of incidence is along P = 0', while for the S-Ni
system, results of both /=0' and ft) =45' are
shown. In Fig. 6, we note that for the 0-Ni sys-
tem, both a, and e states have substantial contri-
butions. In contrast, we note in Fig. 7(a) that for
the S-Ni system, the a, state dominates the elec-
tron emission at most angles. This is interesting
because in the calculations, both 0 and S are put
at four-fold registry sites. Thus, the differ-
ent emission behaviors cannot be explained by ar-
guing that 0 and S sit at different "types" of sites.
We trace the differences in the emission partly to
different amounts of wave function overlaps the 0
and S p levels have with the nickel atoms. We also
suspect that this behavior is photon energy depen-
dent.
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APPENDIX A: EQUIVALENCE OF THE V AND VV FORM

FOR THE INTERACTION HAMILTONIAN

In Eq. (1) we have

d(R)= d 'r g(R — )(- ) )')P d(r),

Then we have

2

d'rG(R —r)(- r' V(r) Vd&(r)
2m

d'r e&G(R- r)V(});(r) — d'r 5(R- r)V(}),(r)
where g, and G satisfy

H(r) G(R —r) = ez G(R —r) —5(R —r},

d'r G B- r)VJ, {r —Vg, (r), R. (A1)

with H as the unperturbed Hamiltonian for the en-
tire system

H= -(g'/2m)V'+ V(r).

The second term vanishes because (}),(r) is sup-
posed to be a localized state inside the cluster and
R is the observation point far away from the
sample. Thus,

t'r G(R —r)V(~, (}(,(r)) = d'r G(% —r) — V + V(r) V)},(r}+ d'r G(R —r)[V&(r)]p, (r)2m

d'&G(R —r}Vt})&(r)+ d'r G(R —r))VV(r)](}),(r),

where the first term is obtained from Eq. (Pl).
Therefore,

Let

p, =r, -H

and

d'r G(R —r) IV&(r)]((),(r}
~,(p„PR) = ~ (,(&ip, }I'z,,(Px)1'r, (p2),

1

(B2)

|I}(R)= d'r G{R—r) — A ~ Pp, (r)
PDC

d'r G(R — )(-df VV(r)(, (r).
WC &y

—
&g

Hence, the V form of the interaction Hamiltonian
is equivalent to VV form as in Eqs. (13) and (15).

APPENDIX 8: SEPARATION OF THE FINAL STATE

g.(r. —r)=p g„(d V)V,(d )V.r', (d), .
2

Also,

g.(R-,)=- r.( .}g r,'"(d, (R, -R. (~)

x I'~(R R,„)

x jd(kg p) )I ~(p, ), (B4)

Let us consider the single-scattering term
Ggf, GG~(f)) in Eq. (10)

G, t G, ~(f)) = d'r, d'r, d'rG, (R-r, )

x f, ( r, —R, r, —R, )G( r, —r)p( r ) .
(B1)

where the last equality holds only when ~R-%
py Indeed, this condition is satisf ied since the

integration in Eq. (Bl) is only over the o.th sphere
because of the finite range of the potential due to
the ath sphere. Substituting Eqs. (B2), (BS), and
(84) into Eq. (B1) and using the orthonormality of
the spherical harmonics, we have

g, r.g. (d)=-()t,(,) I d',"(r.(R-R. ()v, (R-R.)
L

X d'p, p, pgdp2~g apl l plp2 f p2p L, p ~ p+ o
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For a spherical potential V(r ), the &luantity in-
side the bracket is just e"&R,(p) —j,(k,p), where
Rf(p) is the normalized radial part of the solution
to SchrMinger's equation inside sphere n. Putting
p=r-8, we have

x Y,(R-H, )M, ,

where M~ is as defined in E&l. (1'I).

Just as in the case of core level photoemission, the multiple-scattering term is

6,)",Q(,G, I«) =(«,(, Q (-') 'I', ."(«, IH —H, I))' .(8 —R,) Q 1'«6«"' QM'
LL i, )so

with T",G~' as the multilayer T matrix and structure constants defined as follows

T~~=~~~,. +~~~~ G~ T ~,ij
Qg

(1 f«G&&) lf&

G,"„= 4wi ', k, g Q i'«a(LL'L, }h&«) (k, ]5~)Y, (p}e-«',
1

G&~i~, = —4wi, k, g g i'«a(LL'L) h&'&(k~0 +d &-Z, ~) F~(p+d &-d) e '0'&w' i '&) (i««j),LL, @2 0

a(LL'L, )= &fQY (r«)F~, (r)Ff (r),

and 5, , I& are the vectors from the reference
origin to the ith and jth layer. (d, is negative
into the crystal. )

By summing over all the contributions from
different spheres o, we obtain the expression
for p(R) as in E&l. (16).

APPEND1X C: EXPANSION THEOREM FOR

&e (R((r } j&(kor }}Y&«'(r„}-

When r lies out;side of sphere 0. and is inside
sphere P, we have

[e"iR~&(r )- j&(k,r, )] Fz&'(r ) =ie"i sin&)&h&&«)(k, r, )Y~«'(r, )

=ie"i sinh~&4w i'a(LL, L')h&&«)(k, R w)F (Rzw)j, (k,rw)F~~ (rw),
I

which follows by expanding h&«)(k,r, )F~(r ) about

Rz . Noting that

f (k )~ e"i sin6
3m k,

G~~w~ (k,) = —4wi, k, Q i'a(LL, L')h&&«)
5

[e&6&R~&(r,)-j,(k,r,}]Y«z(r )

1

Also, note that G~~, G~~, and G~~~ are related by

Gii (k) ~ e- &)( %~&)Go&&8&&)(lt)
LLj ~ LLy 7

e(i)
atB

G&i ( k ) Q e &R R~&) G(«&'&&)&i)( g)J Ij LLg
N($)

we have

x(k, R ) eF(zR 8), where the index a(i) represents the nth atom in the
ith layer, and P( j) is an arbitrary atom in layer j.
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