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%'e deconvolve the system impulse response froni the observed quasiparticle pulse transients of
Hu et al. to determine tht' quasiparticle recombination tinge. Deconvolution of the acconipanying

phonon transient yields a phonon —helium-bath relaxation time from which we determine the Ka-

pitza resistance of lead.

Hu et ai. have described an experiment in which

they create electron quasiparticles and phonons on one
face of a superconducting lead crystal and detect, at
the opposite face, the change with time of the local
quasiparticle density, using as a detector a tunnel junc-
tion. ' We find their analytical description of the data
to be inadequate. Hence the conclusions which they
draw from the data are without quantitative basis. We
point out that the usual analytical description of such
a system is in terms of two functions: (i) the space-
time Green's function G(r, r. '. l, t') appropriate for the
particular sample boundary conditions, and (ii) the
function which describes the generation of quasiparti-
cles (QP) as a function of space and time g (r', r'). ' '
The density of QP at r at time r, n (r, t), is the space-
time convolution of these two functions. We show
that the sample Green's function at the detector is,
with respect to the time variation of the observed QP
density transient, a step function in time which then
decays slowly at the rate at which QP are lost in the
sample volume by recombination. This sample
Green's function describes the observed transient sig-

nal at large times. The observed transient rise, with a

step Green's function, is simply the time integral of
the QP injection function g(r', t') We provide here.

an analysis which allo~s us to determine the quasipar-
ticle recombination time in lead at 1.6 K to be 640
nsec.

Hu et al. use the Green's function for unbounded
space alone to describe the observed transient in the

QP density at the detector, n(r, t). This Green's func-
tion is proportional to r 3'2 exp( —r'/4Dr) for diA'usive

propagation of QP with a diff'usion constant D, to a

point r from the source at a time t following the injec-
tion of the impulse of QP. They point out that the
tangent at the maximum slope of this function at a

distance L from the source intersects the time axis at
to=0.0375L'/D. Since they estimate D from the resi-
dual resistance ratio to be 10' cm'/sec, by using this
expression for to their estimate of D appears to be
confirmed. However, we note that Hu et a/. failed

to point out that their infinite-medium Green's
function reaches half-maximum for L =0.87 mm at

tt~2 =1.94t0=0.6 nsec, and the maximum is reached at

t„,a„=4.44t0=1.3 nsec. The observed transient
reaches these values at 40 and 120 nsec, some 70—100
times the times predicted by their improper Green's
function. The function which they try to use to
describe their signal therefore has no direct connection
with their signal.

We proceed now to a presentation of a resume of
the canonical Green's-function description of this si-

tuation. ' ' For completeness we discuss both
diffusive and ballistic cases. First, we point out that
for a finite sample volume the Green's function will

be, essentially, a step function in time, regardless of
the amount of diffusive scattering as long as some
scattering takes place. The reason for this is simple.
If in a short-time interval one creates N quasiparticles
at one point in the sample and these QP cannot be
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lost through the sample boundaries, then the mean
QP density must increase by N/ V, where V is the

sample volume, after some time comparable to the QP
transit time in the sample. In the absence of any QP
loss mechanism in the sample volume, such as QP
recombination, the density would remain constant at
this new level. With QP loss in the volume, the den-
sity will decay exponentially with a time constant v L.

The Green's function for diffusive propagation in a
sample in the form of a parallelopiped with sides
a, b, c has the form, if evaluated at a detector oppo-
site an input point source,

2», It.
' 4m2 4n'

a2 b2, 2

This function for a & b, c rises rapidly to a peak
(bc/3. 4at)(N/V) at t„,„„=l6a . /rrtD. =1.2 nsec for
a =0.87 mm, and falls as t ' to the final density N/ V.

The relative importance in a convolution with a pulse
of width 7 of the spike to the step part of the Green's
function is given approximately by bct„,„„/3 4a'r . In. .
the present case the signal width v appears to be 60
times t„„.„so the spike contribution is greatly reduced.
Furthermore, the observed signal sho~s no obvious
spike contribution. Hence, on the time scales of in-

terest, the Green's function is a step function in time.
A similar result is obtained with ballistic propagation.

The Green's function for a finite sample with ballis-
tic propagation and scattering can be constructed in

the same manner that the Green's function for the
diffusive limit was generated, by an eigenfunction ex-
pansion, or by an image construction using the un-

bounded medium Green's function for ballistic propa-
gation with scattering. We know that in the absence
of scattering the Green's function for the unbounded
medium is

where c is the velocity of propagation. The Green's
function for the finite sample, which is the sum of the
images of this function, describes the arrival of the
impulse excitation at a distance L with a minimum de-
lay which is to L/c. Without damping, the finite
sample Green's function varies with time about the
mean density which is the total number of particles in

the impulse divided by the sample volume. In the ex-
periment of Hu et ai. the QP scattering by impurities
is estimated to give a scattering time of 2 x 10 ' sec,
and the transit time is 8.7 x 10 ' sec. It should be ap-

parent, then, that the QP will propagate ballistically,
and that the stationary QP density will be achieved in

a few transit times. Alternatively, the impulse

x G(r, r'. t, t') dr' dt' (2)

takes the simple form
(-Ii -i' f/&.

