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The percolation problem is normally described in field theory by the n 0 limit of the n-

component Potts model. This model has trilinear interactions which give rise to an e expansion in

6 —~ dimensions. In contrast to positive values of n, the n =0 case is shown to have oscillatory
growth at high orders in ~ which permits Pade-Borel resummation. A new formulation of the
n =0 limit is required to obtain this result. An improved estimate is given for the critical ex-
ponent cu which describes corrections to scaling.

I. INTRODUCTION

There are many models for critical phenomena
where symmetry permits interactions trilinear in the
order parameter $. These models fall into two classes.
In the first the order parameter corresponds to a phy-
sical fluctuating quantity; examples can be found in
magnetic and displacive phase transitions' and in a
model for the nematic fluctuations in a liquid crystal. '
In the second, one is required to take a limit in which
the number of components n of the field $ tends to
zero. Examples are found in the percolation prob-
lem, -' which can be described by the n 0 limit of the
(n +1)-state Potts model, ' and in the Edwards-
Anderson model' for a spin-glass, in which the n 0
limit is introduced to handle the quenched nature of
the randomness s. 6

Since interactions with the lowest powers of the
field in general dominate the critical behavior, ' one is
led to neglect in the first instance @' and higher in-
teractions and to consider only the $' terms. Dimen-
sional analysis sho~s that the $' coupling in the Harn-
iltonian has the form goA' ~' where A is the mi-

croscopic momentum cutoff in the problem and d is
the dimension of space. The natural ~ expansion in

these models is then around six dimensions. Within
the framework of the renormalization group, the run-
ning coupling constant g(r) (the effective coupling at
momentum scale e'A) is the solution of the
differential equation

p(g) =—,' (6 —d)g+Ag'+Bg'+

If A & 0, the theory is asymptotically free in six di-
rnensions and the t. expansion exists in 6+ ~ dimen-
sions. If A )0, there is an infrared-stable fixed point
g ' of the renormalization group with
g" = e/2A +0 (e'), a =6 —d, and this permits a
description of critical phenomena in 6 —~ dimensions.
Explicit calculations' show that A can be positive both
for models with physical fluctuating fields and for
n 0 limits; the existence of an t. expansion in 6 —~

dimensions does not appear to discriminate between
these two cases.

An obvious problem for these e expansions is that
one must set e = 3 to obtain predictions in three di-
mensions; numerical results cannot be expected to be
very reliable. However, the very nature of the e ex-
pansion in 6 —e dimensions presents a much more
serious problem which we study in this paper.

Following the pioneering work of Langer9 and
Bender and Wu' there is now a standard tech-
nique"" for obtaining the high-order behavior of
Feynman-graph expansions. If A. is a coupling con-
stant which orders the diagrams according to the
number of loops, one finds that an N-point correlation
function behaves like

(3)

where

Gg ' —K!a"Kbc[1+O(K '] (4)

with initial conditions g(0) =go. The function P can
be calculated as a power series in g; it has the general
structure

for large classes of boson field theories"; the number
a depends only on the theory under study; b depends
only on the theory and N; the first momentum depen-
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dence appears in e. The P function of Eq. (I) also has
the structure (4), with k =g', and the Kth term in the
~ expansion of g" grows correspondingly.

The K! factor in Eq. (4) shows that these perturba-
tion theories are asymptotic expansions with zero ra-
dius of convergence. The crucial factor then is the
sign of a. If a (0 the series (3) oscillates and one
may obtain numerical results which converge using
Pade-Borel or other techniques. '" If a & 0, resumma-
tion techniques cannot be applied direct1y to the
series. %e calj these two cases benign and malignant
growths (a (0 and a )0, respectively). The semi-
classical techniques which yield the result (4) also
show how these growths can be characterized. " A
benign perturbation series arises when one does per-
turbation theory about a proper ground state of the
system. (The case with tunneling between two or
more degenerate minima is special. ) Malignant growth
occurs when one sets up a perturbation theory about a
metastable ground state. That perturbation theory
alone is incomplete in this case is clear, because one
neglects the exponentially small tunneling eA'ects out
of the rnetastable state. "

