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A model system is studied for which exact results are known in order to exhibit directly the lim-

its of density-functional theory when applied to excitation properties. As one might intuitively ex-
pect, the ground-state theory accurately describes properties reflecting certain static limits, the
paramagnetic susceptibility, for example. The ground-state theory does not, however, accurately
describe physical properties involving the density of low-lying excitations, spin-wave, and plasmon
dispersion, for example. To demonstrate these limitations we have developed a spin-density-
functional theory of the frequency and wave-vector-dependent linear response of the inhornogene-
ous magnetic electron gas. It is shown that in the local-exchange approximation of Gaspar-Kohn-
Sham, the static long-wavelength limits of these functions are identical to those obtained from the
time-dependent Hartree-Fock theory ]random-phase approximation (RPA) with exchange contri-
butionsj of the uniform magnetic electron system in the same limits; however, the plasmon

dispersion relation. co~i(q) =—ao„~(0) [I + 3 (g)(q/k&) ), and the spin-wave dispersion

o),.„(q) =D(()(q/k~) for long wavelengths q/k& &(1, do not correspond with the RPA results.
In fact, we find, A pp(() & 3 Rpp(() and Dlp(() )Dzt „((),~here f is the magnetization of the

system. The discrepancies found in the dynamical limit are a reflection of the fact that the low-

lying excitations close to the ground state are not described by the local scheme. Some comments
are made as to the modifications needed in the time-dependent spin-density-functional theory,
which may rectify these discrepancies at least in the low-frequency long-wavelength limit.

I. INTRODUCTION

In a series of three papers Hohenberg and Kohn, '

Kohn and Sham, ' and Sham and Kohn' have laid the
foundations for a new theory of electronic structure of
nonmagnetic systems. Hedin and Lundquist" have
made this theory into a practical calculational scheme
incorporating the recent advances in the theory of the
interacting electron gas. The generalization of this
theory to make it applicable to magnetic systems, as
well as to systems ~here the spin polarization plays an
important role, was put forward by von Barth and
Hedin' and Rajagopal and Callaway. ' The success of
this formulation in elucidating various ground-state
properties of atoms, molecules, and solids is best illus-

trated in the recent work or Gunnarson and Lund-
quist. ' Much of this work pertains to the properties of
the ground state of the system. In Refs. 3 and 4, an
examination of the single-particle states within this
scheme was made. Vosko and Perdew' developed a

theory of the paramagnetic spin susceptibility of an in-

homogeneous electron gas based on the Hohenberg-
Kohn-Sham (HKS) formalism. Janak' made a de-
tailed study of this susceptibility and was able to ex-
plain the systematics of the 3d and 4d series of ele-
ments. The theory correctly showed which of the ele-
ments are magnetic and which were not —with no ex-
ception. Given this remarkable success of the theory

for the ground-state properties, one wonders if the
low-lying excited states, such as spin waves, close to
the ground state of the system may not be described
by a suitable extension of the above formalism.

In the theory of the interacting electron gas, one al-
ready has such a scheme for self-consistently calculat-
ing the various correlation functions of the system. In
particular, Herring, '" using a perturbation theory of
the Hartree-Fock self-consistent equations due to
Peng, " calculated the spin-wave dispersion in the
long-wavelength limit for a ferromagnetic electron gas.
Rajagopal, Brooks, and Ranganathan, " using the
Green's-function method were able to set up these
equations more generally for a ~ider class of proper-
ties, such as the frequency- and wave-vector-dependent
spin susceptibilities and dielectric function of the mag-
netic electron gas. Rajagopal" solved the relevant in-
tegral equation pertaining to the transverse spin sus-
ceptibility in the low-frequency long-wavelength limit
for all ground-state rnagnetizations and recovered the
Herring result in the saturated ferromagnetic case.
This variational calculation has been extended to cal-
culate all the susceptibilities by Rajagopal, Rath, and
Kimball. " In the present paper, we shall employ the
same method as given in Ref. 12 to calculate the
correlation functions for the inhomogeneous systen"is

