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The electron spin-density distribution around a positive muon has been calculated self-

consistently for a range of metallic densities using the spin-density functional formalism. The

enhancement of the spin density at the p, site over the ambient polarization is found to be con-

siderably smaller than the corresponding charge-density enhancement. The results are used to es-

timate the hyperfine field at interstitial positive-muon sites in ferromagnetic Fe, Co, Ni, and Gd.
Comparison is made ~ith the most-recent experimental data.

I. INTRODUCTION

The distribution of internal fields in ferromagneti-
cally ordered systems has been a topic of interest,
Fourier transform of the neutron scattering form fac-
tors can reveal the spatial dependence of magnetiza-
tion density of magnetic materials. The local change
of this magnetization density due to an impurity (sub-
stitutional or interstitial) can be probed by a variety of
experimental techniques through hyperfine-field meas-
urements. Most of the impurities have atomic charac-
ter and an analysis of the spin density at such impurity
sites is often hindered by the presence of core elec-
trons. However, this diNculty does not arise for an
impurity such as a positive muon.

A positive muon carries a unit positive charge with
a mass -200 times the electron mass. Like protons,
positive muons are believed to occupy interstitial sites
in a metal. The internal field 8, experienced by a
muon, is measured through its spin rotation' and is
the sum of three contributions:

48 = —mM+Bd+Bp, t

where Bd is the field due to the local dipole moments
inside a sphere centered on the muon site and —,mM

is the so-called Lorentz field due to Induced magnetic
charges on the surface of the sphere. B,t is obtained
from a knowledge of the crystal geometry of the host
metal. Thus, knowing the sign and magnitude of 8,

one can extract the contribution to the internal field
due to the hyperfine coupling Bt,&

of the muon spin
with the spin-polarized conduction band.

The hyperfine field at a p,
+ site in a ferromagnetic

material can be written

B„,= ,
'

mp, (na(0+)———n (0)]

where n+(0) and n (0) are, respectively, the densities
of electrons with spin t and spin J at the muon site.
The sign convention used here is such that the ipin-
up (t) electron has a magnetic moment of —p, a and
hyperfine, fields are positive when parallel to the mag-'
netization in the positive z direction. A positive muon
attracts electrons of both spin, and as a result, the
electron charge density at the muon site
n (0) = n+(0) + n (0) and the spin density
P(0) = n+(0) —n (0) will be considerably enhanced
over the background charge density no and spin densi-

ty, respectively. Since the positive muon represents a
strong perturbation, the calculation of either the
charge or spin polarization is a nonlinear one. Hence,
the problem of the spin density enhancement over the
ambient polarization as a function of electron density

4
no =1/ , 7r(r, ao)' (r, co—nventionally bein. g referred to

as the electron density parameter) is interesting. One
might naively imagine that the electron density per
spin would be enhanced in the same proportion as the
charge density. Jena' has treated this problem by ap-
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proximating the effective muon-electron potential by a

spin-dependent square well. Patterson and Falicov, '
within a linear-response calculation, have shown that
the spin-density enhancement

[n+(0) —n (0)]/(n, p
—n p)

is much less than the corresponding charge-
density enhancement for r, appropriate
io ferromagnetic Ni. Petzinger and Munjal' have
treated the same problem within the spin-density
functional formalism'6 and obtained approximately
self-consistent solutions for a p,

+ in Ni. While their
result for the individual charge and spin density
enhancements differs considerably from that of Patter-
son and Falicov, ' they also find that the spin density is

enhanced to a much smaller degree than the charge
density.

The'purpose of this paper is to make a careful in-

vestigation of the relative enhancements of charge and

spin densities as a function of the bulk electron densi-

ty and ambient spin polarization. We have calculated
self-consistently the charge and spin density distribu-
tion around a static p, using the spin-density func-
tional formalism for densities 1 «r, «5. In Sec. II,
we briefly review the spin-density formalism and out-
line our numerical procedure. Our results are present-
ed in Sec. III. We make use of these results to esti-
mate the hyperfine field at a p,

+ site in ferromagnetic
Fe, Co, Ni, and Gd in Sec. IV,

II. SPIN-DENSITY FUNCTIONAL FORMALISM
i

In the case of a strongly polarized electron gas, the
set of Hohenberg-Kohn-Sham (HKS) equations"
which determine the spin density n "(r) is

[—~'+ V,"~(f )]y,"( f ) = g,"y,"(r) (3)

We have used atomic units (energy in Rydbergs and
length in Bohr radius) throughout this paper. The
density of electrons per spin o- is given by

OCC

n "(r) = $ ~y,"(r) ~'

I

(4)

The effective potential in Eq. (3) is obtained from the
exact ground-state energy density E through

V;;(r) =Sr/an-(r) .