These are important remarks as far as ~ expansions
in 6 —~ dimensions are concerned, since these expan-
sions are dominated by $' interactions whose classical
potential is unbounded below. As far as critical
phenomena are concerned, one may imagine that the
$4 terms which are always present in the bare Hamil-
tonian may provide stability, and indeed they do.
Ho~ever both explicit calculation for the n -2 Potts
model" and experiment' indicate that the system
then goes through a first-order phase transition. At
best the ~ expansion in 6 —~ dimensions for theories
of physical fluctuating fields may describe a multicriti-
cal region which is not easily accessible experimental-
ly.

In this paper we consider high-order behavior in @
theories and its relationship to the stability of the
ground state about which one does perturbation
theory. In Sec. II we illustrate the general result that
expansions in 6 —a dimensions for all theories of phy-
sical fluctuating fields are malignant, with explicit
reference to the n-component Potts model. The per-
colation problem, involving the "unphysical" limit
n 0, may evade this result, but we show that the n-

component Potts model is not a suitable vehicle for
resolving the question definitively. In Sec. III we

present an alternative field theory for the percolation
problem which avoids the necessity of taking an n 0
limit. This new field theory is equivalent to the n 0
Potts model order by order in perturbation theory. In
Sec. IV we show that the standard methods' may be
applied to this new field theory; they show that pertur-
bation theory and the ~ expansion for the percolation
problem are benign. The results are used to make an
improved estimate of the correction to scaling ex-
ponent ao, which diverges particularly rapidly.

II. HIGH-ORDER BEHAVIOR %1TH PHYSICAL
FLUCTUATING FIELDS; THE POTTS MODEL

A. General formalism

%'e are interested in critical phenomena arising from
a bare reduced Hamiltonian of the form

(5)

The order parameter Q, (i = I, 2n, .)..i,s taken to
transform under an irreducible representation of some
symmetry group; d„& is an invariant tensor allowing a
$' interaction (there may be more than one $' invari-
ant in general).

Many technical simplifications occur if oae uses re-
normalization theory to set up the renormalization-
group (RG) and e expansions (Brezin et al. , Ref. 7).
First, the RG action is closed in the space of @' in-
teractions; there is no need to introduce @' or higher
interactions in looking for a fixed point. Second, apart
from the trivial term —,eg, the remaining coeScients
A, B, etc. , in Eq. (2) are independent of e and the
mass if one uses the renormalization procedure of 't
Hooft'9; they are therefore obtainable from the ultra-
violet divergences of the massless (critical) six-
dimensional theory in this case. ' This is important
for our current ability to calculate high-order behavior
analytically. "

The classic approach for estimating high-order
behavior consists in evaluating the discontinuity of
G'~' across cuts in the complex g plane by the method
of steepest descents; this is the semiclassical method
for calculating the tunneling phenomena which give
rise to imaginary parts of G' '. Dispersion relations
then enable one to obtain high-order behavior in the
region of physical g. A calculation for $' models in
6 —~ dimensions using this approach has been done
by one of us [D.J.W. (unpubiished)1; contours of in-

tegration can be identified (see also Langer') and the
small oscillations sum can be controlled conveniently
by dimensional regularization. %'e do not report this
rather lengthy calculation here because we have not
succeeded in making the corresponding discussion of
integration contours for the model of Secs. III and IV,
which is our interest in this paper.

