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Theory of the quasi-one-dimensional electron gas with strong "on site" interaction
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A quasi-one-dimensional system with strong attraction between electrons on the same site is

analyzed in terms of an equivalent weakly interacting array of Heisenberg-Ising spin chains. The
single-chain ground-state properties and elementary excitation spectrum are discussed. It is shown

that for certain ranges of the coupling constants, gapless excitations rather widely believed to be

present do not in fact exist. Some inadequacies in a recent derivation of a mean-field ordering

temperature for interacting spin chains are pointed out, and a new derivation is given. The appli-

cation of this technique to the quasi-one-dimensional electron system is discussed.

I. INTRODUCTION

Recently, several authors' ' have discussed the
theory of a one-dimensional gas on a lattice, where
the dominant term in the Hamiltonian is an interac-
tion U between electrons occupying the same lattice
site. The other terms put into the Hamiltonian are a
nearest-neighbor tunneling term T and an interaction
V between electrons on neighboring sites. Efetov and
Larkin' proved that for positive U and for a particular
value of V the model was exactly soluble and the
asymptotic behavior of the various correlation func-
tions could be deduced from an equivalent free-boson
Hamiltonian. They conjectured that this type of
equivalence might hold for general values of V. The
present author' confirmed that conjecture by demon-
strating that their Hamiltonian, for general V, was
equivalent for long wavelengths to an anisotropic spin
chain and hence, following Luther and Peschel, ' to a
free-boson Hamiltonian. Independently, Emery' for-
mulated the model and followed a similar path to
derive the density-density and superconducting corre-
lation functions. He then applied the mean-field
theory of Imry, Pincus, and Scalapino to find possible
transition temperatures for a three-dimensional array
of chains.

In Sec. II, we analyze the elementary excitation
spectrum and the ground-state order for the isolated
one-dimensional system. Previous work in this area
by Gurgenishvili et aI. 4 is shown to be based on in-

correct results of des Cloiseaux and Gaudin, ' and
yields a qualitatively incorrect picture for V repulsive.
Specifically, they claim that gapless density excitations
exist in this regime, whereas we shall show that (for V

repulsive) the model has no gapless excitations of any
kind. Furthermore, they state that the ground state
exhibits long-range order only in the infinite V

limit —we shall prove that arbitrary small {but posi-
tive) Vgives ground-state long-range order.

In Sec. III, possible ordering temperatures for a

weakly coupled array of one-dimensional systems are
discussed. Imry et a/. " have developed a mean-field
theory for weakly interacting spin chains, using a
"quantum corrected" classical analysis. It is sho~n
that this approach is in fact inadequate in the extreme
quantum limit of spins- —,—for example, their expres-

sion for the ordering temperature diverges. Neverthe-
less, using a fully-quantum-mechanical approach, " we
find that the coupling-constant dependence of their
expression for the ordering temperature is correct, and
the divergence is eliminated. Furthermore, the result
can now be applied to predict transition temperatures
in electronic systems. This has already been done by
Emery, ' but is perhaps worth discussing again here be-
cause Emery gives no explicit discussion of the validi-

ty of the formulas of Imry et al. in the quantum re-
girne.

In this section, we consider the one-dimensional
electron system described by the Hamiltonian

H= U $n„n, + T g(a, ', a, +a, 'a, +, )

+& $ nn,

where U (0 and
( U) && ) &(, ( &). The basic approx-

imation is to assume UsuKciently large that each site
is either unoccupied or doubly occupied. In this case,
we can Introduce pair operators

(2.2)

and it is straightforward to show that b, ", b„and n,

satisfy commutation relations isomorphic with those of
spin- —, operators, thai is,

b'=-S', b--=s-, l7 =-S-+21 (2.3)

II. ELEMENTARY EXCITATIONS AND GROUND-STATE
ORDER IN ONE DIMENSION
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The Hamiltonian (2.1) is then equivalent to a chain of
interacting spins

—S,'S ~])+ VS,-S, , ] (2.4)

Following Emery, ' we choose units such that
2T'/~ U( =1 and put I'+I =—J, giving

H )
=—$ (S,'S,',

)
+ S S,'~ ) +J S, S;, ) ) (2.5)

It is clear from (2.3) that a charge-density wave
(CDW) in the electron gas corresponds to antifer-
romagnetic ordering of the spins in the z direction, a

superconducting state corresponds to ferromagnetic
ordering in the x-y plane. Density-density and super-
conducting correlation functions can be deduced from
the appropriate spin-spin correlation functions, as dis-

cussed by Emery. ' The elementary excitations of the
gas correspond to spin waves on the chain. We men-
tion here for future use that the Hamiltonian (2.5) is

unitarily equivalent to one having the signs of J, , J,.