For a spherically symmetric potential, Eq. (3) becomes

V,'[r(r) = + 2
~

d'r'

+I „", (n, (.) I „",—(no, .(o) . (7)

The first two terms in the above equation are the
external and Hartree potentials, respectively. The
exchange-correlation potential, p, ",. in the local-density
approximation depends on the charge density
n (r) = n+(r) + n (r) and the spin density

((r) = [n+(r) —n (r)]/n (r) and has been taken from
the work of Gunarsson et al. ' The electrostatic term
goes to zero at large r because of charge screening.
For the exchange-correlation potential to be zero at
large distances, we subtract a uniform contribution,
p,,"v (no, (p) t. hat corresponds to the background charge
density no and spin density (p = (n+p —n p)/np The.
polarization can be thought of as being maintained by
a stabilizing external magnetic field Ho, the strength
of which can be determined from the minimal condi-
tion of total free energy. For a suSciently strong po-,

tential V,'[r, bound state solutions exist for Eq. (6)
with k ' —EI,", the bound-state energy below the
band continuum. Thus, including bound states the
deviation of the electron density per spin from its am-

bient value is given by

gn "(r) =n"(r) —np

o

dk k' $ (2 I + 1)
I

[Rr'I'(r)]'
x -jP kr

r
t

R,"(r)
f

where Rb"(r) is the radial part of the bound-state
wave function in the 1 =D state, and kP is the Fermi
wave vector for spin o-,

k;=(1~ ~p)'"( —,'~)'"( /r1, ) .

The bound-state wave functions for each spin o- are
normalized to unity; and the scattering-state wave
functions are matched to the asymptotic solution at
large r,

d2

, +, + V;;(r) R,;(r)=(k )'R;;(,),
df2 : r2

R,'('(r).cosg/ (EI,.)J)(kr) sin 51 (Eg) nl (kr)

(10)

(6)

where R,'&'(r) is the radial part of the wave function
Q/[(r) and k" is the wave vector for an electron with

spin cr. The effective potential, in the local density
approximation, in Eq. (6) is

where 5/"s are the scattering phase shifts for /th par-
tial wave and j/ and n& are, respectively, spherical
Bessel and Neumann functions of order I. The
scattering phase shifts at the Fermi energy satisfy the
sum rule
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Z =1=Z++Z

Equations (6) —(g) are solved self-consistently for
different values of the parameters r, and $0. Since the
exchange-correlation potential for spin t depends also
on the population of spin ) and vice versa, . the prob-
lem reduces to solving two sets of coupled
Schrodinger-like equations self-consistently.

Once the exchange-correlation potential per spin is

prescribed, the above self-consistent procedure ap-
pears to be simple and straightforward. In practice,
however, the system of Eqs. (6) —(g) does not yield
convergent solutions. As in the case of screening of a
proton in paramagnetic electron gas, the difhculty lies
in the long-range nature of the Coulomb potential.
Due to numerical inaccuracies, the sum rule in Eq.
(11) in a given iteration may differ slightly from unity.
As a result the electrostatic potential in Eq. (7) has a

long range which causes the subsequent iterations to
diverge. In a recent calculation, Petzinger and Mun-
jal have overcome this difticulty by parametrizing the
eff'ective potential. Thus, they were able to obtain ap-
proximately self-consistent solutions for spin densities
for r, =3.2. We have instead followed the procedure
of Manninen et al. 8 as described in one of our earlier
papers. This involves no parametrization of the
effective potential and always leads to a fully conver-
gent solution within about 20 iterations. Even at the
origin, our spin densities are accurate to better than
5 h, with rapidly increasing stability as r increases.

We have solved Eq. (6) by dividing the interval
between 0 to kP in twenty steps for each value of
I, 0 ~ I «10. For the variable r, we have considered
a mesh of 200 points in steps of 0.1ap. The eAective
potential in Eq. (7) was cut off at 19.5ao beyond
which the scattering solutions RtI (r) were matched to
the asymptotic form in Eq. (10). Our results were in-

sensitive to the choice of this cut oA' radius as well as
to the computational mesh. If the scattering phase
shift per spin at zero energy 51"=o(e, = 0) = m, bound
states would appear in the s partial wave. A provision
was made to look for the binding energy and wave
function of this bound state.
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FIG. 1. Charge- and spin-density distribution around a

positive muon in a spin-polarized electron gas with I,. =2 and

(p =0.17. The solid and dashed curves correspond respec-

tively to normalized charge density n (r)/np and normalized

spin density n (r) ((r)/np(p.

