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Effects of overlap and next-nearest-neighbor interactions in tight-binding calculations
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Effects due to overlap between orbitals on neighboring atoms and to next-nearest-neighbor interactions, on
the electronic structure, are investigated. As an illustration of their importance, analytic results are obtained
for the density of states of a Bethe lattice and numerical calculations are carried out to obtain the band
structure of a diamond lattice, starting from a realistic Hamiltonian. We show that overlap and next-nearest-
neighbor interactions have important eA'ects which are of opposite sign and tend to cancel each other in the
valence band, but they are additive in the conduction band. The implicationsof our results for transition
metals and surfaces are briefly discussed,

I. INTRODUCTION

Calculations of the electronic-energy-band struc-
ture of solids, using the linear-combination-of-
atomic-orbitals (LCAO) method are usually car-
ried out under the assumption that effects due to
overlap between the basis wave functions are neg-
ligible. ' ' On the other hand, when overlap effects
are included they yield energy-dependent matrix
elements in the secular equation which considera-
bly complicate the computation. "

Several attempts have already been made to in-
clude the nonorthogonality of the basis set in band-
structure calculations. I.owdin' has developed a
scheme in which the matrix elements of the Ham-
iltonian are developed in a power series in the
overlap; this method is quite general, but approx-
imate. More recently Tejeda and Shevchik' have
included the overlap in a simple manner, but their
method is exact only in the limit of degenerate
atomic orbitals: the application to the bond-or-
bital model' assumes orthogonality between sp'
orbitals on adjacent atoms.

In this contribution we develop a method to study
overlap effects on the electronic band structure
and density of states which is simple, exact, and
valid for any Hamiltonian and any crystal struc-
ture.

In addition, the usual procedure is to keep inter-
actions only up to nearest neighbors; also in this
respect we go further and include in our calcula-
tions interactions between orbitals on atoms which
are next-nearest neighbors (NNN). We show below
that the electronic band structure and the density
of states are very sensitive functions of both over-
lap and NNN interactions, and the inclusion of
them in the calculation leads to remarkable quali-
tative changes in the computed results.

In fact, for a simple s-state Hamiltonian, over-
lap and NNN interaction effects can be quite large.
As they have opposite signs, for an appropriate
set of parameters almost total cancellation between
them can be achieved. However, for covalent
semiconductors the situation is more striking:
while in the valence band again a partial cancella-
tion of effects does occur, in the conduction band,
overlap and NNN contributions are additive.

We would like to point out, right from the be-
ginning, that our aim and purpose in this work is
to analyze and study the importance of including
overlap and distant-neighbor interactions in the
calculation. For the time being we are not at-
tempting to fit a certain band structure with a set
of parameters, but rather we are trying to provide
an estimate of the magnitude of contributions usu-
ally neglected in computations of the electronic
structure of solids.

The organization of this paper is as follows: in
Sec. II a detailed discussion of a simple s-state
Hamiltonian is given, and the density of states for
a Bethe lattice and the band structure of a diamond
lattice are studied with the inclusion of overlap
and NNN effects. In Sec. III, the band structure of
the diamond lattice is studied for two sp' Hamil-
tonians: (i) a simple one similar to the Weaire-
Thorpe9"0 Hamiltonian, and (ii) a realistic sp' one,
which includes all possible interactions between
orbitals on nearest-neighbor (NN) atoms and an

interaction between sp' orbitals on NNN atoms.
In the first case (i) there is an analytical trans-
formation between the eigenvalues of an s -state
Hamiltonian and our sp' one. Finally, we conclude
the paper with Sec. IV where a summary of our
most relevant results, some important comments,
and an outline of related work which is in progress
are provided.
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II. OVERLAP AND NEXT-NEAREST-NEIGHBOR
INTERACTION EFFECTS FOR AN s-STATE HAMILTONIAN

The simplest of all possible Hamiltonians, which
allows an understanding of overlap and NNN inter-
action effects on the electronic structure, is an
s-state Hamiltonian with only one & orbital per
atom. Analytically it can be written as

(2.1)

h[y} =eS(4}. (2.3)

Here & is the energy and the overlap operator S
was defined in Eq. (2.2b}.

In our study we treat in detail two different situa-
tions; they are: (a) the Bethe lattice, and (b) the
diamond lattice. The former"" provides us with
a simple approximation. to the density of states of
a real crystal, whereas for the diamond lattice we
do obtain exact numerical results for the electronic
band structure.