(here, J, = J, =1) reversed. The necessary transfor-
mation is a rotation of every other spin by n about
the z axis. Thus, known spin-correlation functions for
antiferromagnetic x direction ordering of an antifer-
romagnetically coupled chain can be related to super-
conductivity in our model.

Before going on to analyze the elementary excita-
tions and ground-state order in detail, it is worth con-
sidering a very simple model which correctly predicts
many of the features of the ground state and elemen-
tary excitations. The model is given by replacing each
spin operator in H] by the corresponding component
of a classical vector of unit length. It is easy to see in

this classical model that for
~
J

~
& I the ground state

is ferromagnetically ordered along some direction in

the x-y plane. For J &—1, the system is antifer-
romagnetically ordered in the: direction. Note that
the

~
J

~
& I ground state breaks a continuous sym-

metry (angle of magnetization in the x-y plane) so we

expect excitations of arbitrarily low frequency,
corresponding to a slow variation of this angle along
the chain. For J & —1, on the other hand, there is no
corresponding continuous symmetry, so all excitations
are above some minimum frequency. On quantiza-
tion, then, one might expect an energy gap for
J & —I, not for

I
J-

I
& 1.

In the work of Gurgenishvili er aI. , the elementary
excitation spectrum of the electron gas was analyzed
using some spin chain results of des Cloiseaux and
Gaudin. ' Gurgenishvili et at. concluded that gapless
excitations existed for J & —1. This is a point of
some physical consequence. It would have the eff'ect,
for example, of drastically lowering the ordering tem-

perature into a CDW state for a three-dimensional
loosely interacting array of one-dimensional electronic
systems. The precise result of des Cloiseaux and
Gaudin used by Gurgenishvili ef al. is the statement
that for the Hamiltonian (2.5) with J (—1 (actually
the unitarily equivalent system with the signs of J„J,
changed), spin excitations having S =+1 have a gap,
those having S- =0 have no gap. Sutherland' men-
tions, in a footnote, that this contradicts numerical
work on short chains by Bonner. A discussion of the
technical short-comings of the des Cloiseaux-Gaudin
analysis is given in the Appendix. A more recent and
correct analysis of the elementary excitation spectrum
using the Bethe ansatz has been given by Johnson and
McCoy. '" These authors find a gap for J (—1, in fact
S =0 and S =+1 excitations have the same energy.
They do not mention the work of des Cloiseaux and
Gaudin.

Unfortunately, the Bethe ansatz analysis is not very
transparent physically, so it is perhaps worthwhile
summarizing the simple physical arguments against
gapless excitations for J (—1. First, the classical sys-
tem does not have them (see the discussion above) ~

Second, in the antiferromagnetic Ising limit, an ele-
mentary excitation for a system with periodic boun-
dary conditions is given by turning over a block of r
spins. If r is odd, S =+1, if r is even, S =0. The en-
ergy in each case is concentrated at the ends of the
block. It is hard to imagine that this energy depends
on S, even away from the Ising limit, ~here the ap-
proach is still qualitatively correct. This picture, then,
is in accordance with the analysis of Johnson and
McCoy that the elementary excitation energies are
spin independent.

We turn now to the ground state of the one-
dimensional spin system. Contrary to the statement
of Gurgenishvili et al. ,

' the ground state actually has
long-range order for J. &—1, corresponding to a CDW
ground state for the one-dimensional electron gas.
Following Johnson, Krinsky, and McCoy, " we note
that for J (—1 the long-range order of the spin sys-
tem is equal to that in the Baxter model for T & T, .
(The correspondence is

~
J +1~ ~ T, —T) Transcrib-

ing the results from their paper, for J close to —1 the
long-range order builds up very slowly, being propor-
tional to exp[ —m'/4(2(J + I [) "]. For large (J [, the
order approaches the Ising limit as I —2/J'. The gap
in the elementary excitation spectrum is approximately
2rr exp[ —7r'/2(2~ J. +1~)'"] for J close to —I, increas-
ing to the Ising value as

~
J

~
becomes large.

III. THREE-DIMENSIONAL ORDERING OF %EAKLY
COUPLED ONE-DIMENSIONAL SYSTEMS

In this section, we discuss possible ordering tem-
peratures for a set of weakly coupled one-dimensional
systems. The approach throughout is to represent the
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effects of neighboring chains as a mean field, follow-

ing Imry et al. ' and Emery. We first review the
"quantum corrected" classical analysis of Imry et al.
for weakly coupled spin chains, and show how it
breaks down in the extreme quantum limit. We then
point out that a fully quantum mechanical analysis can
be used to extend the validity of their result
considerably —to anisotropic coupled chains of spins-

—,„and hence, following Emery, ' to electronic sys-

tems.
The quasi-one-dimensional solid we consider is a

weakly coupled set of systems each having the Harnil-

tonian (2.1)~ The weak coupling consists of interchain
hopping and interaction terms T;„„.„,V;„„,For simpli-

city, we assume that these act only between sites hav-

ing the same subscript i and belonging to nearest
neighbor chains. Under the transformation to the
equivalent spin chain Hamiltonian H], these inter-
chain terms go to spin-spin couplings preciselyanalo-
gous to the intrachain couplings in (2.4}.