III. SPIN- AND CHARGE-DENSITY DISTRIBUTIONS

Following the procedure outlined in Sec. II, we have
computed self-consistent charge and spin distribution
at metallic densities (1 ~ r, ~ 5) for different back-
ground polarizations (p. In Figs. 1 and 2 we have
plotted typical results for the normalized charge- and
spin-density distributions, corresponding to r, = 2 and
5 and (p=0.17. We note a strong buildup of charge at
the impurity, just as in the paramagnetic case ((0=0).

0
0

r(a)

FIG. 2. Charge- and spin-density distribution around a po-

sitive muon in a spin-polarized electron gas with r,. =5 and

(p =0.17. The rest of the legend is the same as that for

Fig. l.
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As the bulk (o is increased from zero, the charge den-
sity at the origin n (0) changes little from its paramag-
netic value (less than 4% up to background polariza-
tion (o =0.6) with a drop of about (10—15)'/n in the
purely ferromagnetic case ((p = I). Thus the contact
charge density is largely fixed by the Coulomb singu-
larity in the external potential, and the main eA'ect of
increasing bulk polarization on the density profiles is
to make them more spread out in accord with the in-

creased screening length in a polarized electron gas. '

Except for very large densities (r, +1.9) we have
found for small polarizations (o, the existence of
bound states' for both spins which are well extended in

space. For a fixed (o the binding energy for each spin
increases steadily as density decreases. For a fixed
density the binding energy of the minority spin bound
state increases with increasing fo while that of the ma-

jority spin decreases, and may eventually vanish at a

critical (o. In the purely ferromagnetic case ((p= I),
of course no minority-spin states exist. The physical
picture that emerges for the case of two bound states
is that of an extended p, ion with an equally extended
compensating hole in the background. The physical
significance of the bound states, just as in the case of
a proton in paramagnetic jellium, is uncertain due to
lifetime eA'ects and has been discussed earlier. 9

Since it is the total density that has any physical
meaning, the charge and spin densities in Figs, 1 and
2 contain contributions from both scattering and
bound states. The total eA'ective potentials for both
spin-t and spin-f electrons at small r are dominated by

the electrostatic term and fall off very rapidly. The
binding energy for spin-t electron is consistently
smaller than that of the spin-J electron. Consequent-
ly, the density of spin-t electron at the origin from
bound-state contribution only is less than the
corresponding value for spin-J electron. However, it

is because of the influence of the scattering contribu-
tion that the total electron density of spin-t electrons
at the origin, n (0) is greater than n (0). This im-

plies that a positive muon simply enhances the am-
bient polarization at the origin without flipping its

sign.
At distances far from the muon both charge and

spin densities exhibit the usual Friedel oscillations.
Note that not only the spi-n density at the origin is
enhanced over the ambient polarization to a much
lesser degree than the charge density, the Friedel os-
cittatlorts tag Iyy"a 'pose- of' ab'out —,

' ir.- 'The arriptitudes

of the charge and spin oscillations for r,. =5 are, how-

ever, significantly larger than those for r,. =2. This
results from a larger enhancement of spin and charge
density at the p,

+ site for r,. =5.
The dependence of the local spin polarization ((0)

on the bulk (o is presented in Fig. 3. The reduction in

f(0) is larger for small densities (large r, ), where a
linear dependence is found (up to a point where the
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FIG. 3. Local spin polarization ((0) at a positive muon as

a function of the bulk polarization (o of the host electron gas

for different bulk densities r, .

(12) '

& (0) ((0)/no(o = 5.267 —5.060r,

+3.243r, —0.280r, (13)

for (1 ~ r, ~ 5). It should be pointed out that the
self-consistent spin-density enhancements at the p,

+

site in Eq. (13) is in good agreement with the predic-

bulk gas becomes unstable and goes ferromagnetic).
The reduction of the polarization is due to the tenden-
cy of the strongly attractive impurity to compensate
for the background polarization.