A. Bethe lattice {v2 0}

Under the assumption of orthogonality of the
basis set a Bethe lattice of coordination c has a
density of states given by"

where (&) represents the s-orbital wave function
on atom i, v, and v, are the interaction parameters
between NN and NNN, and the primed and double-
primed summations in Eq. (2.1) are restricted as
well to NN and NNN, respectively.

Focusing our attention on overlap effects, we
set &, =0 for the time being. If we normalize the
8 states to unity on the same lattice site

(2.2a)

and define

+S ~i j+l6I & (2.2b)

where 5 is a vector connectingtwoNNatoms, weob-
tain a secular equation for the eigenvalues of the
Hamiltonian & which reads

the one with overlap neglected (S, =0) are related
through the following analytic transformation of
the energy:

e' =[1 —(S,/~, )~1 ". (2.6)

Here &' labels the case when S, & 0 and & stands for
S, =0. The transformation (2.6) was already ob-
tained by Tejeda and Shevchik. '

Another interesting piece of information is the
position of the band edges, which are given by the
zeros of the square root of Eq. (2.4), i.e. , by the
solutions of

e' —4(c —1)u„' =0. (2.7)

The generalized form of the above equation to the
case S,&0 is

—4(c —1}(c~—ts~} =0, (2.8)

according to the transformation (2.5). The band
edges are thus given by

e =«2(c —I)'~ v, /[1+2(c —1} 'S ]. (2.9}

An important direct consequence of the above ex-
pression is the existence of a critical value of the
overlap, which we shall denote by S,', In fact, when

S, ~ S,'=—1/2(c —I)'~2, (2.10)

the tight-binding picture in the NN approximation
breaks down altogether.

In order to illustrate overlap effects on the den-
sities of states of a Bethe lattice we have plotted
several of them, corresponding to different values
of S, in Fig. 1(a). We observe that as S, becomes
larger a portion of the density of states is pushed
towards lower energies while the band edges are
shifted upw'ards in energy.

B. Diamond lattice {v2 = 0}

We now turn our attention to actual crystal struc-
tures and, while our discussion is qualitatively
valid for any of them, we take the diamond struc-
ture as an illustrative example in the following
calculation. In this case the solution of Eq. (2.3)
is obtained from

(2.4)
(U, —~s, )T+(k)

(U, —~s, )T0)

Nonorthogonality of the basis set can be included
exactly, as seen from inspection of Eqs. (2.1) and
(2.3), introducing the transformation

(2.5)

in Eq. (2.4}.
In addition, once the transformation (2.5) is in-

troduced in Eq. (2.4), it becomes clear that the
density of states with overlap included (S, &0) and e-„= «U, Irl/(I «S, ITI) (2.13)

where T(k) is the structure factor given by

T(k) =4(cos+&, coas ,'&, a cos-,'&, a—
is&&n, sain~&, a sin4&, a), (2.12)

& being the lattice constant. The solutiog of Eq.
(2.11}is
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C. Bethe lattice (v2 4 0)

We focus on an atom, labeled by 0, which we
choose as the origin of a Bethe lattice. The inte-
gers 1,2, ... label the different shells of atoms
as we go outwards from the origin (atom 0). Fol-
lowing a standard procedure, "we do obtain an in-
finite chain of linear self-consistent equations for
the matrix elements gq, &

=—(&~gIJ} of the Green's
function g defined by the Hamiltonian & of Eq. (2.1).
This chain of equations reads:

ego o =+mug, o+c(c —1)v,g, &&,

sgt, o
=u, [go o+ (c —1)gs,o] +vs[(c —1)g

+ (c —1)'g, ,],

0-

X

FIG. 1. Density of electron states D(~) vs e tFig.
1(a)] and eq vs k [Fig. 1(b)] obtained for an s-state
Hamiltonian, for a Bethe lattice and a diamond lattice,
respectively. The energy is measured in units of
Iu&[ (i.e., v& = —1). The dashed lines correspond to ihe
case when overlap is neglected (S& =0), vrhile for the
dash-dot lines S& =0.1, and for the solid lines S& =0.2.

and thus, as in the Bethe-lattice case there is a
critical value of S„now given by

S~ =g. (2.14}

In Fig. 1(b) we have drawn curves of sk vs k,
for S, =0, 0.1, and 0.2 which clearly display the
effects of including overlap in the calculations. In
fact, these simple examples show that the elec-
tronic structure is a highly sensitive function of
the overlap and in consequence it cannot be simply
neglected. Certainly, a way of avoiding the over-
lap problem altogether is to orthogonalize the
basis set; however, this implies the necessity of
including distant-neighbor interactions which again
complicate the calculation considerably.

