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Structural transition in A-15 compounds: Possible Landau theory descriptions
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A comparison is made of Landau theories of the martensitic transition in A-15 compounds in-

volving direct coupling of the electronic order parameter to the lattice dilation (as in the Labbe-
Friedel model) or coupling due to pairing of transition-metal atoms (as in Gorkov's Peierls-gap
model worked out in a previous paper). It is shown that the predictions of the two phenomenologi-

cal (as distinguished from microscopic) models in respect to existing experimental results are
identical in form. Consequently, on the basis of current data, the A-15 compounds are amenable

to a generalized Landau description involving either or both types of couplings. Tests of mic-

roscopic models based on either or both mechanisms are proposed.

I. INTRODUCTION

It is well known that the same phenomenological
Landau theory can be obtained from more than one
microscopic model. Consequently, the success of a
Landau theory of the martensitic transition in the A-

15 compounds' Nb3Sn and V3Si based on the Gorkov
model, ' while implying that the model was a viable
picture of the structural instability of these materials,
did not single it out as the correct model. Indeed,
another microscopic model, due to Labbe and
Friede), ' had been in existence even before the Gor-
kov model, and has been successful to roughly the
same degree as the Gorkov model.

Both models attribute the structural instability to a
degeneracy of the electronic bands formed of the d or-
bitals of the transition-metal atoms in the cubic A-15
phase [Fig. 1(a)] which is removed in the tetragonal
phase in which the transition-metal atoms pair up in
two of the three chains [Fig. 1(b)]. Both models use
one-dimensional bands, but differ in the placement of
the Fermi level and consequently in details of the in-

stability mechanism. The Labbe-Friedel model puts
the Fermi level just above the bottom of the band of
I, the center of the Brillouin zone, where there is a
threefold degeneracy of the one-dimensional (1D)bands,
which is split in the tetragonal phase. The transition is
thus pictured as a second-order Jahn-Teller effect. In
the Gorkov model, the bands are filled up to the zone
boundary (X point), where because of the symmetry
of the A-15 phase (the periodicity of the linear chains
being t~ice that of the unit cell) two bands meet
linearly with opposite slopes. At low enough tempera-
tures, the system transforms to the tetragonal phase
where the transition-metal atoms are paired up be-
cause the pairing creates a gap at the Fermi surface
and lowers the electronic energy, like in the Peierls
1D chain. 4

Both models can explain the basic features of the
martensitic transition but have drawbacks, most of
which are due to the one dimensionality. One of the
major problems is the existence of the large Kohn
singularity in one dimension which would drive the
acoustical mode coupled to the 2kt mode soft before
the k =0 mode. In the Labbe-Friedel model thi's is
circumvented by placing the Fermi level very close to
the bottom of the band so that F~ —T„„the martensi-
tic transition temperature, and little movement of the
Fermi level is possible without destroying the k =0
distortion. ' The X-point Gorkov model in fact uses the
Kohn singularity as the instability mechanism, since
the 2k~ mode for a half-filled 1D band is the k =0
mode in the A-15 structure, but as in the Labbe-
Friedel case, much movement of the Fermi energy is
not possible unless large commensurability terms are
present which would make the transition heavily first
order. Thus, for example, the results' of doping
Nb3Sn with Sb and Al are not well accounted for. In
addition, the drop in magnetic susceptibility below the
transition is predicted to be 5 —10 times the observed
result. ' The noninteracting chain Gorkov model also
faces problems due to the extreme shortness of the
zero-temperature coherence length (determined from
the marked phonon softening for the transverse mode
in the [110]direction'), since the result for the Peierls
model is t'„/a —EF/T„, ())1). Additional evidence
against the one dimensionality of the bands comes
from the Mattheiss band-structure calculation'" which
shows neigher a threefold degeneracy at the I point
nor Gorkov-like bands near the Fermi surface.

The problems arising on account of the Kohn ano-
maly, susceptibility drop below the transition and pho-
non softening, can be remedied significantly by con-
sidering interactions among the linear chains. An at-
tempt in this direction has been made for the Gorkov
model by Gorkov and Dorokhov" by including inter-
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chain interactions to the lowest order. However, the
bands used by the above authors do not resemble
those of Mattheiss near the Fermi energy. Any con-
nection of their results with the real situation in A-15
compounds is therefore, on the basis of present evi-
dence, purely speculative. A tight-binding model with
interchain interactions, " based in part on the
Mattheiss work has been formulated by the present
author, and shown to yield results which agree with
experiment at least as well as the other models. The
model is three dimensional so the Kohn singularity is
weak and not as much of a problem. The model exhi-
bits both a Jahn-Teller degeneracy splitting and a
Peierls gap which are found to be jointly responsible
for the martensitic transition. The model is capable of
explaining the drop in susceptibility below the transi-
tion" and the extensive softening of the [11D]
transverse phonon. "

Thus electronic models to date attribute the marten-
sitic transition in A-15 compounds to either a direct
coupling of the electronic order parameter to the
strain tensor or a coupling via the mode which pairs
the transition-metal atoms in the linear chains on the
faces (Fig, 1).