Hence, we have the interacting spin chains Hamil-
tonian

H)'" =—X $ (S,', S,', ), + S „S,', ~
„+J.S,„S;,,„)

2zJ X(T ) -1 (3.4)

where: is the number of nearest-neighbor chains, and
X is the staggered susceptibility of an isolated chain.
Following Imry et al. , X is evaluated in terms of the
static correlation function

G(r) = (S, (0)S,(I'))

using

(3.5)

(3.6)

In the classical limit,

G (r) —,S(S + 1)e '/'( —l ) (3.7)

where ( is given by (3.3). This leads to the following
expression for Ty in the classical limit:

chains, leading to a greater effective cross linkage, and
suppression of fluctuations. Furthermore, fluctuations
along the length of the chain are treated exactly, so
replacing chain-chain interactions by a mean field ap-
pears to be a very reasonable approximation. This as-
sumption leads to the following formula for the Neel
temperature

$ [J„(S,',,S,'„+S,',,S,'„)+J, S, „S,„]
(3.1)

k T, /J = (2/v 3)S(S + 1) (2z,J,/J) "
It is argued that quantum corrections introduce a
power term into G(r), giving

(3.8)

where h. is a chain index, J„=2T,'„„,„/~U],
J, = 2r, t,„,/I U. ] -k,„„,. —

This Hamiltonian is close to one considered by
Imry, Pincus, and Scalapino. ' They developed a
mean-field theory to predict the ordering temperature
for the set of weakly interacting antiferromagnetic
chains:

H]pg=2J ~~SI), Sr, ]„
rA

+2Ji XS,. S, ~

th
(3.2)

However, they considered the case of general spin—
indeed, their main emphasis was on quantum correc-
tions to the classical high spin case. We are interested
only in the quantum limit of spins- —, and for this case,
as we shall see below, their analysis requires some
correction.

The basic idea of Imry et al. ' is that if J &) J&, at
the three-dimensional ordering temperature the corre-
lation length along the chain is very large —in the clas-
sical limit it is

G(I ) —
—,S{S+1)r"e "'(—1)'

leading to a quantum formula for T~.

kT;/J =4S(S +1)[(zJ,/3J) 1'(1 —)t)] "'

(3.9)

(3.10)

Tre ""S (0)/Tre "", {3.»}

Imry et al. speculate that this semiclassical formula
might have some value even in the spin- —, case,
where A. =1 (according to Luther and Peschel') —they
estimate that for J& —10 'J, T& is suppressed by a
factor of 10 from the classical prediction. In fact, a
little more care is needed because (3.10) actually
predicts T~ to be infinite —I (0) = ~!

The essential point is that the formula (3.6) for the
susceptibility is a classical formula, and replacing G (r)
by a quantum correlation function does not necessarily
give an adequate quantum expression for X. This is

immediately apparent if one considers how (3.6) is
derived. If an infinitesimal staggered field
(—1)'8 (r )S, {r) is applied to the chain, the response
of the spin at zero is

(- 2JS(S + 1)/k T (3.3)
where

and hence many correlated lengths on a single-chain
overlap at least two such lengths on neighboring and

e-Ho+H
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H;„,= Jt (—I)'8(r)$„.(r) dr (3.12)

The classical result (3.6) is given by expanding (3.11)
to first order in the small field 8(r). For the quan-
tum mechanical case, this expansion is invalid because
Ho, H;„,do not commute. It is necessary therefore to
use the standard trick of expanding e ""as a series of
time-ordered products of H;„,in the interaction
representation on the imaginary time axis (O, iP). For
our purposes, we need only the first term in the stan-
dard expansion, giving

I/T
X= dv (—I)'G(r, r) dr

0 0
(3.13}

where G(r, ~} is the analytic continuation of the
time-dependent spin-spin correlation function to ima-

ginary time. According to Luther and Peschel'-'

G (r, T) [I/{r2+ c2r2)] I/2 (3.14)

for the (isotropic) spin- —, chain at zero temperature

(putting their cutoff 0( equal to one lattice spacing, our
distance unit), the velocity c is of order unity. At
nonzero temperatures, an exponential cutoff takes
place at large distances, governed by a term of the
form cschrr(I —x/c) T. Inserting this and (3.14) into

(3.13), we observe that the integral is cutoff in both
the x and 7 directions at —T '. For an estimate of its

value, wc can take a cutoff at T ' radially in the x, 7

plane. Apart from numerical factors this leads to

k Tv/J —J,/J (3.1S)

in essential agreement with Eq. (9}of Imry el al.
Therefore, we conclude that, remarkably, the classi-

cal formula of Imry eI al. is essentially correct —that is

to say, it correctly predicts the coupling-constant
dependence of the transition temperature. The loga-
rithmic divergence given by the classical formulation
is eliminated in the quantum version.