The discussion of integration contours may be side
stepped, however, by picking out the Kth-order term in

perturbation theory as follows: If we have

G' '(x], . . . , x„)= {y{x)) . y{x~))

—=fD4 @(x,) d{x~)e ",
(6)



A. HOUGHTON, J. S. REEVE AND D. J. WALLACE 17

then one ~rites

G«in'= JD& 4(x)) y(x~)e " .1 dg
2'7f I g

To be specific, let us consider the partition function Z
and pick out ZK the coef5cient of g'K for the Hamil-
tonian (5):

e-(H + 2K Ing )

27Tl g
(S)

Jf d'x d„k$,Q, $i = (10)

One, now proceeds to evaluate this by steepest des-
cents, which involves expanding around the saddle
point of the "action" 0 +2K lng as a function of the
variables qb and g. The equations for the saddle point
with the Hamiltonian (5) are (we take the d 6 mass-
less case for reasons discussed previously)

where

a =5/3. 2'(u u)rr'

The terms involving b and c in expression (4) come
from the determinant of the small oscillations about
the classical solution (15),(16) and terms of order 1/K
from the anharmonic perturbations.

For all theories in which u is a real vector, a in Eq.
(17) is clearly positive. The correlation functions,
therefore, have malignant growth in six dimensions as
foreseen in the Introduction and this result carries
over also to the behavior of the ~ expansion.

B. The case of the Potts model

Since we are interested in studying the percolation
problem we consider specifically the n-component
Potts model. The invariant tensor d„& is conveniently
written in terms of n +1 vectors e,

" (e =1,2, ..., n +1,
I =1,2, . .. , n) which obey

These equations decouple if we change from P, to

p, - —,g$, and make the ansatz
I

I|I,(x) = u, qb, , (x)

where

Mi =
di//, -QjQjr

Xe, =0,
A=1

II + I

X e, e, -{n+I)g„
A-I

il

Xe,"e/'= (n +1)5""—I
I

(isa)

(isb)

(1gc)

Then (9) and (10) become

Q2@ f2
Geometrically, these are vectors to the n +1 vertices
of the tetrahedron in n dimensions. For the Potts
model one may write

and

—u u dxP, . =—Kg
3

(i4)

II +I
d„„= Xe, e, e&.

A' I

(19)

The solutions of (13) (which give minimum action,
and hence the saddle point of g' closest to g =0) are
of the form

In order to obtain the solutions u, of Eq. (12) take a
basis of the first n vectors e, (a=1, 2, . . ., n),

u, = Xa.e,

$,.(x) =—24)L /[h t(x —x ) r + l]r (is)

The parameters X and xo reflect the dilatation and
translational invariances of Eq. (13). The integral in

Eq. (14) is independent of these parameters, of
course; with $,. given by Eq. (15) one finds a classical
saddle point at g = g, ,

g, .'=3.2'(u u)rr'/SK

The value of the integrand of (S) at the saddle point
(15),(16) gives the leading behavior of Z„ for K
large,

a„=(n+1)'a —2{n+I) Xa, a, (2O)

The solutions of this equation have all nonzero a's the
same. Hence, up to equivalence (by permutation of
the vectors e"), there are n solutions u,

' (r =1,2, ... , n)
of Eq. (12) of the form

Substituting the equation into (12) and using the iden-
tities (18) gives the equation

Z« -exp [—H (P,.,g, .) —2K lng, ]

-e «[SK/3. 2'(u u)rr']«

—K!a",

u,"=a" X e,

where

a"= 1/(n + 1)(n + I —2r)

(21a)

(21b)
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For fixed n this has its minimum value for r = 1 and
r = n (u, '

e,
' and u,"=X",e, ——e, '),

u . u =n/(n+1)'(n —1)' (22b)

The percolation problem is obtained by taking the
n 0 limit of the Potts model. ' The solution, Eq.
(22b), which is relevant for physical values of n

(n ~2: d„„=0for n 1) ciearly does not permit a
description of the n 0 case, because the solution for
g, .', Eq. (16), vanishes in this limit. The parameter a,
Eq. (17), has correspondingly no limit.