The purpose of this paper is to examine from the

point of view of a phenomenologica/ Landau-type descrip-
tion of the structural transition in the A-15 com-
pounds, what the differences in the predictions of the
two kinds of models are, and to see how a hybrid
model, such as the one of Ref. 12, works on a

phenomenological basis. The result is that all three
models yield the same form for anomalies in the elas-
tic moduli and ultrasonic attenuation, for nonlinear
stress-strain eA'ects and impurity eA'ects, and differ
mainly in the softening of the I ]2(+) optical mode.
This implies that both the Jahn-Teller triple-
degeneracy splitting and the Peierls-gap models in

suitably modified form are viable models for the mar-
tensitic transition in the A-15 compounds and the
question as to which model is appropriate depends on
details of the band structure near the Fermi surface in

these compounds.
Section II reviews the results of the Landau theory

based on the Gorkov model expounded in Ref. 1. In
Sec. III, the Landau theory for a triple-degeneracy
splitting where the electronic order parameters are
directly coupled to the strain tensor is worked out.
Calculational details have been left out at places where
the procedure is analogous to that used for the Gor-
kov model, and the reader is referred to Ref. 1 for
those. Lattice-dynamical models of the A-15 com-
pounds based on the Labbe-Friedel or other Jahn-
Teller models with phenomenological electronic densi-
ty of states"" exist in literature. However, the
present work, being a pure Landau-type description, is
independent of any microscopic model of the electron-
ic bands, and analytic results are obtained under the
same assumptions as the Landau theory of the Gor-
kov model, ' which oA'ers direct comparison of the
results. Section IV contains a formulation of the Lan-
dau free-energy functional appropriate to the tight-
binding model of Ref. 12 and arguments are given as
to its results. Some other possible models are also
discussed. Since the fits to experimental results are
the same as in Ref. 1, the reader is referred to that
paper for comparison with experiment. The paper
ends with a summary of the results along with qualita-
tive remarks on alloying and pressure eft'ects, on su-

perconductivity, and on some experimental checks of
the microscopic nature of the transition.

II. LANDAU THEORY OF THE GORKOV MODEL

c/a & I

FIG. l. (a) Schematic structure of the 3-)5 compounds

A3B, with the 8 {Q) atoms forming a bcc lattice and

transition-metal A () atoms forming linear chains on the

faces. (b) Tetragonal distortion of the unit cell below the

martensitic transition, accompanied by a I ]2(+) sublattice

distortion, with c/a & I, as in Nb3Sn.

In Ref. 1, where the Landau theory of the Gorkov
model of the 3-15 compounds is worked out, the elec-
tronic order parameters are the amplitudes of the
three charge-density waves of wave vector k =27r/a
along the three chains of transition-metal atoms which

open up gaps at the three X points. The order param-
eters @„(r } (p, =x,y, z) may be taken to be real since
we wish to discuss only the case where the charge-
density wave is commensurate with the lattice. The
electronic part of the free energy is then taken to be

+ c,[7g„(r ) ]']
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As usual, the parameters a„are approximately linear
in temperature near the transition temperature

E,„=.E,p+. X( a„„+gtXa, , ,

I

(3b)

a„=a'(T —T "o)

while the other parameters are temperature indepen-
dent. The transition temperature T„",0 for each chain is

maximum for placement of the Fermi energy at the
X-point energy which is strain dependent, so that for
FF near the X-point energy

F, „„=f d r „r)g„(r) (4)

and ~„,. is the strain tensor. The charge-density ~aves
are coupled in the Gorkov model to the optical modes
Q„which pair the atoms in the three chains, and thus

~„~0 = ~„,o" —~(&~ —~,-„)',
where

(3a)
Finally one includes the relevant portion of the elastic
energy (in the harmonic approximation)

F„t,= — d r XK~ ~a„'„+ X (2K44a„,,a„,, + K~2m»e, , ) +2h [a„(Q, —Q ) + a„(Q —Q, ) + a (Q,. —Q, )]1

W t'

+ X (Ko + G) Q„' + G X Q„Q, ,
—2 X („a„„ (5)

The last term is the coupling to external stresses
and permits calculation of elastic constants. The elas-
tic constants K]], K]2, and K44 are unrenormalized
values of the conventional cubic elastic constants
c]], c]2, and c44, respectively.