in the spin-density-functional formalism. This gen-
eralizes the work of Vosko and Perdew" to the mag-
netic case. .
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Recently, Callaway and Wang" have derived an ex-
pression for the transverse magnetic susceptibility in
the local-exchange approximation of Gaspar-Kohn-
Sham. The change in tht*, local-exchange potential
when the external field is applied was suggested to be
of a special form which was consistent with the re-
quirement that for zero wave vector, the spin-wave
energy be zero. Moreover, when the spin-wave ener-
gy was computed within this scheme, the stiffness
coefficient D in cv,.„(q) = D(q/kr)' was found to be
larger than the value calculated by Herring' and Ra-
jagopal. " In the present paper, we derive the correct
form for the change in the exchange potential, in the
spin-density-functional theory. When the ground-
state energy of the homogeneous electron gas is as-
sumed to depend on the magnitude of the magnetiza-
tion vector only, we obtain the form assumed by Cala-
way and %'ang, "who used the local-exchange scheme
only. From our derivation, it is clear that a local-
exchange scheme will not give us a reliable estimate
of D,

In order to strengthen this belief, we calculated the
dispersion of the plasma frequency in the long-
~avelength limit in the homogeneous electron gas
from Ref. 4: &o„',(q) =—co„'~(0)[1+& (g) (q/kr)'].
Singhal and Callaway" have recently developed an ex-
pression for the dielectric function in the local-density
theory by an extension of the Callaway-%'ang scheme.
Our expression for the dielectric function reduces to
the Singhal-Callaway expression when the local-
exchange approximation is made. %e computed the
dispersion in the plasmon frequency in the long-
wavelength limit and found that ALD is smaller than
~ RP.A ~

It should be mentioned that the static long-
wavelength limit of the correlation functions for the
homogeneous electron gas" completely coincides with
the corresponding static values based on the local-
density theory. This is as expected because the local-
density theory corresponds to the Hartree-Fock (HF)
theory of the uniform gas as far as the ground-state
properties are concerned.

We develop the formalism for computing the
linear-response functions in Sec. II. In the same sec-
tion, we apply it to the case when the ground-state en-
ergy of a uniform electron gas is assumed to be a

function of the magnitude of the magnetization vector
in the ground state, an assumption which is reason-
able in view of the homogeneity of the uniform elec-
tron gas. In Sec. III, we deduce the various limiting
values in a local-density scheme and compare with the
corresponding results for the uniform gas computed
by using RPA with exchange contributions properly
taken into account (sometimes known as the time-
dependent Hartree-Fock theory). In Sec. IV, we
briefly summarize the results and speculate on how
the theory may be modified further to at least yield
the correct limits.

II. FORMULATION OF THE THEORY

A. Preliminaries

i + —V(r ~)
—Up(1) Tp

—U(1).7 G (11')
gt] 2m

X(11)G {11')d 1 = rp5(11') . 2)

Here X is the so-called mass operator and is also a
2 x 2 matrix. It is in general complex. %e introduce
the standard Pauli spin matrices:

1 0 0 1

O 1 ' ~' 1O

1 0
0 —1

t

(3)

We use units ~here f= l. The time integration in Eq.
(2) is from 0 to i P, P = I/ka T—, in the standard
manner. In Eq. (2), V(r~) is the local potential, due
to, say, the ions; Up(r]t]) is the external time-
dependent potential and U (r]t]) is the external time-
dependent magnetic field in appropriate units. (We
use units where the Bohr magneton is unity. ) It is

now clear from (1) that the average particle density
and the spin-density vector are given by"

n (1}= —i Tr[ G(11+)]=—n (1) (4)

and

s(l) = i Tr[ r G (I 1+)] —(n, (1),ni(1), ni(1)), (5)

where Tr is the trace over the spin indices. Often we
denote the components of the vector by a greek in-
dex a. It may also be pointed out that the inverse of
the Green's function G ' is defined by

G '(ll) G(11') dl =7p5(11')

G(11)G ' ll') dl . 6)

The linear-response functions are defined by

X„(12) (—i) (T[n, (1)n, (2)]) (7)

We follow Ref. 12 and introduce the 2 && 2 matrix
Green's function

G „„(I;I')= (—i) (T[i[I„(I)ik t (1')1)

where p„('), P,t (1') are the destruction and creation
operators for an electron at 1 (=r],t]) with spin o. and
at 1'{—=r]', t]') with spin cr'. These operators obey the
usual anticomrnutation rules at equal times. The sym-
bol T here denotes the time ordering as usual and
G„„ then obeys an antiperiodic condition in the com-
plex time domain" and ( ) signifies the grand
canonical ensemble average. This Green's function
obeys the Dyson equation
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where

n, (1) = n,"—n n" =Tr(% T, '4f')

orthonormal spinor functions which obey the equa-
tions

is the operator, 4)' is the column vector (P~, P~), and
%' its transpose. Expressions (7) may be reexpressed
in terms of G and its variational derivatives"