n(r, t) = J) dr'3 Q{r',t')
—(( —(')/~

df (3)

In general, however, Eq. (2) means that if one ob-
serves N(r, t), and if one knows G(r, r'. t, t'), then
Q(t) may be determined by deconvolution of Eq. (2)
by any of several standard methods: by Laplace
transforms, by matrix inversion, or by algebraic inver-
sion if 6 (r, r '..t, t ') obeys an addition theorem. 4

In words, then, the rapidly rising and slowly falling
parts of the QP transient signal can be understood in
terms of the step-function character of the Green's
function, and the convolution of Eq. (2). The QP
density at the detector increases as the integral of the
time variation of the QP input to the sample as the
laser excitation of the sample turns on. After the
laser turns off the QP injection diminishes. The in-
tegral of the flux, which represents the density of the
QP at the detector, reaches a peak. It then slowly de-
cays with a time constant which is the QP loss time

response for the ballistic system with scattering, which
is known, can be used to determine the finite-sample
Green's function. The fact that the diffusion constant
D is finite is certainly no criterion for evoking diffusive
flow. The precise criterion, dictated by causality, is
that the diffusive delay to=0 048L. '/D must be equal
to or greater than the ballistic delay L/c Fo.r a given
diffusion constant, a sample length L0 will exist for
which the propagation is ballistic. For greater lengths
it will approach the diffusive limit. For the experi-
rnent of Hu et at. , this length is L0=D/0. 048c=2
mm. The conclusion, then, is that in all the crystals
used by Hu et aI. , which were 4.5 mm or shorter, the
propagation transit time will be indistinguishable from
L/c, that of a ballistic system. Hu et a( obser. ved this
to be the case, but they abandoned the observation
and described the propagation as diffusive. The im-

portant effect of the finite diffusion constant which
results from impurity scattering will be the blurring of
the rise time of the sample impulse response rise time
into a slower rise time typical of the pure diffusion
response function, because of the delayed arrival of
the scattered particles. Hence, with any assumed state
of propagation, diffusive or ballistic, the Green's func-
tion will be a step function rising to the new QP densi-
ty in a few nanoseconds.

Knowing that, on the time scales of interest, the
Green's function is a step function
u(Ir —r'I —c(t —t')) times an exponential with decay
time 7L to express the volume loss, the QP transient
density expressed by the convolution
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where A is the maximum signal amplitude, and t is in

nsec. Hence one concludes that the single QP loss
time constant v L is 320 nsec, or that the time constant
for two-particle QP recombination r, is 640 nsec. Ka-

plan et al. and Jaworski et al. show that one can use
the experimentally determined coupling function for
lead Of. F(co) to determine 7, to be
2.0 x10 ' T ' 2e'5 T 6 This gives 7, =31 nsec at 1.6
K. The disagreement is large.

If one carries out the convolution, one finds that,
for a point source, the QP are injected in time as

Q(t) =45A (I —e "-')'e '"'

This function describes the QP flux as having a rise
time of 16 nsec, a decay of 32 nsec, and a half-
amplitude full width of 64 nsec. These times are at
least comparable with that of the laser input pulse
having a rise time of 1 ~ 5 nsec, a width of 5 nsec, a
sample-and-hold aperture of 10 nsec, and a diA'usion

width of 2.2 nsec. The QP transit time is 0.87 nsec.
The contribution of the source size to the time width

we have not sufficiently accurate data to estimate. QP
must be created both by photoexcitation during the
laser pulse and by thermal excitation during and after
the laser pulse. The heating effect is important since
v, decreases exponentially with increasing tempera-
ture. At 3 K, v, —5 nsec. Hence a small volume of
the sample, heated to 3 K or above will rapidly pro-
duce a local QP density far above that of the sample
equilibrium density.

Conventional thermal analysis shows that in cylindr-
ical coordinates (z, r, 8), a heat flux F(r, t) constant for
a time interval r, and slowly varying radially, will,

when injected into a surface at z =0, increase the
sample temperature at the center of the heat flux as'

T = [2F(0)/K] [f(t) f (r —r)]-
f (r) = (rzr/rr) 'r2e '4"'-

+-, zerf[z/2(nr) 't'] (4)

where x is the thermal conductivity, and e is the ther-
mal diffusivity. At z =0, t =r,
T =2F(0)(ar)' '/rr(n)'". At this time r the sample
will be heated appreciably to a depth z = (40fr)' '. At
this depth, T =F(0)(er)'/'(4K) '. For the lead sam-

ple of Hu et al. at 1.65 K, and without taking into ac-
count the variation of n and ~ from their va1ues at
that temperature, the heating depth is 0.04 mm, and
the surface temperature is 2 K/(%' absorbed). At
z =0.04 mm, T 0.44 K/(W absorbed). Hu et al.
used a 1-k% laser pulse, but only a small fraction of
this was absorbed. At 47 =20 nsec, these tempera-

constant vL. The curve, Fig. 2 of Hu et a/. , for 1.6 K
shows a QP signal which may be represented by

(g f ) 1 5g {1 e
—t/32) 3 e

—t/320

tures have decayed to 0.5 and 0.38 K/W. At 16~ =80
nsec, these temperatures are 0.22 and 0.2 K/%. The
conciusion is that QP production will take place for
times longer than the laser pulse length, just as the
deconvolution of the transient data shows.