There seem to be two possibilities at this point. Ei-
ther the techniques developed so far are simply not
applicable to the percolation problem or one must
refine the prescription for choosing the correct saddle
point for the steepest descent. Ho~ever, it is clear
that it is extremely difticult to do the latter for the
n 0 limit, since this would involve a discussion of
steepest-descent contours in a zero-dimensional in-
tegral!

To obtain some guidance one may turn to low-order
perturbation theory. Computations of multiplicities of
all three-point graphs with up to three loops shows
that they have the sign g(—gt)". This suggests that
the theory really is benign for n =0 and that the prob-
lem arises in taking the n 0 limit in the Potts model.
In Sec. III we show how to write a field theory for the
percolation problem which avoids this n 0 limit.

III. ALTERNATIVE FIELD THEORY FOR THK
PERCOLATION PROSLEM

In this section we show that the two- and three-
point correlation functions of the n =0 Potts model
are equivalent order by order in perturbation theory to
the @ correlation functions of the Hamiltonian

0 = d"x f —,
' (&7@)'——,

' (Vq)'+ —,
' r, (y' —y')

+(1/3!)gA" d' '(Q+ i[i)'] (23)

with the additional rule that only graphs which are
connected by qb lines are to be included in these corre-
lation functions. Slightly more complicated conditions
on the "@connectivity" are required for higher correla-

These n solutions of Eq. (12) give n inequivalent
saddle points. The obvious prescription for choosing
the correct saddle point is to take that corresponding
to the minimum u u. This is the saddle point in g
closest to g -0 and gives the maximum growth ac-
cording to Eq. (17). (A proper justification requires
analysis of the steepest-descent contours of integration
in $ and g space. ) One readily finds

(n +1)r —r'
r -1,2, ..., n

(n + 1)2(n + 1 —2r )2

(22a)

tion functions.
Expression (23) means that the i[i propagator is

—(q'+ ro) ', p is a ghost field. " The replacement
i/ gives an interaction (/+i')', the appearance

of igo as a coupling indicates" that oscillatory behavior
may indeed occur order by order in g'. We shall for-
rnulate the qb-connectivity condition in functional
terms which permit this result to be established.

First, we establish the equivalence of (23) with the
n =0 Potts model. Consider the contraction, in the
Wick expansion of two fields $, and @/ from interac-
tion vertices X„e, e, ei $,g;Q& and

X&e/eg r„~g&P,„Q„Sin.ce the contraction gives 8„
there is a factor e,"e,~=(n+1)5

&
—1. Thus, in the

Feynman rules for the Potts model one has vertices
labeled by a, P, y, ... (summed from 1 to n +1) and
propagators connecting vertices labeled by n and P of
the form (n +1)5 ~ —1. Further, when an external
line qb, contracts into a vertex, say y, a factor e,' is
left.

In the limit n 0, each of the sums on 0/, P, etc. ,
contain only one term. The term (n+1)5"" in the
propagator can be represented by a one-component
field [$ in Eq. (23)]. The term —1 in the propagator
can be represented by a ghost field P, The factor
(d + iit)' ensures that the net propagator is a sum of $
and P propagators'4 in Eq. (23).

The only feature which remains to be clarified con-
cerns the factors e, , etc. , left over from contractions
with the external legs of the graphs. Consider a given
graph for the two- or three-point function, and irna-

gine expanding the propagator factors

ff t @[(n +1)8's —ll. The term Qt @[(n+1)8"] is

represented in the n 0 limit by graphs with only $
internal lines, the terms with —1 once are represented
by all graphs with one P internal line, etc. At some
point in this procedure one begins to see graphs which
are not connected by Q lines. Examples are shown in

Fig. 1. The graphs in which the external legs are not
connected to one another by $ lines give zero because
we are left with factors X,"+,'e, —=0. If the external

legs are connected by @ lines this means that there are
suScient "5 j'" factors to ensure that the o. labels must
be the same; the sum on these e labels then simply
reproduces the tensorial factors for the particular ver-
tex function, e.g. , X",e, e, = (n +l)8„. For four-

point correlation functions, the vertex proportional to
d, a, = X",e, e; e, e, is represented by the set of
graphs in which all external legs are connected by $
lines. The vertex proportional to 5„4&/ is.represented
by graphs in which external legs are @-connected in

pairs only, etc.