5n, (1) 5G(11 )
SU, {2) '

8U, (2)

or

x„(12)= I Jt Tr [ r, G (11)

Eh@h (r )
Q2

' + V(r, )+ V, , [r, , n, s]
2m

+ V„[r,, n] d,"„(r~)

+QW, , [r~, n, s] T
~

~$ ~(r~)

(x=1,2) . {is)

x r, (12;2)G(21'))dl d2, (&)

1,(12;3) = 5G '(12)/5 U, (3}

From Eq. (2), G '(12) is given by

aG-'(12) = i + ' —V (r, ) —U, (1)
9t) 2m

x T T U {1)5(12) —X(12) . (10)

Once X(12) is known in some approximation, I, can
be computed and hence the X„'s can be determined.
This then is our program.

where we have made use of Eq. (6) in introducing the
vertex function

Here i labels the appropriate quantum numbers and A.

stands for the eigenspinor. The Green's function
Gp(12) is then

G (12)= XXxe " 2g "(E)-IP tf, , h=]. 2

r

(r )~

yh (r)

)( [y(h) «( )y [h) «( )] (16)

with E„=(2n + 1) n /( i p) + p, p,—being the chemical
potential, n =0, +1, +2, . . . , and

g, "(E„)=1/(E„—E,")

The various densities are then computed in the usual
way and we have

B. Spin-density-functional approximation
for X(12) in the absence of U, n„(r ) = X X]d,"„(r)~'n, (E,")

I h tr'

(1&)

An argument similar to the one given in Refs. 3 and
4 can now be constructed for the spin-density-
functional version for the self-energy X. For the
equilibrium state, '" X(12) is a functional of n, s, and in

fact within a static approximation, we may write

X(12) —( ro V. . [ r~, n, s ) + r„V I[r~]n,

S«o ( r ) = g 4,"i ( r )P,"t
' ( r ) n r (E,")

Ih

S e(r}= $g,",(r)d, 'i "(r)n, (E,")

(20)

(21)

S-e(r) =X(]@,'[(r)] fd, ",(r)f )nr(E, '), (19)
I h.

where

+T W, , [r~, n, s])8'(12) Here nF(E, h) iS the uSual Fermi funCtiOn

nr(E, ') =1/[ex pP(E, " —Er) +1]

V, , [r, , n, s] =SE,, [ns)/gn(r, ~)

W, , [r, , n, s] =—5E,, [n. s ]/gs(r)) (13)

Vi([r), n] =e'
Jl n(r, ) d r~

f] —r)
(14)

with E,-,. [n, s] the exchange-correlation part of the
ground-state energy of the inhomogeneous many-body
system, V»[r), n] is the Hartree self-energy

where EIh are the two Fermi energies, determined
from the condition that the total number and the total
magnetization vector are given constants. The sub-
scripts 0 in Eqs. (1&)—(21) denote that these are ap-
propriate to the ground stat~ The functions @,h„(r)
obey the usual orthonormal i"elationships:

'I

yh { )
[P,"t '( r ) P,"~ '( r ) l „dr = 5„5,„(22a)(r)

The Green's function in the absence of the external
fields U, is denoted by Gp(12) and for the equilibrium
state, we may write it in terms of the complete set of

and

ih
(r)d A «(r') g 5( —

&) {22b)
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Note that Eqs. (15) and (18)—(21) form the self-
consistent set, to be solved eventually. These reduce
to the form given by Vosko and Perdew in the

paramagnetic limit.

C. Derivation of X„

(4), (5), and (10) with X given by Eq. (11):

n, (1) = n, o(r])
3

+i X Jl Tr[r, Gp{11)L'2(12;3)G()(21+)]
)/ =0

x U, (3) dl d2d3 (j=0, 1, 2, 3)
We now assume that the external time-dependent

fields U ( rt) (/ =0, 1, 2, 3) are s/o w/y turned on so that
the equilibrium state follows the external field in an
equally slow way. This implies that we compute the
changes induced in n, s by U, to first order from Eqs.