In Fig. 4 we have presented the electron charge-
and spin-density enhancements at the origin over the
unperturbed results for 1 ~ r, ~ 5. Since the charge
density at the origin n (0) depends somewhat on (o,
the spin-density enhancement n (0) j(0)/no/o can be
represented by a universal curve in Fig. 4, which is

valid to a 4% accuracy for (o ( 0.6 over the indicated
density range. Note that while both the charge and
spin-density enhancements increase steadily with r, ,
the ratio of the spin-to-charge density enhancements
decreases as the electron density decreases.

The charge- and spin-density enhancements of Fig.
4 can be well represented by the following cubic inter-
polation formulas:

.. n.(0)/ne=. 1.80+1.717r, +0.370r, +1.193r.
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FIG. 4. Charge- and spin-density enhancements at a p,
+

site for bulk densities I ~ r,. ~5. The solid and dashed

curves correspond respectively to normalized charge density

n (0)/no and normalized spin density n (0) ((0)/no(0. The

open circles correspond to V util& (0) ~2 calculated in Ref. 9 for
F

paramagnetic electron gas,

x [f (at + p sHp) f (at psHp)]

(14)

where the symbols have their usual meaning. From
Eq. (14) it follows that

(" " (" =
~

(o)
~
v,

n+0 —n 0 F
(15)

V being the volume of the system. Thus for small ini-
tial polarization, the spin-density enhancement com-
puted by considering an impurity in an initially spin-
polarized background is the same as the wave function
density for k = kF,evaluated in a corresponding
paramagnetic calculation. To see how these two quan-

tions of a simple-model calculation by Meir'
throughout the metallic density range. In his model, '

Meir approximated the eA'ective electron-muon poten-
tial by the Hulthen form —e')t/(e"' —1), where the
screening parameter A. is determined from the Friedel
sum rule. This agreement implies that the enhance-
ment in the spin density at the muon site is primarily
due to the singularity at the origin in the effective
electron-muon potential.

To analyze the spin-density enhancements further,
we write the spin density as"

n+(0) —n (0) = g ~
tlr . (0)

~

2

tities compare, we have also plotted in Fig. 4 our ear-
lier result' for V~t]t„(0)~'. The small discrepancy

between these two results could be partly due to the
use of a diAerent form of exchange-correlation' poten-
tial in the present calculation.

Thus, the conventional expression for the Knight
shift K,

(16)

can also be rewritten

K = —,'rrX[n+(0) —n (0)]/(n, —
p n p) (17)

where X is the spin susceptibility of the system. It
should again be emphasized that in the HKS formal-
ism only the electron density can be assigned physical
meaning. However, the near equality of V~t]rt (0) ~'

and [n+(0) —n (0)]/(n p
—n p) suggests that the use

of either expression (16) or (17) to compute Knight
shift is acceptable.

IV. HYPERFINE FIELDS

The foregoing considerations are strictly valid for a

spin-polarized jellium metal. Given the knowledge of
ambient polarizations we can, as we have seen, calcu-
late the hyperfine field. Do these considerations have

any semblance of reality when applied to ferromagnet-
ic metals like Fe, Co, Ni, and Gd? The obvious
answer is: It is perhaps unlikely. Nonetheless, we

shall assume them to be valid and examine the conse-
quences.

We shall first consider the case of the more com-
mon 3d transition-metal ferromagnets. We assume a

localized picture for ferromagnetism in which the d

electrons are localized and carry almost all of the
measured magnetic moment. The s electrons are free
and carry a very small polarization due to s-d ex-
change. The interstitial spin polarization is, therefore,
in this model entirely due to s electrons. In this pic-
ture the number of s electrons per magnetic ion is 1

for Fe and Co and 0.6 for Ni. This corresponds to I,
values of 2.7, 2.6, and 3.1 for Fe, Co, and Ni, respec-
tively.

Using the ambient polarization density as deter-
mined from neutron scattering data" " in Table I,
and the calculated spin-density enhancement from Eq.
(13), the results for the hyperfine fiefds are given in

Table I. It is seen that the calculated fields are an ord-
er of magnitude larger than those given by experi-
ment, " "

This large discrepancy between theory and experi-
ment raises serious doubts regarding the validity of
the model used for calculating the hyperfine fields. It
appears essential to take into account the itinerant
character of the d electrons. This would mean that
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TABLE I. Hyperfine fields at an interstitial p,
+ site in ferromagnetic Fe, Co, Ni, and Gd.