We turn now to an application of these ideas to the
anisotropic model described by the Hamiltonian (3.1)
and the corresponding electron gas system. For the
range of parameters —I ( J /J, ( 0, the two possible

types of ordering in a quasi-one-dimensional system
are:-direction antiferromagnetic ordering
(corresponding to a CDW) and x-direction ordering
(superconductivity). The relevant correlation func-
tions' are

(S S ) —[1/(r'+ c'r')]"

(SiSi) [1/(r2 + &2&2)](l/2

(3.16)

~here 8= —,
—n. 'arcsinJ.

Following Emery, ' these correlation functions can
be inserted into (3.13) to give a prediction for the ord-

ering temperature of the form (3.10), with some

diffcring overall numerical factors. Note that it is

essential to use the quantum formula (3.13)—since
8 & 1, the static z-direction correlation function
-r " from (3.16), and inserting this into the classi-
cal formula (3.6) gives a divergence worse than that
of Irnry et al. This point is not clearly made in

Emery's paper.
Finally, we consider three-dimensional ordering of

chains having intrachain coupling with J & —1. This
corresponds to a repulsion between nearest-neighbor
sites for the electron gas model. Little is known about
the spin-spin correlation function in this case, but

some conclusions can be drawn from a knowledge of
the corresponding sector of the Baxter model. As
mentioned at the end of Sec. II, the single chain has
CDW long-range order in the ground state, although
for J close to —1 the amplitude is exponentially small,
and the transition temperature as predicted by the
mean-field approach is therefore close to that for the
isotropic case. As }J } increases further, however, the

picture changes drastically. As mentioned in Sec. II,
the long-range order rises to the Ising limit as 1 —J ',
so for }J.

}
~ 2 it becomes reasonable to use the results

of Scalapino, Imry, and Pincus" for weakly interacting
Ising chains to estimate T~. The result is

2}J
i

In}J /(J, ) }

For large values of }J-/(J~)-} this ordering tempera-
ture is much higher than even the classical result (3.8}
as we expect.
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APPEND1X

In this Appendix we pinpoint the error in des
Cloiseaux and Gaudin' which we believe invalidates
their coinclusions concerning the S =0 excitations for
J (—1. From Bethe's ansatz'" "any state of the an-

tiferromagnetic linear chain can be specified by a set
of quantum numbers [k, }, where X~ ( h2 ( ( k,
The X, 's lie between 1 and N (the number of sites)
and the number of A, ,

's equals the number of up-

spins, which we take ~—,N. An integral equation

gives a set of "spin-wave" momentum numbers [k, }

from which the total momentum and energy of the
state can be deduced. If } h„—k, , ~}

~ 2 for all i, the
k, are all real. Otherwise, complex k, appear. Bethe's
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ansatz for the ground state has two possible sets of
A, 's: 1, 3, ..., N —1 or 0, 2, ..., N —2 (0~N).

To generate a low-lying excited state, it is natural to
try a set of A, 's with a gap, des Cloiseaux and Gaudin
use

A, ,„=2O'—2, 1 ~n™n

A, ,„=2+—1, n & o.'~ —N
I

ttheir Eqs. (109) and (110)j. In the limit of large N,
this distribution of A. 's is put into an integral equation
to generate a distribution of k's, k(x), on the real
line. However, the set of A. 's used does not satisfy
)X, —'„~(

~ 2 because both zero (=N) and N —1 are
included. Therefore, the set of k, 's will include corn-

plex ones, and the procedure of finding a real distribu-
tion k (x) is invalid. For S = 1 excitations, on the
other hand, the quantum number A.

~
=0 is omitted,

giving a set of A. 's corresponding to real k's, so the
procedure is valid.

As a final note, we might mention that ignoring the
proximity of N —1 and 0 (mod N) is something of a
tradition in the field. Orbach" following the early sec-
tions of Bethe's first paper" included this pair of
numbers in the category of two spin-wave excitations
corresponding to real k, thereby overcounting the
number of states in this category by one. Bethe, how-
ever, corrected himself in a footnote later in the pa-

per, and in his article'" counted correctly from the
start ~
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