These remarks establish the result stated at the be-
ginning of this section. It remains to give a functional
formalism to represent the qb-connectivity rule. Let us
introduce an external source J(x) for the $ fields, and
define the functional W(Q, J,g) by
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rI
I 'g

)0 1 Ia)

e ' "' = J D )[)D g exp —H + J d x J(x) )t)(x}

= J) D4 e w(~, J,g) (2S)

Differentiating with respect to the source J(x) gives

r ~ ~ ~

I
I g

\

,G ~tD~ SW, a(p.jg)
SJ(x) " SJ(x)
2 I

526 SG SG g
SJ(x)SJ(y) SJ(x) SJ(y)

(26)

(c)

FIG. 1. Graph {a) contributes to the t~o-point function.

In graphs (b) and {c),solid lines represent @ propagators

[factors of (n +1)5 g and dashed lines represent P propaga-

tors (factors of —1). Graph (c) is not 4t connected and gives

zero.

)

e I~ "=Jl Dd) exp H(g, )i),g—) + Jt J(x))t)(x)

Then W contains all $-connected graphs with )[)(x}
and J(x) as external fields. What we wish is the set
of $-connected graphs in the functional G(Jg) defined

by

)

w

SJ(x)SJ(y) SJ(x) SJ(y)

(27)

The second term on the left-hand side contains only
disconnected graphs. On the right-hand side only the
first term has graphs in which the two external legs
are $ connected. Therefore, one sees

(2) 5 + @' —GG~, (x.y) = „D)[I
(

e

where the subscript @—c denotes @-connected graphs.
Expression (2g) can be written in a more useful

form for subsequent calculations by using the
definition (24} of W. After explicit differentiation of
8 one may set J =0 to obtain

s'w H $W 58
SJ{x)SJ(x ) J ' ' SJ(x ) SJ(x )

=„'t Dg 4(x)))t(x2)e "

tDg) )t))(x))e ' '

Jt D&2 &2(x2)e I~2 ~"'e (29)

Hence, one has

Gg, .(x),xi) = JtD /Df))f(x)))t(x2)e "'~ ~"'

—JI DyDd) Dd 2/1(x)) 42(x2) exp[ —H(d), 4g) —H(d, 2, 4,g) —w(4, 0.g) —G(o.g)] .

One finds similarly for the three-point correlation function

(3o)

G~,.(x),x2,x2) = Jt D&D&)t)(x))$(x2))t)(x2)e "I~ ~"'

T

DQ DQ) D$2)t )(x)))t)2(x2})t2(x2) exp[ —H(@, Q, g) —H{$2, Q,g) —W($, 0 g) —G(O, g)]

+ +[ +2 + + [ +3 D 0 D@[D 42 D 43 0'[(Xl)42(&2) '(t 3(&3)

) I

xexp —X H()t)„)i),g) —2 W($, 0,g) —G (O,g)
2 [
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Similar expressions for higher correlation functions re-

quire a corresponding increase in the number of qb

fields.
%e complete this section with three remarks.

Although the functional 8'still appears in expressions
(30) and (31), these are sufliciently explicit to apply
the steepest-descents method, as we shall see.
Second, the function G(0,g) is in fact independent of
g because of the special form (P+ $)i of the interac-
tion. To see this change to fields S+ -2 '~'(d + p).
The only nonzero propagator is now (S+S ) and the
only interaction is S+'. there are no graphs at any ord-
er in perturbation theory. This is just a reflection of
the extensive factor n (=0 here) in the free energy of
the n-component Potts model. Similar arguments
show that the first terms on the right-hand sides of
expresions (30) and (31) do not contribute beyond
tree diagrams. One may simply neglect them as far as
high-order behavior is concerned. Finally, we remark
that the strange field theories (30) and (31) are to be
interpreted at this level only in the context of pertur-
bation theory; if we can show that their perturbation
expansions are benign then this result must also hold
for the n =0 Potts model to which they are equivalent
order by order in perturbation theory.