For the curves of Hu et al. taken at higher tempera-
tures, we note that the two-particle relaxation times
for 2.38, 2.6 and 2.95 K are r, -21, 11.2, and 5.1

nsec, if they are extrapolated from the r, which we
have determined at 1.6 K. If one convolves the QP
flux determined above with impulse responses having
decays with half these times, one can show, after tedi-
ous but simple algebra, that the QP density, and hence
the detector signal will be decreased by a factor of

32/t. ,e '. The predicted attenuation of the QP peak sig-
nal is thus 4.4, 18, and 500. The amplitude scale of
the figure in Hu et al. is arbitrary, but these factors
may be seen to describe the decline of the QP signal
amplitude for the signals observed at 2.38, 2.6, and
2.95 K.

The data of Hu et al. taken at 2.95 K, where the QP
recombination time is 5.1 nsec, shows no QP impulse
peak, but it does show the change in the QP density at
the arrival ot the phonon heat pulse. The phonon
heat-pulse rise-time is so long, the order of 600 nsec,
that the QP density with a , r, =2—.5-nsec relaxation

time to the changing phonon density accurately fol-
lows the phonon density change in the vicinity of the
QP detector as it changes with time. Here again we
have the time variation of the phonon density ob-
served at the detector being described as the convolu-
tion of the time dependence of the phonon excitation
with the proper Green's function. The ballistic pho-
non impulse response will again be blurred by the
diffusive scattering of phonons in the sample. The
analysis of the phonon density transient, although
complicated by the elastic anisotropy of lead and its
three acoustical-mode branches is parallel to the
analysis which we have given for the QP transient.

If one fits the data for 2.95 K in Fig. 1 of Hu et al.
the detector signal is found to be

1 67/ (1 p
—t/425)3e —I/3570

with time in nsec, and A is the peak of the detector
output. Here the decay from the stationary phonon
density, 3570 nsec, measures the rate at which ther-
mal energy is lost to the helium environment.

By deconvolution the point-source phonon flux
p(t) is found to be

P (~) 40' (1 +
—I/425) 2e —t/380

This function describes the heat as arriving with a rise
time of 110 nsec, decaying in 350 nsec, and having a
full width at half-amplitude of 560 nsec. The paraxial
longitudinal- and transverse-phonon wave packets are
not resolved because, as we have shown above, the
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source heat pulse is so much wider than 5 nsec. Their
diA'ering velocities would give a minimum width of
L(c, ' —c~ '), where L is the minimum transit length.
For lead with a length of 0.87 mm in the [111]direc-
tion, this would be 425 nsec, a reasonable agreement
with the observed width.

We have pointed out else~here that the observation
of this decay of the phonon local density allows one to
determine the Kapitza thermal resistance. ' The relaxa-
tion time of the phonon density transient, 3.57 p,sec,
is equal to CR» &/S, where C is the specific-heat capa-
city of lead, R~ is the Kapitza resistance, Vis the
volume of the crystal, and S is its surface area. Since
R~ is proportional to T ', the product CR& is nearly
constant with change in temperature. Therefore all
the phonon transients will be observed to decay with

approximately the same time constant, as Hu et al.
observed. In particular, at 2.95 K, we find

RA =0.6T ' cm'K/W. We write it in this form in ord-
er to compare this value, for a temperature above the

helium lambda temperature, with experimental values
measured below the lambda temperature. The experi-
mental data are scattered, but the lowest resistance re-
ported is 2.1T ' cm'K/W. Our value is thus less than
would be predicted from extrapolating other data, but
it is still higher than the minimum given by the
phonon-radiation limit, which for lead is
0.2T cm K/W. Other heat leak paths, such as the
sample suspension, wi)1 make the apparent R~ less
than the intrinsic RA-. In any case the exact number is
not important here, since our main purpose is to point
out the need and advantage of the deconvolution pro-
cedure in understanding heat-pulse data. To establish
the magnitude of the Kapitza resistance with high
confidence would require the carrying out of the ex-
perimental tests which we outline in Ref. 7.

As a final observation we note that in numerous
heat pulse experiments reported in the past, the sam-
ple Green's function has not been deconvolved from
the data, rendering their conclusions questionable. 9
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