Having discussed overlap effects by themselves,
we now also include in our treatment next-nearest-
neighbor interactions for the same two cases con-
sidered before, the Bethe and diamond lattices.

g„,=v, [g„, , (c —1)g„,, o]

+v,[g, , s+(c —2)g„, +(c —1)'g„„,],
n~ 2. (2.15)

The solution of (2.15) can be obtained using stan-
dard techniques for finite difference equations.
Once the pertinent boundary conditions are invoked,
a closed analytic form for the density of states is
obtained, which has the form

de (1 —xs }'~s

( )=2( -1)/ d„[4( 1)/ ]
s i (. 6)

and where the relation between & and the variable
x(-1 ~ x ~ 1) is given by

s(x) =4v, (c —1)x'+2v, (c —I(i'x —cv, . (2.17}

It is understood that when taking the derivative
(d&/dx} in (2.16}the transformation (2.5}can be
used to include overlap effects. Moreover, this
derivative can vanish and thus again a critical val-
ue &,' comes into sight, limiting the range of the
NNN interaction parameter U,. It turns out that
the value of &,

' is the solution of

+(5c —4)5,v,' +4(c —1)'~'v,' +v, =0. (2.18)

When S, =0 we obtain

v,' = +u, /4(c —1}IL~' (2.19)

which sets an upper limit on the strength of &, com-
pared to ~,. In other words, when the NNN inter-
action &, becomes larger than a certain fraction of
the NN parameter v„ the lattice becomes unstable.

In Fig. 2(a) we have plotted the density of states
vs & for different values of u, /v, . It is interesting
to compare Figs. 1(a) and 2(a) to notice that in-
cluding U, and neglect:ing S, has qualitatively a sim-
ilar effect to keeping 8, and neglecting &„ the dif-
ference being that the shift of the densities of states



30t 6 M. KIRI, R. RAMIREZ, A. TRIAS, AND F. YNDURAIN 17

'k ~(b)

(0)
0.5I

0.4

!

P J.

I

0.3 I

0.2

0.1 J

/
I

t
I

I

I

l

-4 -3 -2 0 1 2 3 q 4 L
L

k (d)
4

D(~) I (g}
0.5-

0.4't-
0-

0.3 i

0.1

I t

t
!

I

i
I

4-

-2 -1 0 1 2 3 g 4

FIG. 2. Density of electron states D (e') vs e t'Figs. 2(a) and 2(c)] and eg vs k I Figs. 2(b) and 2{d)] obtained for an
s-state Hamiltonian, for a Bethe lattice and a diamond lattice, respectively. Both overlap and NNN interaction effects
are illustrated. The dashed lines correspond to the case when overlap and NNN interactions are neglected (Sf v 2 0).
In Figs. 2(a) and 2{b) the solid lines correspond to v2/v& =0.1 and S& =S2=0. In Figs. 2(c) and (d) the dot-dash line
corresponds to v2/v& =0.2 and S& =0.1, and the solid line to v2/v& = 0.1, S& =0.1, and S2 =0.01. The maxima and minima
of the "conduction" band of Fig. 2(d), with nonzero k, are related to singularities in the density of states.

occurs in opposite directions. In effect, for an
adequate choice of parameters it is feasible to ob-
tain almost total cancellation of overlap and NNN

interaction ef'fects on the density of states of a
Bethe lattice. Illustrated in Fig. 2(c}are the re-
sults for a couple of typical examples.

D. Diamond lattice (v2 40)

e; =(",JTi.ugly(I *S,JTJ),

where T was defined in Eq. (2.12) and R(k) is a
structure factor of the form

(2.20)

~(k) = JT(k)I'- 4. (2.21)

The dispersion relation (2.13) can be generalized
to incorporate NNN interactions, in which case it
is given by

j-20&~', $, +ev,' au, =0, (2.22)

which is similar to (2.18) for c =4. For S, =0 we

obtain

C
g)2 = +8 Vy ~ (2.23)

%e conclude this section by stressing our main
results. The effect of both NNN interactions and

Plots of e vs k, for different values of U, /U, and

S, are given in Fig. 2(d). The general features ob-
tained in Sec. IIC for the Bethe lattice are present
also now, i.e., the opposite signs of overlap and

NNN interaction effects and the existence of a crit-
ical value of v„such that for U, - U2 tight-binding
results become meaningless. In fact, when U, » U,

'
the energy of the & point [k = (0, 0, 0}]is not the
lowest energy level as required by symmetry ar-
guments. &,' is the solution of
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overlap of the basis wave functions on the elec-
tronic structure are important. We also would
like to stress that the inclusion or the omission
of overlaps and higher-order interaction would
lead to very different sets of the fitting parameters
to the band structure.