Now, ~1' (12;3) is obtained from Eq. (10) with Eq.
(11) for X,

(23)

3

f'„(12;3)= —r 5(12)5(13)—5(12)rp j [V,. (11)+K,, (11)]X„(13)dT+ X f G,", ,', (11)]X„,{13)dT
(r-I

1

3 3
—3(12& g f „,G!'!pi)x„(13)dl+ Q,G!,",,x ((()x„,((3) di

&r~l u, p=l
t 1

(24)

Here we have introduced the notations

V, {12)= V. (Irl i2I)5«& —/2)

where the V, stands for instantaneous Coulomb potential;

(25a)

52E,,
K,, (12) = " 5(t, —t2)

Sn ( r() Sn (r3)
(25b)

G„, „(12)= 5(() f)) = 5( /(/2)
(I) 5 Ext

Sn(r, )Ss.(r,) Ss„(r,)Sn(r, )
(2Sc)

52E
6,.', . ,',p (12) = "' 5(t I

—t2)
5s„(rl)5s„(r&)

Thus the susceptibilities are determined from the set of linear equations using the definition (8) and Eq. (24):

(25d)

3

x„(12&= x,',"(12)+f x,'„"'Qi) [ v (i2&+ d„.(i2) x„(22&did 2+f xl" (1 1) $G!!l (i2) x„,(22)did 2

3

+ x X„,(l l)G,", ,,'(l2) x„(22}dld2 +f X x,",, '(ll)G!,",,, (12)x,, (22)d(d2
tY= I tr. @=I

(26)

X,',"(12)= / Tr[r, Gp(12) r, Gp(2—1')] (27)

These equations together with Eq. (16) for Go gen-
eralize the Vosko-Perdew equations for the magnetic
case.

Here we have introduced the "noninteracting" correla-
tion functions

D. Simyli5ed model

A neat reduction in the number of functions of X//

can be achieved if a model for the magnetic system
can be made. The most reasonable assumption that
may be made stems from our knowledge of the homo-
geneous electron gas. Consider a single domain fer-
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E, [n so] = E,, [n. I sol] (28)

romagnet. Then the magnetization vector in the ab-

sence of external fields may be assumed to be directed
along a fixed direction. Then we can assume, in view

of the time-reversal symmetry, that the exchange-
correlation energy E„,[n. so.] is a function of the mag-

nitude of I sol only:

or

W„, [r, n, so, ] = )V„[r),n, I sol](0, 0, 1)

where

)V„, [r),. n, I sol] =gE, , [n, I sol]/&I so{r)) I

(29)

(30)

Also, we may choose this direction of magnetization
to be the Z axis. Then

)V„„[r.)n s,ol .= lV.. [r) n Isol]& o{r))/lso{r))l

Hence Gp(12) takes a very simple form, because the
above assumption implies that there exists a
"principal-axis" transformation of the spinor wave
functions [d),'„(r)}which makes Go diagonal

+, )( r)) q',
)
'(r3) g, )(E„)

Go(12) =
It I

+, )(r[)+, )'(r2)g, )(E„)

where

g„,(E„)=1/(E„E„,)— (32)

and

G -. 33 (12) ~ G ~,
l (12) Q(f] —(2)

and the [O„,(r) } are the solutions of the equations

E„, )„1),(r) = — + V(r)+ V, [r n. I sol]
2m

+ V„[r,n] +„,(r)

+ T3 ~ )V. . [ r "
I sol] q „,{r )

Xpp, Xp3 = X3p, X33, X, and X. ,(o) (o) [o) (o) (o) (0)

with

X' '=(—i) (T{
3

(n) +int), 3 (n) —in3)), etc. (34)

Furthermore, we have

G, , (12) = G,.',"(l2) {0,0, 1)

where

(35)

With this form for Gp{12), we at once obtain a

tremendous reduction in the number of nonzero X,';
'

~

In fact, we have only the following nonzero X,', 's:

52K
(36c)

~I so{r)) I 6l so{rl) I

We then find the components Xpp, Xp3 = X3p, X33

decouple from the "transverse" spin susceptibilities

X+, X,. Observe that the particle-density response
and the longitudinal spin-response functions are cou-

pled, a result first pointed out in Ref. 12 for the

homogeneous system.
We thus obtain

x, (12) = x,"'(12)+2 Jt x,"'(l l)

x G„!,33) (12)x+ (22) d 1 d 2

and a similar equation X +(12). The equations for Xpp

and X3p and X33 and Xp3 are coupled and can be writ-

ten down similarly, following Eqs. {26), (35), and

(36). Equations (26) and (37) are the generalization
of the Vosko-Perdew expression for the magnetic
case. Using the corresponding expressions for X,',

"' in

terms of the "wave functions, " {33),we can express
X„ in the same way. Instead of giving all these ex-
pressions, we shall now make a few comments as to
the physical nature of these equations.