(j fV ]
—II (yp, y.g)

8$
Duo [ &-~ -g-(e+ e.) ]e

2

—H&da. e. &

= [—&'4 —
—,
'

g (p + 4 0) '1 [1+0 (g')], (34)

where @p in this last equation is a solution of the clas-
sical field equation

&'~p--,' g(~+ @.)'

Similarly for small g one has

eW 1-——g d x (/+$0) 3

Qg 31

(35)

(36)

where @p is again a solution of Eq. (35).
Combining Eqs. (33)—(36) and rescaling fields ac-

cording to —,g Q = 0', —,g@, = 4, gives

fields by g to decouple the equations, we see that the
solution for g, .

' behaves as K ', and vanishes as
K ~, as in Eq. (14). Hence OW/Bill and 0 W/fig in

Eqs. (33) can also be evaluated by steepest descents.
One has

IV. HIGH-ORDER BEHAVIOR IN THK
PERCOLATION PROBLEM

'7 -'4 = (4 + 4,) 2, i =0, 1, 2

V'q =-(q +q, )'-(q +d,)'+(q +d,)',
(37a)

A. Two-point function
and

(37b)

Following Eq. (7) er seq. we pick out order g-'" l'or
the two-point function (30) by"

GP'- JtD4 Dd, Dd
2'VT I

XJi" ~eieiexp[ «di-e g) ,«.4t—e g), .t d

(32)

&'@ --,' g(~+@[)',

~'d i = ,
' g(4+a»'-,

(33a)

(33b)

2V'4+ 'g(4 +y,—)'+ —'g(4 +4,)'+ =0,
2 2 8$

(33c)

—J)d6x [(4+4',)'+(4+d, )']+ + =0 .

(33d)

These equations still involve the functional 8'
defined in Eq. (24). After the usual rescaling of the

—W(P, O, g) —G (O, g)
—2K lng]

The equations for the saddle points are now {we con-
sider the massless theory again)

(37c)

We denote again the solution for g' by g, ,'. The obvi-
ous ansatz for the solution of these equations is
4- v$, . (x), 4, -u, P,. (x), where Q, . (x) is the solution
(15) of Eq. (13). Equations (37) then become alge-
braic equations for the coefficients v and u, . Some
simple algebra gives

u, =(v+u, ), i =0, 1, 2

v = —u] u2+ up

Kg, ' =—(3.2"w-'/5) i

(38a)

(38b)

(3gc)

The quadratic equation (38a) gives two roots for each
of u], u2, and up as functions of v,

u'+-' =——(2v —1) + —(1 —4v)'
2 2

(39)

Substituting into (38b) and taking all combinations of
roots one has (i) u, =ui or ui=u0. Then all vand u,

are zero; (ii) u
~

= uq = u+, up = u . Equation (38b)
does not permit this solution; and (iii) u, = u, = u,
up= u+. This gives the only acceptable solution,

—Jt d'x [(q +e,)'+(q +q,)' —(@+@,)'] = —Kg, .
' .2

3
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=2V=—
9 (40)

Therefore, g,.
' in Eq. (38c) is a negative quantity and

foliowing Eqs. (16) er seq. one finds

GK' ——K!a K,

where

a =—15/29m'

(41)

(42)

It is amusing to note that this corresponds to the
value n 0, r =—1 or 2 in expression (22a). These
are integer values of r which give a negative u ' u '
with the smallest magnitude.