To do dynamics, one includes the kinetic energy of
the lattice,

K = — d'r m /[5„(r)]'+M X[Q„(r)]'

where h„are the acoustic mode amplitudes, related to
the strain tensor by e„,, = —,('7„5, + V, .5„), and»~ and

M are the mass densities associated with the acoustic
and optic modes, respectively. I.n addition, dissipative
processes associated with the charge-density waves

may be represented by a Rayleigh dissipation func-
tion'6

8@„D=y dr
al

and to describe the thermal equilibrium one needs a

random thermal force represented by a Gaussian dis-
tributed random variable g„(r,r) with a correlation
function

(g„(r,r)g, (r', r'}) =}kTS„,.S(r r')8(r —
, r')—

The dynamical (Lagrangian) equations of motion for
the space Fourier-transformed variables are

d 9K 9F 1 9D +g
6 f Qf Qlp~q 2

where Q=$, Q, or 5.

The results of the above theory are as follows:
(i) The elastic constants c44 and (c[]+2c]2) are

temperature independent, while (c]]—c]2) goes to zero
at the transition temperature (neglecting cubic terms
which are proportional to (I:~ —E,-t)), according to

c) ~(T) —c()(T}= (c,
~

—c~, ) [1 —1/(1+ pe)]

(10)

~here c„without argument refer to the high-
temperature value, 8 = (T —T„,)/T„„and
p = (c„—c, 2) Koa'T„, /3h'f' This is in excell. ent
agreement with the data, right from T„, to room tem-
peratures.

(ii) In the absence of cubic terms, the orthorhombic
and tetragonal distortion modes have the same transi-
tion temperature, but the cubic terms decide in favor
of the latter, the sign of tetragonality being given by
the sign of (E& —E, ll).

(iii) The [110] transverse [110] polarized phonon
has a dispersion which can be represented approxi-
mately as

t

c[] c[2 1

2m 1 +Pg+ qk2

where q is related essentially to the zero-temperature
coherence length, given by the gradient terms. This
phenomenological form, with only one adjustable
parameter, q, is in excellent agreement with experi-
ment for all temperatures. The large attenuation of
the [110] transverse ultrasonic wave, however, seems
to be due to impurities and other erat'ects.

(iv) The dynamic acoustic structure function
S&(k, ~), which is just the Fourier transform of the
correlation function (6, '(r}6„(t'}),for the [110]
transverse phonon shows no dynamic central peak,
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and neutron scattering results are in agreement with
results for static impurity scattering.

(v) The optical mode which is coupled to the tetrago-
nal distortion is found to be temperature dependent
right up to room temperature. However, it does not
become soft at the transition, nor does a central peak
appear in the optical structure function, which is in

agreement with the total absence of the (300) Bragg
reflection above T„,.

(vi) The cubic coupling embodied in Eqs. (2) and
(3) implies a correlation between the pressure depen-
dence of T„, and the sign of the tetragonality which is
borne out by V3Si and Nb3Sn. It also explains the
change in sign of tetragonality due to substitution of
Sn with Sb in Nb3Sn, because of change of sign of
EF —E,0(and h.ence of the cubic term).

(vii) In addition to the above, the theory makes
other correlations which are not specific to the type of
coupling involved. For example, using parameters
determined by fits to the elastic constants and the
low-temperature distortion, the theory predicts
correctly the nonhnear stress-strain relation in V3Si
just above T„„and the heat capacity jump at T„, for
both V3Si and Nb3Sn.

(viii) The results do not however, bear out the con-
nection with the one-dimensional Peierls-chain
model —the coherence length needed to fit the phonon
dispersion curves is much smaller than that for the
Peierls model ($0/a —EF/T„, ) In addition. , identify-
ing the quadratic term a' with the density of states in-
volved in the charge-density-eave transition gives a
susceptibility drop below T„, five times the experimen-
tal value for N13Sn. ' + Cp[t74&„(r)]') (12)

the electronic energy at the I point for the chain in
the p, (x, y, or z) direction (E-" t —2)M) cosk„a, M
being the nearest-neighbor hopping integral and a the
lattice spacing) is dependent on the longitudinal chain
~„„(through M), the electronic order parameters 4„
in the Landau theory are coupled to the strain e„„.
However, it must be emphasized that it is not necessary to
make restrictions such as one dimensionality of the bands
for the present study. In fact it is possible, for relatively
general bands, to divide the Brillouin zone into re-
gions and categorize them into three groups whose
motions are coupled, respectively, to the three diago-
nal components of the strain, as required by cubic
symmetry. Thus, for example, in the tight-binding
model of Ref. 12, the M point in the k, -k plane and
the saddle point between I and X along k, (which are
the two important features of the band as far as the
Fermi-level density of states is concerned) are coupled
to a longitudinal [100] strain, while the strains along
[010] and [001] are coupled to their permutations.
Thus the three order parameters 4„represent three
regions of the cubic Brillouin zone which are degen-
erate by cubic symmetrv. The temperature-dependent
part of the electronic free energy relevant to the tran-
sition may be written in terms of these order parame-
ters, along the lines of Eq. (1) (see Ref. 1 for details),