In the paramagnetic limit, we have

G"'(12) = " 8(( —( )
52+

nS( )r)lsgo{r»l

G([) 0

G(2) G(2).
.rt Ii xt jo

{3S)

(39)

and after a little algebra, one finds

G,(2.
,),&(12) =0 for o, WP

G (» (12) = G ' ' (12) = G ' ' (12)

&' [r) n I sol]

is(r))i

(368)

(36b)

also Xp3 =0 = X3p . The equations for Xpp and X33 then

decouple. Since X+ =2X33 in this case, the equation
for X coincide with that of X33.

From Eqs. (33), we note that H', -, can be interpret-
ed as the potential responsible for the splitting of the

spin up and down bands for the electrons. G,.',." is an
eft'ective interaction between the magnetization and
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particle density, and comes about because these two
quantities arise from the electron densities in the up
and down spin configurations. K„,, is the usual
effective interaction between the particle densities at
the two different points in the medium, whereas G,-",. 1'[

is the corresponding interaction between the rnagneti-
zation densities along the polarization direction of the
intrinsic magnetization of the system. But G„-",. & is the
interaction between the two transverse components of
the induced magnetization; this provides the mechan-
ism for the intrinsic rotation of the spin direction from
the equilibrium state magnetization. Notice that un-
like the other effective interactions, G,",, & is local.
Usually, one further assumes K,, , G,.",. ['] to be local, to
facilitate computation. ""In Sec. III we shall special-
ize these results for the homogeneous electron gas,
using the simplest local form for E„,

V„=——,
' (3/n)'"[(n +s)' '+(n —s)'"1

8'„=——,
'

(3/cr) '"[(n + s) '"—(n —s) "']

G,'.

,
"= ——(3/m)' 3[(n +s) —(n —s) ' ]g(12)

(42a)

(42b)

G (2) (3/cr) I/3[ (n + s) —2/3

(43a)

+ (n —s) '/3]8(12)

(43b)

and

with k~ the Fermi momentum of the system and f is
the intrinsic magnetization of the system and varies
between 0 and 1. Then

III. APPLICATION TO THE HOMOGENEOUS
ELECTRON GAS

A. Local-density scheme (T =0 K)

Detailed analytic expressions can be obtained if we
assume E,. to be just the Hartree-Fock energy of the
homogeneous gas" (units where e' -1 and t= 1 are
employed here)

E,, ~ E„-——'(3/a)'/'[(n +s)"'+(n —s)' ']

(40)

G,.',&~) =—W'„, = ——(3/rr) ~/'[[(n +s)
s

—(n —s) '"]/s }g(12)

(43c)

In this case, plane waves are solutions of Eq. (33),
and X,', ' are given by' "
x/}P (q, cu) = A It' (q, cu) + A ~t

' (q, cu) = x33'(q, cu), (44a)

xc}3'(q, cu) = x "'(q cu) = A "' (q cu) —A "' (q cu), (44b)

and

n, s are independent of r, and are given by

n = kr/3~ s = gkr/3n (41)

X' '(q, ) = A ', ' {q, ), X' '(q, ) = A ', ' (q, ), (44c)

~here

d3k f„(k+—, q) —f„(k——, q)
A,",,!(q, ~) = —

Jl (2n') cu+/E —E„(k+—q) +E„(k——q)
(45)

E„(k ) =
} k } /2m + V„+q„+',, (46)

with .f „(k) being the Fermi function for electrons of
spin cr and

have the property that for q =0, cu is zero. We have
here derived this result. Using the result for A t~' in
Ref. 12 and the expressions (41}, (42b), and (43c) we
obtain the spin-wave dispersion to be of the form

Here g„=+1 for o = [ and —1 for o = [.
Explicit expressions for A,c,"„' (q, cu) are given in

Refs. 12 and 14 as well as some of the relevant limits
which will be needed here. Then

x, (q, cu) = x,"'(q, ui)/[1 —(2 W, , /s) X,"'(q, c )]

(47)

~,.= DLo(() (q/kr)',

where

(4S)

(49)

1 = G '» X c'i(q ) (47a)

and a similar formula for X +. Callaway and Wang"
obtained this formula; they however postulated G,-",. &

to be 8'„,/s, from the requirement that the spin waves
given by

Callaway and Wang" derived this result for $ =1
only. Here r, is the usual dimensionless electron gas
parameter, given by ocr, = 1/kr, cc is a numerical con-
stant (=0.521).