B. 8 igher correlation functions

V'@, = —,'g(y+y, )2, I =0, 1, 2, 3 (43a)

The analysis of the second term in expression (31)
d'or the three-point function follows exactly that of the
two-point function and one obtains the same growth
as in expression (42). Following the previous argu-
ments the saddle-point equations for the high-order
behavior of the third term in (31) are

suspect that there may be subtleties in the definition
of the integration contours in this case which require
the steepest descent contour to pass through the sad-
dle point (45) with v =—„.This would imply a growth

exponentially smaller than the first term above, and
another singularity in the Sorel transform of the per-
turbation series again on the negative axis but further
from the origin.

Our reasons for making the remark are: (i) $~, $q,
and $3 are dummy integration variables to represent
(8 W/SJ)'. Since they all represent the same function,
one expects the contour of functional integration in all
of them to be the same. Hence, the solution (45)
which has u~ - u& = uq seems favored; and (ii) The
small oscillations about the saddle point (45) have one
bound state which appropriately cancels the factor of i

in (2rri) '. For the saddle point (46) there are two
bound states and two factors of i. Clearly a proper
discussion of integration contours is required to clarify
this problem.

The nature of the algebraic equations for higher
correlation functions is clear from Eqs. (38b) and
(44b). At most one has N quantities ui, u2, ..., u& for
the N point function and v obeys

v= —u) up ' ' ' —utv+(N —1)up
3

7'4 =—X (4+d, )'+g(4+4 0)',
t=l

(43b) Again, the ambiguities of choice of saddle point
remain to be clarified by elucidating the steepest-
descent contours.

d'x (y+@,)' —2(y+@,)' + =0 .

(43c)

u, =(v+u)',
v = ul —u2 u3+2uo

Qg, . = (—3.2 e /5) v

(44a)

(44b)

(44,)

The roots of (44a) are as before Eq. (39). The vari-
ous combinations of u+- are analyzed as follows: {i)
uo=u . There are no solutions of Eq. (43b) with
v AO; (ii) u, =u, =uq-u, uo=u'. This gives the
solution

The resulting algebraic equations for the coem[cients v

and u, (i -0, 1, 2, 3) are

C. Renormalization-group P function

p(g) ~+ g3+ $ p g2K+17

2 2 K K-2
(47)

where

The function p in Eq. (1) determines the behavior
of the running coupling constant g(r) The hi.gh-
order terms in P{g) are determined by the high-order
behavior of the bare three-point vertex function; the
wave-function renormalization produces terms smaller
by O(1/It). The function p(g) is, therefore, also
benign. Extension of the previous calculations to pick
out also the factor K" correctly yields

6 2
y ) o

25 9 (45) p„=c( 15/2'~')'r-(It. + —"
, ) [1+O(i/SC))

2

9 (46)

There are no other solutions with v &0.
The naive prescription adopted previously suggests

that the leading growth at high order is controlled by
the solution (46), giving the same growth as the two-
point function and the first term above. Ho~ever, we

and (iii} ul up= u, u2= u3- u and permutations of
(1,2,3). This gives

=K!(—15/2 e ) It 'c[l +0(1/K)] . (48)

The small-oscillations determinant must be calculated
to obtain the factor c; the form of the factors is
unaffected by the discussion following Eqs. (45) and
(46). The lowest-order terms are from explicit calcu-
lation. In (46), g is the renormalized coupling con-
stant.

Renormalization-group functions which give critical
exponents q, v, etc. , can be similarly calculated fol-
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lowing Brezin et al. ]2 They are all benign. %e do not
list them here because for all of these critical ex-
ponents governing leading singularities, the expected
oscillatory behavior has not set in at the orders
currently available in the e expansion. (See Amit and
Priest and Lubensky. s} It is therefore meaningless to
attempt to obtain improved values for these exponents
using the information (48). Only for the P function
and its derivative co(g) =P'(g) which controls the
corrections to scaling (see, e.g. , Brezin et al. ') do the
low-order terms follow the expected high-order oscilla-
tions.