III. LANDAU THEORY OF A THREEFOLD
DEGENERATE JAHN-TELLER MODEL

Another picture of the electronic instability in 3-15
compounds is that of three degenerate bands in the
cubic phase which get split in the tetragonal phase
(second-order Jahn-Teller effect). The gain in elec-
tronic free energy due to depopulation of electrons
from the higher band(s) to the lower one(s) is large
enough at low temperatures to offset the expense of
lattice elastic energy and warrant a phase transition
provided the electronic density of states near the Fer-
mi surface is sharply peaked (or sharply varying).
This is the case in the Labbe-Friedel one-dimensional
model with three noninteracting chains, and other cal-
culations with phenomenological models of the elec-
tronic density of, states' ' which yield essentially
similar results. The Landau theory, therefore, natur-
ally has three electronic order parameters 4„, which
represent the electronic energy levels of bands, which
change as a result of the transition; in the Labbe-
Friedel model these would be the bands due to the
three chains. As in the Labbe-Friedel model, where

where, for comparsion, all relevant symbols have been
replaced by their capital counterparts. The gradient
terms have been written in a manner analogous to the
Landau theory of the Gorkov model, and is of the
general form permitted by cubic symmetry for soften-
ing of a q =0 mode. By comparison, the Labbe-
Friedel model, being one dimensional, would have

0 13

As in Eq. (2), near the transition temperature,

(13)

and the variation of T„",0 is taken to be of the
phenomenological form given by Eq. (3), with E,.o
representing the energy corresponding to the bands
filling for which the transition temperature is max-
imum in the absence of stress. Such a maximum
would be expected for peaked density-of-states
models, such as the one in Ref. 12.

The electron-phonon coupling is provided, in this
case, by the direct response of the bands to strain,
which is in contrast with the coupling in the Gorkov
model [Eq. (4)]. By cubic symmetry, this is of the
form
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F,
~
—po= Jtd r Xa& (r) F~4„(r) +F& X 4, ,(r)

J ~ + 4

However, it should be remembered that only those
strains couple with the temperature-dependent part of
the electronic free energy, which split the cubic degen-
eracy of the bands near the Fermi surface and result
in a reshuSing of the electrons. A uniform bulk
strain, (e„,-=~, , =~ ) for example, shifts all three re-
gions of the Brillouin zone equally and therefore does
not couple to the temperature dependent part of the
electronic free energy. 1his implies F2 =——,F[, and

thus the electron-phonon interaction becomes"
1

F[—phF

dr�+�(r)

—— e, , (r)~„„(r)
tI

(14)

where F = —,F]. Equation (14) is written in a form

which clearly exhibits the physics that only the relative
position of the bands enters the temperature depen-
dence, so the relevant order parameters are the posi-
tion of the bands relative to their mean, i.e.,
+„-@„—X,, C&,./3. The elastic energy, of course,
remains the same [Eq. (5)].

The present Landau description is valid under
essentially the same restrictions as that in Ref. 1.
Critical fluctuations are neglected, as are anharmonic
and k-dependent terms in the lattice part of the free
energy. The former is unimportant, and many of the
effects of the latter cause trivial renormalization of the
Landau parameters.

Static theory

F/ & = —, [A (4 (' + 42 + 43') + (K ) )
—K) 2) (aj + o3)

+ Ko(Q& + Q3 ) + 2F (42o2 + C 3o3)

+2%3h(a2Q3 'E3 Q)2]

Two modes "condense" simultaneously in this
approximation —one a linear combination of 42, Qo r

and the other of 4~, Q, , o& at a "Gaussian" transition
temperature (see Ref. l for calculational procedures),

F'/A '

Kii —K)) —3h /Ko
(18)

By adding the stress coupling term —2(3~3 to (17)
from (5), the temperature dependence of the elastic
modulus is easily worked out to be

c ~ ~ {T) —c, q (T) = (c ~ ~

—c
~ 2) [1 —1/(1 + 8 t)) ]

(19)

where c~~ —c~2=K~~ —K~2 —3h'/Ko is the value far
from the transition,

(a~i + aiy + o —)/v ~

e) = (a,., —a, ., ) / J2

e3-{a,., +o„—2a.)/J6

and similarly 4, and Q, (i =1,2, 3) in terms of the 4&„

and Q„. The off'-diagonal components of the strain
tensor (o... . a, c, and o,.), the bulk strain o~ and the
symmetric optical mode Q~ become uncoupled and
therefore have temperature-independent elastic con-
stants. The remaining part of the free energy be-
comes

8 =a'(c)) —c)2) T„, '/F' (20)