Host metal

Ambient

spin density

rI p (0 (p, a/A ) B,.,(kpe)" BexPt (kPe) B theo (kpe)b

+0.106/ —0.215 (Ref. 12)
—0.12 (Ref. 13)

—0.0085 (Ref. 14)
—0.037 (Ref. 15)

+ 8.4/' —16.8 (Ref. 16)
—9.3 (Ref. 17)
—0.66 (Ref. iS)
—2.9 (Ref. 19)

2 ' 7

2.6
3.1

2.6
' B),=—

3 ~p, 8flp(0 (assuming the positive muon does not perturb the ambient polarization).

—6.2
—0.64
—7.5

+ 82/ —164
—84
—8.2

—26

theoBh&' =——
harp, Bn(0) ((0)/no(0 (assuming the ambient spin density in column 3 as given by neutron scattering experiments to behf

the true average spin polarization a muon "sees"). In Fe, there is no unique value available for the ambient density (see Ref. 12).
Thus, the two theoretical values of Bhr at p,

+ site in Fe is due to the two diA'erent choices of the ambient spin density.

one has to set up a HKS scheme in which there are
two species of electrons (the "light" s electron and the
"heavy" d electron) and take into account the ex-
change coupling between them. Even with this simple
modification, a fully self-consistent calculation would
require considerable numerical effort.

If one assumes that the s electrons are little or not
polarized and the interstitial moment density is due to
the quasilocalized d electrons which remain unaAected
by .the presence of a muon, .then the ambient spin
density gives rise to a hyperfine field given in column
4 of Table I. Note that the agreement between these
values and experiment is better than a factor of 2.
Such en argument has been put forth by Petzinger
and Munjal for the case of Ni. This argument may
appear plausible in view of the fact that the s electrons
being "light" can readily respond to the presence of the
muon. However, it should be kept in mind that the
number of quasilocalized d electrons is an order of
magnitude larger than the number of s electrons. It
is, therefore, unclear why the s electrons would dom-
inate the screening process. The above agreement
could. thus be fortuitous.

We shall now. consider a somewhat simpler case of
ferromagnetic Gd. It is a rare-earth metal in which
the unpaired 4f orbitals are thought to be highly local-
ized and carry a magnetic moment of 7p, ~. The sa-
turation magnetic moment" per atom is 7.63ILB.
Therefore, the remaining 0.63p, & must be attributed to
the three sp electrons in the conduction band. Both
band-structure theory' and experiment" agree that
the polarization density at the c site is negative in sign,
although they diAer in magnitude by about a factor of
20 (—0.037',s/A' from experiment" and
—0.002p, „/A' from band structure' ). Using the ex-
perimental value" for the ambient polarization and
r, =2.6, we obtain a hyperfine field (given in Table l)
which is a factor of four greater than the experimental
value. ' On the other hand, if one were to use the
band structure value, ' the hyperfine field will be
smaller than the experimental value' by a factor of 5.

In view of the fact that the model described here
ought to be applicable 'to metals like Gd, one would
like to understand the source of this discrepancy. Two
such obvious sources come to mind: (i) the accuracy
of the neutron form factor data and (ii) the neglect of
the zero-point vibration for the muon. The quoted er-
ror in the experimental results of the ambient spin
density is + 50% The various sources of error in the
neutron experiment have been discussed by earlier au-
thors. " Unless the experimental data are grossly in
error, it is hard to understand the discrepancy in the
hyperfine field. Because of the large amplitude
(-lao) of the zero-point vibration, the muon could
make excursion into the region where the ambient
spin density is positive. Since the total magnetic mo-
ment carried by the conduction electrons is +0.63p, &

per atom, it is certain that there are large regions of
space where the spin density is positive. We have not
considered the eA'ect of this inhomogeneity on the
spin enhancement at the muon site.

This paper should be regarded as a preliminary at-
tempt towards an a priori understanding of a point
charge impurity in ferromagnetic systems. Obviously
this understanding is linked to an understanding of
ferromagnetism. A more ambitious theoretical pro-
gram would be one in which one considers the posi-
tive muon and a shell of surrounding magnetic ions
forming a super unit cell. With this super lattice
structure, energy bands and wave functions have to be
obtained self-consistently. The eAect of exchange and
correlation can be incorporated through the spin-
density functional formalism. Easy as it may sound,
the problem poses tremendous numerical complica-
tions. . Unfortunately, this has to be done if one wants
to achieve meaningful quantitative comparison
between theoretical and experimental hyperfine fields
at interstitial p,

+ sites in transition-metal ferromagnets.
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