The high-order behavior of eo in ~ expansion can be
obtained from expression (47). Straightforward
differentiation of (47) gives

co (a) a (c)

0.568
0.793
0.914
0.989

0.614
0.925
1.13
1.28

0.582
0.831
0.973
1.07

I (K+—")=„) e 't +""dt
2 Qp

TABLE 1. Values of the correction to scaling exponent fan)

in 2, 3, 4, and 5 dimensions using (a) Pade method, (b) stan-

dard Pade-Borel, and (c) generalized Pade-Borel.

a)(g) =——+,g'+ $ (2K+1)Pxg'" .21
28~'

The asymptotic series (47) is easily solved for the
fixed point g' as a power series in e,

2'm'
g + X f ex

K 2

(49) All three results are very similar and indicate cv =1 in

three dimensions.

V. CONCLUSION

where

fte = r(K + —,)(——,8) "e'[I + 0(I/K)]

Finally, substituting (50) into (48) gives

(S1)

el) = ctl (g ') = e —X cog e"
2

(S2)

where

~„=r(K+ —"
, )(—,",}"e"[I+0(I/K)] . (S3)

Only two terms are known explicitly in the ~ expan-
sion for cu (Amit'),

Ot=e — e'+0(e')671
72322

(54)

QJ=c 1+ 671
72322

(b) Standard Pade-Borel using the representation

K~=
0

and (c) Generalized Pade-Borel using

The second term is much larger than the first for phy-

sically interesting values of e, and ao seems to become
negative. Since the positivity of eo is essential for the
stability of the fixed point, it is clearly important to
obtain more reliable estimates. Table I lists results for
co in 2, 3, 4, and 5 dimensions using three resumma-
tion procedures:
(a) Straightforward Pade,

The relevance of any $'-dominated field theory for
physics has always been questionable because of the
apparent absence of a lo~er bound for the Hamiltoni-
an. This problem was recognized in the field-theory
formulation of the percolation problem in terms of the
n 0 Potts model. However, it is difticult to discuss
meaningfully the thermodynamic potential in a model
in which the order parameter has zero components.

In this paper we have presented a concrete reformu-
lation of the percolation problem in terms of a set of
one-component fields. This field theory is certainly of
interest in itself and we believe should be the basis of
a controlled discussion of the percolation problem in

field theory.
As a first step in this program we have. shown how

the high orders in perturbation theory do grow in a
benign way, which indicates stability of the ground
state and permits Pade-Sorel resumrnation to be ap-
plied to perturbative results. The correction to scaling
exponent eo which is particularly badly behaved in per-
turbation theory l.as been estimated using this
method.

Many aspects of the model remain to be clarified.
Because of the $-connectivity constraint, the usual
proofs of cancellation of subdivergences in the renor-
rnalization program are not obviously applicable. the
meaning of the functional integrals beyond perturba-
tion theory should also be examined in terms of the
functional-integral contours. It would be interesting
to make a direct derivation of the field theory from
the lattice-percolation theory: the closest starting
point may be the "two-component" formulation of
Fisher and Essam. ' Finally, it may be possible to re-
formulate other n 0 models, such as the Edwards-



A. HOUGHTON, j. S. RKKVK AND D. J. %ALLACK

Anderson model, in analogous forms using ghost
fields.

Note added in proof Professor J. %. Essam has
pointed out to us that the perturbation expansion for
the unrenormalized 2-point function alternates in

signs. Each contributing one particle irreducible graph
carries sign +1(—1) depending on whether there are
an even (odd) number of loops in the graph. The
proof is recursive and is based on the idea of inclusion
and exclusion well known in graph theory. Details of
the proot' can be found in D. K. Arrowsmith and J. %.
Essam, J. Math. Phys. 18, 235 (1977).

Borel summability of the series for the renormalized
2-point function however does not follow a prioli.
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