+ 2F 4a„—X
t ~

+ X (2K44o„,.o„,. +K,2o„„a,., +GQ„Q„)
p, WI'

+2h [o,-„(Q,. —Q )+ ]l (15)

~here the dots indicate permutations. A = A '(T —T„",)
in this approximation. As in Ref. 1, the modes
separate by defining

In order to get the transition temperature, elastic
constants, and symmetry of the low-temperature
phase, only the quadratic and uniform part of the free
energy need be considered:

—-—,IX A4 +Kiia2„+(Ko+G)Q„

is a dimensionless coupling constant not to be con-
fused with 8' in Eq. (12), and tl=(T —T„, ')/T„, 'is
the reduced temperature. The bulk and shear elastic
constants are temperature independent, since those
modes do not couple,

c44(T) = K4, ,

c][(T)+2c]2(T) = K]] +2K]2

(»a)

(21b)

Comparing Eqs. (19}and (21) with Eq. (10) and
the preceding statements, it follows immediately that
the form of the temperature dependences of the elastic
moduli in the two models are identical, and since the
parameters P or B are determined by a fit to experi-
ment, so are the results.

Inclusion of cubic terms, as in the Gorkov model,
renders the transition first order and selects the tetrag-
onal (e3) mode over the orthorhombic (~2} mode. (In
fact, anharmonic terms in the elastic free energy
would do the same. ) Thus the entire discussion of cu-
bic and higher-order terms in Ref. 1 can be carried
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through with only trivial redefinition of the Landau
parameters. The correlation between pressure depen-
dence of the transition temperature and sign of tetra-
gonality follows from a coupling like that in Eqs. (1)
and (3), and its appropriateness depends on the mi-
croscopic model. For example, the peaked density of
states model in Ref. 12 would have such terms
present.

Dynamics

As in Ref. 1, it is convenient to go over to the
acoustic mode amplitudes. 8„, related to the strain
tensor by ~„,, - —,{V„5,, + V, ,5„) for dynamic calcula-

tions. The free energy can be written as a sum of in-
dependent Fourier components over half of k space
(since the real-space functions are real) as

F-„=g((~+C,k'+C, k')(q -„]'+(Kp+G)]Q -„['+[(K„-K„)k'+K„k'][5-]']

+ X [(K„+K„)k„k, , 5 -„'5;„+GQ„-„'Q,g + (ih[k,.5,.—„'(Q,.-„—Q.-„) + ] +c.c.]

+ [iF(k,4,-„"5,-„.+ .k, . 4&,.-„'5,.-„+k 4:„'5.-„) +c.c.] (22)

(23)

where

r, = y/tW'(T T„,') + (C, /2+ C,)k']- (24)

is a relaxation time characteristic of the dissipation
process which diverges like (T —T„, ) ' at the transi-
tion temperature for vanishing k (in the absence of
cubic terms),

& =f'/y(&) i
—ci» (25}

where the dots indicate permutations.
In addition, one needs the lattice kinetic energy [Eq.

(6)] and electronic relaxation processes and random
thermal forces represented by terms exactly of the
form given in Eqs. (7) and (8). The dynamical equa-
tions (9},in the absence of the random thermal force
g, yield the mode frequencies. In order to compute
the dynamic structure factor, the Eqs. {9)are solved
for a given random force g, and an ensemble average
performed according to Eq. (g). The results are (see
Ref. 1 for calculation details): (i) For the wave vector
k in the [100] direction, the transverse-acoustical
modes are uncoupled, while the longitudinal mode for
k 0 shows the softening expected from the tempera-
ture dependence of c]](T), and exactly th same as
Ref. 1 with P replaced by B; and {ii) For k along
[110],the transverse mode polarized along [001]
shows no softening, while the longitudinal sound velo-
city varies exactly as obtained from Eq. (58) of Ref. 1.
The interesting [110]polarized acoustical-mode fre-
quency can be obtained from the dynamical structure
factor S&(k, co) which is the Fourier transform of
(5, '(r)5, (t')). For small k, when the acoustica1-
mode frequency is much smaller than the optical fre-
quency, the structure factor may be written in a form
exactly like in Ref. 1,

2 f) ks T/(c i i

—c„)k'

[(1/7 g) (1 —»2) —f)» ] + ~$2» (1 —» )2

is a frequency characteristic of the coupling terms,
~,„=[(c~~ —r~2)/2m] "k is the acoustical frequency
fat from the transition, and x = ~/I'co& is the reduced
frequency.