III. sp3 HAMI1. TONIANS

In Sec. II several simple cases were discussed
in order to display the relevant physical conse-
quences of overlap and NNN interactions with a
minimum of algebra. Now we carry out more re-
alistic calculations for the diamond lattice, first
evaluating the density of states of a simple sP'
Hamiltonian, similar to the Weaire and Thorpe"
one, and next computing numerically the electronic
band structure of Si including overlap and NNN ef-
fects.

Our Weaire- Thorpe-type Hamiltonian has the
form

H=~ Z [ij)(ij'(+V, Z [ij)&i'j(
4 vf y]f

Setting c =4 in Eq. (2.15), we obtain by direct com-
parison between (2.15}and (3.3) the s —sp' analyt-
ic transformation which follows:

e —2v, —E —2V, —(V2 3rd 3V2)/Z 2Z

U, —[V, (V, +b)]/(E 2a), (3 4)

U, —V2&/(E —2n. ) .
As a consequence of the above transformation,

the density of states of the sP' Hamiltonian (3.1}
is constituted by two bands separated by a, gap and,
in addition, by two &-function contributions cor-
responding to the P bonding and antibonding states.

In order to calculate the band structure with
Hamiltonian (3.1), we use the transformation (3.4)
in conjunction with Eq. (2.21) and obtain

3V'+V2+M ~ —2V ~
k

R+ '( + } (Z'( (35)
Ek —2& Ep —2&

To include overlap effects we can use the trans-
formations

+V, (3.1)

where (ij) represents the sP' orbital wave function
with i labeling the atoms (i =1, 2, .. . , ~) and j the
bonds of the system (j= 1,2, 3, 4). 6 measures
the strength of the interaction between sP' orbitals
on the same atom. V, describes the interaction be-
tween sP' orbitals on NN atoms which are pointing
towards each other. V, represents the interaction
between the Q' orbitals on NNN atoms pointing
towards one common NN atom.

It is easy to obtain an analytic transformation
between the eigenvalues of the s-state Hamiltonian
of Eq. (2.1}and the eigenvalues of the sp' Hamilto-
nian of Eq. (3.1). A particularly simple way to ob-
tain this transformation is to write a set of equa-
tions analogous to (2.15}; now they read

(E —2V2}G„,0 =V G„,o+3&G„,, 0+ V G„... (3.2)

+ '
2 (G„, ,+ 9G„...), (3.3)V,a

(E —24)G„,
~ o

=n.G„,O+V, G„+2,0+3V2G„+, o,

where G„,0 is the matrix element (+( G(0) of the
Green's function G of the Hamiltonian H of Eq.
(3.1), which has energy eigenvalues E These two.
generic equations can be reduced to one of the
form

(
V2 3~8 3V2

E -2V2-

V, (V, +a) (G„, , +3G„+, ,)

V-V —ES
(3.6)

Combination of (3.5) and (3.6) yields a quadratic
equation for the energy Eq.

Choosing silicon as a prototype in our calcula-
tions, we use the parameters V, =-6.13 eV and
& =-1.8 eV given by Chadi and Cohen. ' The choice
of V„S„and S, is based on the following assump-
tions. (a) The sP' orbital wave functions decay ex-
ponentially, as a function of the distance to atom
0, according to the same law which is valid for
s states. (b) The overlap between &p' orbitals and
the corresponding matrix elements of the Hamilto-
nian, between the same orbitals, are linearly pro-

portionall.

Under these assumptions we choose S, =0.15 and
thus S, =0.02 and V, =-0.817 eV. In Figs. 3(a) and

(b} we show the corresponding band structure;
first S, =S, = V, =0 is given as a reference. Next
S, is made nonzero and finally in Fig. 3(b) all the
above given values are used. We note that overlap
has a similar effect as for the s-state Hamiltonian
of Sec. II, i.e., S, induces the energy levels both
of the valence and conduction bands to rise. In Fig.
3(b) we observe that the inclusion of V2 partially
cancels the effect of S, in the valence band, but the
consequences of including V, and S, are additive in
the conduction band. Moreover, V, also dramati-
cally reduces the band gap from approximately 5
eV (S, =S2 = V2 =0) to around 1.4 eV when the above
given values (S, =0.15, S, =0.02, and V, =-0.817 eV)
are included.
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FIG. 3. Band structure E)„vs k for a %eaire-Thorpe-
type Hamlltonian. The dashed line corresponds to the
case when overlap and NNN interaction effects are
neglected (S& = V2=0). The solid line of Fig. 3(a) includes
overlap effects; Fig. 3(b) corresponds to the case where
both overlap and NNN interactions are incorporated.