The other correlation functions can be obtained
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directly by Fourier transforming the equations (26)
and after some algebra,

(q ) (A (0) +A (0) 4G(v2)A (0)A (0))/g)

XQ3(q, 0)) - X30(q 0)) ( A ) t A
J J

+4G"'A ' 'A '"')/S

X (q, 0)) —[ A l'l
' + A )'0() —4(K„,. + V, .) A l'Ql'

(SO)

(S1)

netic limit of (43b) was derrved by Singhai and Calla-
way. '6

From ~(q, ~) given by Eq. (54) we can compute the
plasmon dispersion relation

~„')(q) =~0)[I+A(()(qlkp)2]

where 0)02) 4rr))e2/m Us.ing the appropriate limits of
A,'„,' (q, (0) given in Ref. 14, we obtain

where

+ A,", ']/g), (52)
ALo(g)- «(~/«, )[(I+&)'"+(I-&)'"]

--, [(I+g)'"+(I-g)'(3] . (58)

S [I (K + V +G(2()l)(A (0) +A (0))

—2G„-, (A It —A I)

+4[(K + V)G(2) (G(l))2]A (0)A (0)
]

The longitudinal dielectric constant is given by

0(q, p)) -[I+ Vv. (q)xpp(q, p))] '

Using (50) and (53), we obtain after some algebra,

Similarly the static limit of ~(qadi) gives us the
screening $'

lim q'~(q, co =0) = g'kq2
0

and in the present theory we obtain
l

, ( ) l, (I+))"3
OLD 4 2 qT

( ))(3

{I —() '"—ar, /rr

(59)

(60)

(, ) - I + V,. (q)(4G"'A ' 'A '0'

I)" -A tt')/g)

where

(54)

where qr'F is the usual Thomas-Fermi value (4ar /rr)2
The state long-wavelength limit of X33(qco} is found

to be

&33 L D (0, 0) = 2 g "'" '(1 ( )
a'= [1-(K„,. + G"')(A "'+A "')

26(l)(g [0) g (0) )

+4[K G(2) (G (1))2]A (0)A (0) j (55)

x ((I -g')'"[(I+g)'"+(I -g)'"]
-{ .,/~) [(I + ~)'"+ (I -g)'"])-',

(61)

X33(q, (0) = 2A /[I 2G, , l)A ]

X30 (q, 0)) -0- X();(q, ~),
X (q, 0)) = 2A ' '/[I —2( Vv. + K„,.)A "']

(56a)

(56b)

(56c)

0'(q. ~) =I —2V(q)A"'/(I —2K, A"') . (56d)

The result equation (56b) is a consequence of time-
reversal symmetry. "

For the static case, co 0, X33(q, 0) was derived by
von Barth and Hedin' and e~(q, 0) by Hedin and
Lundquist, with K„,. , G,.",. ]'] in the general local form as
above. For co &0, e~(q, ao) with K„,. as the paramag-

The result that X(}3 X30 was proved in Ref. 14 to be
true in general, in the absence of spin-orbit coupling,
and is borne out in the present scheme also. In the
paramagnetic limit, the expressions reduce enormous-
ly and we obtain

g (0) g (0) g (0) g (1) 0xt

so that

where X"""' is the usual Pauli susceptibility of the
noninteracting electron gas.

8. Homogeneous electron gas in RPA (T =O'K)

The above results can be compared with the
corresponding results obtained for the electron gas in

Ref. 14, where the relevant vertex functions analo-
gous to Eq. (24) of Sec. II, were set up in the RPA.
The local-density model expressed by Eq. (4) should
then correspond with these results as far as the
ground-state properties are concerned. We shall not
repeat these derivations here but quote only the final
results. We should remark that the vertex equations
were solved in Ref. 14 by a variational method; in the
limits concerning us here, it was shown by the au-
thor' that this procedure is exact.