Since this result is identical in form to that in Ref.
1, the expressions for the phonon frequency and
mean free path have the same form as in Ref. 1,

1
'I

(dan
= cal/, ~ 12 2 1

1+88+Nk2
(26)

(for k 0), which is independent of temperature.
Finally, by adding on coupling to an impurity poten-

tial of the form —fd'r u „(r )4„(r ) in Eq. (12), a

static central peak with an intensity diverging like
(T —T„, ') ', and a (T —T„, ') ' dependence of the ul-
trasonic attenuation would be obtained, just as in

Ref. 1.
Thus, the form of the results of the present Landau

theory are the same as those of Ref. 1 for most of the
quantities related to the rnartensitic transition and ex-
perimental results to date may be fit to exactly the
same extent as done in Ref. 1. The one major

where 8 is defined in Eq. (20), 8 the reduced tem-
perature is defined just below that, and

(C~/2+C2) —yv /2()t

20'
v„= [(c~, —c~2)/2m]' ' is the [110] transverse sound
velocity far from the transition. The mean free path
near the transition diverges as A&

—pp&/(T —T„, ')'".
One result that is diA'erent in this model from Ref.

1 is the optical-mode frequency which is, in fact, tem-
perature independent in the k —0 limit. This may be
seen without computing optical structure factor, from
Eq. {22). The optical-mode frequency is shifted by
coupling terms -k, so that simple perturbation theory
gives

M(o' —Kp+0(k')/[Kp —(K)i —Kip) k'] —Kp
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diff'erence in the predictions-partial softening of the
I'„(+) optical mode —is not known experimentally.

The marked similarity of the results, which may ap-
pear surprising at first, is directly ascribable to the A-

15 crystal structure. Symmetry considerations show
that in the A-15 structure a bilinear coupling between
the "pairing" modes and the dilation of the unit cell is
allowed; consequently, the normal modes of the sys-
tem are their linear combinations. It is precisely this
coupling [Eq. (5)] which ensures that when modes
separate out as ones with orthorhombic and tetragonal
symmetry, the modes Q2 and e3 (or Q3 and a,) are
coupled iri the same way, and the one driven soft first
is the lowest energy, i.e., acoustic branch. The tem-
perature dependence of the elastic constants comes
from that of a„or A„[Eqs. (2) and (13)], the only
temperature-dependent parameters of the model, and
consequently have identical form, though the parame-
ters P and 8 look rather dift'erent in terms of the ori-
ginal Landau coeScients. The temperature depen-
dence of the k =0 optical-mode frequency, though, is

diAerent, depending on whether the pairing mode
serves as an intermediary between the electronic and
acoustical modes or not.

Once the soft mode frequency in the two models
has been shown to have the same form, the similarity
of other results follows immediately. The acoustical
phonon softening at finite wave vector is governed by
the gradient terms in the electronic free energy, which
has been taken to be of the same form, permitted by
cubic symmetry, in the two models. The central peak
and ultrasonic attenuation due to impurities near T„, is
dominated by the coupling to the soft mode; conse-
quently, the two models predict the same temperature
dependence. The pressure dependence of T„, and sign
of tetragonality, on the other hand, depend on the as-
sumption of an ideal placement nf the Fermi level
which maximizes the transition temperature —which is
expected both for Peierls-gap model and Jahn-Teller
splitting of a peak in the density of states. "

Consequently, the excellent agreement between ex-
isting experimental data and the phenomenological
theory of Ref. 1 is not capable of deciding in favor of
either type of coupling in the phenornenological
description.

IV. LANDAU THEORIES BASED ON

THREE-DIMENSIONAL BAND MODELS

In the one-dimensional models of the electronic
bands of the A-1S compounds, the symmetry
points —I (zone center) and X (zone edge) —being
coupled to the dilation and pairing mode, respectively,
were obvious candidates for placement of the Fermi
energy. Once interchain coupling is taken into ac-
count, the threefold degeneracy at I for bands near
the Fermi surface {as determined by Mattheiss'o) is

split by the crystal field, and the singular one-
dimensional density of states is washed out, too.
Symmetry points such as M and R also become likely
candidates for placement of the Fermi energy, as do
other points of somewhat lower symmetry, such as
those along lines joining I, X, M, and R, provided
the relevant portions of the bands couple to either the
dilation or the pairing mode {or both, as will be shown
below). This section reviews, in a qualitative way, the
I andau energy functionals needed to describe the
martensitic transformation for some of these models.
It is assumed for simplicity, as in the previous cases,
that the bands can be divided into distinct regions and
represented by k-independent coupling parameters.