As a final check of these results we carry out a
numerical computation with the more realistic
Hamiltonian described in detail in Ref. 1, which
considers all possible interactions between sP' or-
bitals on NN atoms and some important NNN ones.
In addition to the values of V, = -6.13 eV and & =1.8
eV already used above, we take from Ref. 1 the
parameters y, = -0.11 eV, y, = -0.51 eV, andy,
=0.57 eV also using their notation. To incorporate
overlap we have to solve

det(H —ES)= 0,
where H is the Hamiltonian of Ref. 1, and S is the
overlap operator defined in Eq. (2.2b).

-12

!-16
L X UK k

r

FIG. 4. Band structure EI, vs k for the Hamiltonian
of Ref. 1. The dashed kine in Fig. 4(a) corresponds to
the results of Ref. 1. The solid line of Fig. 4(a) includes
overlap effects; in Fig. 4{b) both overlap and NNN inter-
actions are incorporated.

Since detSo 0 (recall that when overlap is ne-
glected S =1) the problem is reduced to the evalua-
tion of the eigenvalues of the operator S ' 'H.

We have calculated the band structure for the
set of parameters given above; the corresponding
overlaps are S, =0.15, 8, =0.02; 8, =0.0027, S,
=0.0125, and S, = -0.0139. The value of Sx i
bitrarily chosen and the other overlaps are deter-
mined according to the assumptions made above.

The results of our computation are given in Fig.
4 and Table I. We again observe the same general
features: not much change in the valence band,
while a drastic qualitative modification of the con-
duction band does take place when overlap and NNN

interactions are included in the calculations.
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TABLE I. Comparison of the energy eigenvalues of
Si. The energies (in eV) are measured relative to the
top of the valence band at 1 25. .

Reference 1
NN without

overlap
NN with NNN with
overlap overlap

I ~5.
I f
L2.
Ig

Xg

X4

0
-12.16
-9.44
-7.11
-1.44
-7.70
-2.87

0
-12.16
-9.49
-6.63
-2.16
-7.33
-4.32

0
-10.01
-8.21
-5.57
-1.35
-6.50
-3.54

0
-12.16

9 44
-6.07
-1.82
-7 .22
-3.66

IV. CONCLUDING REMARKS

In closing this paper we want to summarize our
most important results, outline their implications,
and mention several aspects which deserve further
investigation.

Our main conclusion is that the electronic struc-
ture of a regular solid is a very sensitive function
of: (a) the overlap between atomic orbitals on dif-
ferent atoms, and (b) the interactions between or-
bitals which are further apart than nearest neigh-
bors. While these effects are similar in order of
magnitude, they tend to cancel each other in the
valence band, but are additive in the conduction
band. Therefore, a good deal of caution should be
exercised when carrying out or using LCAO cal-
culations; in fact, it is advisable to restrict them
to core states or at most to obtain a qualitative
picture of the valence band. Similar conclusions,
based on a completely different line of reasoning,
have recently been reached by Fry et al,"

In addition. , there are critical values which the
overlap S, [defined in Eq. (2.2b)] and the NNN in-
teraction parameter U, of Eq. (2.1) cannot exceed;

beyond these critical values the calculation scheme
breaks down completely. When approaching these
critical values of S', and U,

' from below, the nu-
merical solutions become unstable; this could be
the cause for numerical instabilities reported in
the literature, ' in connection with previous calcu-
lations of the type described in this paper.

We wish to emphasize that it is neither our in-
tention nor our purpose in the present contribution
to fit a specific band structure. In fact, the intro-
duction of a whole set of new parameters make
such endeavor meaningless; with quite different
sets of parameters one could obtain very similar
valence bands. " Instead, we have tried to shed
light on the relative importance of including effects
usually neglected in LCAO-type electronic struc-
ture calculations and which we find to be quite im-
portant.

In this paper we have restricted our examples to
diamond structure semiconductors; certainly the
line of reasoning we have followed could have im-
portant consequences for transition metals. In
particular it would be interesting to test the impli-
cations of including overlap effects in electronic
structure calculations of transition metals, paying
attention to the role played by screening.

Finally, surface density-of-states computations
of transition metals are usually carried out" within
a tight-binding scheme. Here the anisotropy of the
overlap between orbitals of surface atoms is ex-
pected to have important consequences which should
be interesting to explore.
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