A detailed comparison of the vertex equations of
RPA and those obtained here may be in order. The
vertex function given by Eq. (24) is very different in

its structure compared to the vertex functions in RPA
of Refs. 12 and 14. In the uniform electron gas, for
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instance, I RpA depends on two four-momentum in-

dices k, q, ~hereas I gpss depends on q only. But, for
the calculation of the static long-wave)ength limit of
the response functions for the electron gas, one re-
quires only I Rp+ (k =k~, 0;q =0). In Ref. 19, the in-
tegral equation obeyed by I Rp+ is solved exactly in
this particular limit. Using this, we obtained the
corresponding response functions for the electron gas
xz„d, (0, 0). It is found that I apd, (k = kr, 0-;q =0)

I QD f:(q -0), where the superscript x indicates that
we have employed the local-exchange approximation,
Eq. (43). Indeed, we find that («&(() = $Rp&(g) and
X33 LD(0, 0) X33 Rp&st (0, 0) for all (. These are ground-
state properties of the homogeneous system, and as
such we expect the correspondence. The plasmon
dispersion, Eq. (57), in RPA is found to difY'er and we
find

(1+g)'/' - (1 —g)'/'

2(
(63)

For (=1, we have

2

DRpA(( = 1) = 1 2
kF ~/3 18m

2m 25o, r,

(g) = A (g) ——,', l(1+ j)'/3+ (1 —g)"'l

(62)

The spin-wave dispersion relation was calculated by
the author" and the result is

kr' 9mD„.(~)=
' 1-

2m ( 25or,

k
D {~ 1)

F
1 2)/3 217

2m So.r,
{65)

Thus,

2

DLD(( = 1) = DRpp(g = 1) + 2 1/3 kF 8
2m 250r

(66)

From (62) and (66), we observe that the dynamical
properties even close to the ground state, are not in

any definite relationship with the corresponding RPA
result, a confirmation of the doubt one may have in
the local-density formalism.

IV. SUMMARY AND CONCLUDING REMARKS

n(r) =no+n(r), s(r) =so+s(r)

The main results of this work are (i) development
of a formalism to calculate the time-dependent
response functions of an inhomogeneous electron sys-
tem in the spin-density-functional theory in the same
spirit as in the homogeneous system; (ii) this general-
izes, in the static limit (co=0), the theory of the
paramagnetic susceptibility due to Vosko and Perdew;
(iii) for T =O'K, the local-density-functional theory is
shown to yield the same answers as the electron gas
theory based on the time-dependent Hartree-Fock
scheme for the static long-wavelength limit while the
dynamical answers are found to be in disagreement;
this is similar to the result of Sham and Kohn' who
studied the density of states at the Fermi surface; (iv)
the local-spin-density functional E„, [n,

~
s ~] for a

slightly inhomogeneous electron system, takes a neat
form. Here

which compares very well with the result obtained by
Herring. ' Callaway and %'ang" calculated D&D for
f =1 and it is the same as the one obtained in Eq.
(49):

with

and, from Eqs. (35) and (36) we obtain

(67)

E„I,(Ti))=Ed'+ —f JK„(r— ') (r& (r')d' d' '+ —JfE,',"(r —r')I (r) (r')+ (r') (r)ld' ~ d' '

+ —' Jf E " (r--. )*-(-.)*-(r') d' d' '+ —JG "'(r)l '(r& + '(r)l d' (68)

The linear terms drop out in view of (67) and since
V,., and H„. in the homogeneous gas are just con-
stants. The spatial dependences shown in {68) for the
various coefticients are a consequence of the fact that
they pertain to a homogeneous system. The last three
terms are of special significance, in that for a slightly
inhomogeneous system, even when the homogeneous
counterpart is magnetized along the z direction, the in-
homogeneity introduces local transverse coupling
between the spin directions, as well as a coupling

between the density fluctuations and the longitudinal
spin-density fluctuations. The transverse spin fluctua-
tions give rise to spin waves in the system.

The work presented here may be considered as the
first step towards a time-dependent density-functional
theory. The next step, in view of the difhculties faced
in this simple theory, is to build into the formalism,
contributions to the self energy, X(11), from the
quasiparticles close to the equilibrium state. For
one-electron properties, some suggestions in this
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direction have already been made by Sham and Kohn'
and Hedin and Lundquist. 4 A corresponding scheme
based on this can be developed using the formalism
given in this paper, but we have not yet succeeded in

making it elegant enough to yield analytical results, at
least in the long-wavelength limit, so as to eliminate
the discrepancy found in the present theory. We hope
to return to this important question in the near future.
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