A description of the martensitic instability, using
simplified three-dimensional bands, has been given in

Ref. 12, based on the result of Mattheiss'0 that the
density of states at the Fermi surface is dominated by
the S~(x' —y') orbitals at the transition metal (A) sites
[Fig. 1(a)], and that two bands lie consistently close to
the Fermi energy in many A-15s. The model uses two
bands resembling those of Mattheiss formed using
only the above orbitals with nearest-neighbor (intra-
chain) and next-nearest-neighbor (interchain) interac-
tions. The model has a sharp peak in the density of
states due to two triplets of saddle points {for the
three symmetry directions of the cubic lattice) —one at
the three M points and another along the three I X
directions (Fig. 2), which are close in energy. In the
tetragonal phase, the triplet degeneracy (at both M
and I"X) required by cubic symmetry is removed; in

each triplet two of the saddle points move one way

and the third in the opposite direction. This motion
can be adequately represented by just three order
parameters 4„by pairing the saddle points (the I'X

saddle point along k,- with the M point in the k, . k

plane). In addition {though not of as great impor-
tance as the saddle-point motion), pairing of the
atoms in the chains causes gaps at the X points which
are also close in energy to the saddle points, and three
additional electronic order parameters @„are needed
to describe the charge-density wave, which couple to
the pairing mode. If the Fermi energy lies near the
peak in the density of states, a feature required by all

electronic models of the A-15 compounds, the struc-
tural instability is ascribable to both types of
instabilities —the Jahn-Teller splitting at the saddle
points and the X-point Peierls gap. Thus a Landau
free-energy functional for the tight-binding model
would have both the electronic parts, Eqs. {1}and
{12),with the electron-phonon couplings, Eqs. {4)
and (14), respectively. Such a theory in the absence
of coupling to the oA'-diagonal components of the
strain tensor {which are actually present in the micros-
copic model to the extent of interchain coupling)
should predict temperature independent bulk and shear
moduli, and temperature dependence of (c]]—e]2) of
the form
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C»(T) C&2(T) =(CI& C&2)—
C

1+PS 1+Be
(27)

(a)
where P and 8 are dimensionless coupling constants
defined in Secs. II and III, respectively,
8 = ( T —T„, ')/ T„, ' is the reduced temperature, and c
is another (adjustable) parameter of the Landau
theory. Comparison of Eq. (27) with Eq. (19) for the
Jahn-Teller model,

& [ ] ( T) ~12( T) (&[1 ~12) 1+B8
or that for the Gorkov model which is the same ex-
cept for replacing 8 by P, shows immediately that the
forms are very similar. Both start linearly with tem-
perature above T„, 'and saturate as T ~, and with
the two additional parameters in (27), it is clear that
the fit of (27) to experiment will be at least as good as
that for either of the earlier models.

Other results of the Landau theory such as the
[110] transverse acoustic phonon frequency, attenua-
tion, central peaks in neutron scattering, etc. , can be
worked out in a fashion similar to Ref. 1, and sho~n
to have forms that are similar to, and in as good
agreement with, existing experimental data as the pre-
vious models. The temperature dependence of the
optic mode frequency, as would be expected, is in

between the results of the two earlier models.
A recent three-dimensional model' puts the Fermi

energy at the R point, where in the actual band struc-
ture (as in tight-binding model of Ref. 12) there is a
six-fold degeneracy. In that case (at least for the
tight-binding bands of Ref. 12) pairs of bands are cou-
pled to each pairing mode, creating a gap as in the
Gorkov model. Consequently, the Landau description
would be as in Ref. 1.

V. CONCLUDING REMARKS

To summarize, the experimental data on elastic
softening, phonon dispersion, central peaks, ultrasonic
attenuation, heat capacity jump, etc. , are not in

conflict with phenomenological theories based on ei-
ther a Jahn-Teller triplet splitting or a Peierls-type gap
(or a combination). Results of alloying such as
change in sign of the tetragonality of Nb3Sn with Sb
doping can be explained by the assumption of an op-
timum positioning of the Fermi level for which the
transition temperature is a maximum, such as that in
Eqs. (3), which is expected in peaked density-of-states
models. ' The same assumption also explains the
correlation between sign of tetragonality and pressure
dependence of the transition temperature, as is ob-
served in V3Si and Nb3Sn. Consequently, many rni-

croscopic models which exhibit either type of coupling
would be suitable on a qualitative basis. Calculation

-.1 ev

(b)

FIG. 2. (a) Brillouin zone of the cubic phase with some
high-symmetry points labeled. (b) The two bands used in

the tight-binding model of Ref. 12,

of Landau parameters from the microscopic model
yield important clues as to the microscopics of the
transition. One such parameter is g (Eq. 11) which

determines the recovery of the [116] transverse
acoustical phonon, and is related to the zero tempera-
ture coherence length, (0. For the 1D Peierls model
(,&/a —Es/T„„where Es is the bandwidth and a is the
lattice spacing, while for the Labbe-Friedel model
(with Er —T„,) (o/a —JEs/T„, "Neutron sc. attering
data give $0/a —1, which is in serious disagreement
with both the above (less for the Labbe-Friedel
model). The tight binding model of Ref. 12, on the
other hand, gives a much shorter coherence length, '-'

in good agreement with experiment. Another check is
the susceptibility drop below the transition which may
be obtained from the parameters a' and A

' [Eqs. (2)
and (13)] which govern the motion of the bands and
hence the change in density of states in the tetragonal
phase. As before, models with interchain coupling''"
fare much better than the 1D models. "

As has been stated earlier, ' the martensitic transi-
tion aN'ects the superconducting transition in two

ways. First, the significant softening of the phonon
raiseS the superconducting transition temperature T,. if
it is in the vicinity of T„„by increasing the electron-
phonon coupling constant A, . After the martensitic
transition has taken place, though, the electronic den-
sity of states drops and this depresses the supercon-
ducting temperature. Consequently, in both models
(or the hybrids) the maximum superconducting tem-
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perature is expected when the two transition tempera-
tures are equal, and this indeed appears to be the
case, both for the variation of T,. of V3Si with pres-
sure' and of Nb3Sn~, -A1, with Al doping. '"'

One more check of the nature of the band structure
near the Fermi surface could possibly come from in-

frared absorption data in the cubic and tetragonal
phase above the superconducting transtion. In addi-
tion to a decrease in absorption due to a decrease in

the density of states" in the tetragonal phase, in the
Gorkov model, a structure should develop at the ener-

gy of the X-point gap. For the jahn-Teller triplet split-
ting model, the splitting would be at different points in

k-space in general (such as the M points in the tight-
binding model of Ref. 12) and so the possibility of low

energy (-ST„,) direct (verticai) transitions would not

exist in the tetragonal phase (except in such cases as
i'- point or R-point splitting). Experimental results"
on the infrared reflectivity of V3Si in the range 6—25
rneV show no change to within 0.5% due to the mar-
tensitic transition; however, these do not extend down
to low enough energies to detect the Gorkov gap, and
absolute absorption measurements would be better
suited to observe changes in density of states at the
Fermi surface.

ACKNOWLEDGMENT

The author acknowledges helpful discussions with P.
A. Lee.

'R. N. Bhatt and W. L. McMillan, Phys. Rev. B 14, 1007
(1976).

L. P. Gorkov, Zh. Fksp. Teor. Fiz. 65, 1658 (1973) [Sov.
Phys. -JETP 38, 830 (1974)j.

J. Labbe and J. Friedel, J. Phys. (Paris) 27, 153, '03 (1966).
4For a discussion of the Peierls transition, see, for example,

D. Allender, J. W. Bray, and J. Bardeen, Phys. Rev. B 9,
119 (1974), and references therein.

5J. Labbe and J. Friedel, J. Phys. (Paris) 2'7, 708 (1966).
6(a) L. J. Vieland, J, Phys. Chem. Solids 31, 1449 (1970).

(b) L. J. Vieland and A. W. Wicklund, Phys. Lett. A 34, 43
(1971).

~W. Rehwald, M. Rayl, R. W. Cohen, and G. D. Cody, Phys.
Rev. B 6, 363 (1972).

8R. N. Bhatt, PhD thesis (University of Illinois at Urbana-
Champaign, 1976) (unpublished).

~G. Shirane and J. D. Axe, Phys. Rev. Lett. 27, 1803 (1971).
' L. F. Mattheiss, Phys. Rev. B 12, 2161 (1975).
"L.P. Gorkov and O. N. Dorokhov, J. Low Temp. Phys.

22, 1 (1976).
'-'R. N. Bhatt, Phys. Rev. B 16, 1915 (1977).
' R. N. Bhatt and P. A. Lee, Phys. Rev. B 16, 4288 (1977).

'4E. Pytte, Phys. Rev. B 4, 1094 (1971);J. Noolandi and L. J.
Sham, ibid. 8, 2468 (1973).

' R. W. Cohen, C. D. Cody and J. J. Halloran, Phys. Rev.
Lett. 19, 840 (1967).

' See, for example, H. Goldstein, Classical Mechanics

(Addison-Wesley, Reading, Mass. , 1950), p. 21.
' This is essentially the same as the coupling used in Ref. 14.
' T.-K. Lee, J. L. Birman, and S. J. Williamson, Phys. Rev.

Lett. 39, 839 (1977).
'9See, for example, the idealized Jahn-Teller model in Ref.

12.
2"C. W. Chu and L. R. Testardi, Phys. Rev. Let~. 32, 766

(1974).
'An estimate of 20% for Nb3Sn, on the basis of a Jahn-
Teller triplet splitting model with a step density of states,
has been made by W. E. Pickett and P. B. All-n, Solid
State Commun. 12, 677 (1973). Such a density-of-states
function is known to overestimate the drop in density of
states below T„, (see Ref. 7).
S. Perkowitz, M. Merlin, and L. R. Testardi, Solid State
Commun. 18, 1059 (1976).


