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The fcc Ising raodel in the cluster variation approximation
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The cluster-variation method was used to calculate the critical temperature for the fcc Ising fer-

romagnet in three diN'erent cluster approximations. A scheme for determing a set of independent

cluster variables is presented, which considerably simplifies the minimization of the free energy.

The system of equations arising from such minimization is solved, in the disordered state, by

means of a simple iteration technique. The highest level of approximation treated in this work

yields a critical temperature which is only 1.5% above the one estimated by the exact high-

temperature expansion of the zero-field susceptibility. Furthermore, the high-temperature expan-

sion for the specific heat gives four exact coefticients and the fifth is determined to within 0.4%.

I. INTRODUCTION

The central problem of the cluster variation method
(CVM) is that Of calculating approximate expressions
for the numbei' of configurations 0 of a crystal lattice
having definite distribution of clusters (pairs, triads,
etc.}of lattice points which may be, in general, occu-

pied by any one of a given set of atomic "species". '

The equilibri'um cluster distribution is then deter-
mined by minimizing the free energy

F =E —TS =E —kaTlnO

where E, a linear function of the cluster concentra-
tions, is the energy of the configuration in question
and where S corresponds, for the equilibrium cluster
distribution, to the entropy of the system.

Although it is found that larger clusters yield, in

general, successively higher levels of approximations, '
the degree of di%culty involved in the minimization
of the free energy increases sharply with the size of
the basic cluster. Due to such difticulties, and despite
the fact that the CVM represents a remarkable im-

provement over other approximate methods such as
the molecular-field and quasichemical approximations,
only clusters containing a relatively small number of
lattice points have been treated thus far.

Kikuchi's heuristic approach consists in writing a

number of configurations 0 as a product of combina-
torial factors arising from the constraint that the
distribution of clusters, which includes the basic
configurational cluster and its subclusters, remain un-

changed after introducing an additional lattice point to
the system. ' This approach, although particularly

graphic and conceptually simple, becomes extremely
cumbersome for large cluster sizes.

The CVM was subsequently reformulated by Bark-
er' and more recently by Morita. ' The latter author
showed that the CVM is based on the exact variational

principle of equilibrium statistical mechanics and
furthermore that the entropy can be written as a cu-
mulant expansion in terms of the reduced density ma-
trices. Barker's approach provides perhaps the sirn-

plest and most systematic way of calculating the entro-

py in the CVM approximation for an arbitrary n-point
cluster. Such an approach is essentially a generaliza-
tion of the quasichemical method and it results in a
particularly simple expression for the configurational
entropy.

The object of this investigation is to extend CVM
calculations in the fcc lattice for the spin- —, Ising fer-

romagnet to cluster sizes larger than the nearest-
neighbor (nn} tetrahedron originally treated by Kiku-
chi. ' Specifically, the double-tetrahedron {DT),
octahedron-tetrahedron (OT), and double-
tetrahedron —octahedron (DTO) approximations will

be considered. The entropy for the first of these ap-
proximations (DT) was derived by Kikuchi, ' whereas
the second one, i.e., the OT, was recently treated in-

dependently by Aggarwal and Tanaka. "
Although the nature of the CVM is such that all

critical exponents for higher-order transitions are clas-
sical, very accurate values for the critical temperature
can be obtained with a minimum of computational
difficulty. For example, the highest CVM approxima-
tion treated presently in fcc lattices, namely, the DTO
approximation, yields, as we shall see, a critical tem-
perature which is only 1.5% higher than the one ob-
tained from the exact high-temperature expansion of
the zero-field susceptibility.

In Sec. II, the entropy expressions for the OT and
DTO approximations will be derived. The problem of
characterizing the concentration of the different clus-
ter configurations in terms of a set of independent
variables will be the subject of Sec. III. As we shall

see, the scheme to be presented in Sec. III will simpli-

fy considerably the minimization of the free energy
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and the calculation of critical temperatures (Sec. IV).
Finally, in Sec. V, we derive a simple recursive rela-
tion for calculating the high-temperature expansion
coefBcients for the specific heat.

II. CONFIGURATIONAL ENTROPY

with k~ the Boltzmann constant, N the total number
of lattice points and xt(r, t) the concentration of the
(r, t) cluster in the I configuration. If the largest clus-
ters to be considered, henceforth referred to as the
basic clusters, contain n points, the coe%cients y(r, t)
are given by'

y(n, t) - N(n, t) /N— (2a)

y(r, t) =— ' — $ XM(r, t;q, s)y(q, s)N(r, r}
N

q r+) g

(1«r & n), (2b)

A set of r lattice points defining an arbitrary
geometrical figure will be termed an r-point cluster.
In cases where sublattices are not required, such as
the Ising ferromagnet, two clusters related by the sym-
metry operations of the lattice (point group plus trans-
lations) will be considered to be identical. All distinct
r-point clusters will be classified and labeled by the in-
dex t(t =1, ~ - . ). Thus the pair of integers (r, t)
refers to a specific r-point cluster in our classification
scheme.

In a binary system, the points of a given (r, t) clus-
ter can be occupied by any one of the two "atomic
species, " thus determining 2' distinguishable
configurations of (r, t) In princ. iple, a particular (r, t)
cluster configuration can be specified by a set of r
numbers (ij, . . . , k) where, by convention,
i,j, . . . , k takes values 1 and —1 for each of the two
components in the system. However, all
configurations (ij, . . . , k ) of (r, t) which are related
by the symmetry operations of the (r, t) cluster will

have the same probability (concentration in the cry-
stal). Thus we can label the (r, t) cluster
configurations by a single index I where, in general,

1, . . . , s with s «2'. The configuration I of (r, t)
will have associated with it a degeneracy factor tst(r, t)
defined as the number of distinguishable [i,j, . . . , k }

configurations which can be generated by the sym-
metry operations of the (r, t) cluster.

The configurational entropy in the CUM is given by

S =Nks X y(r, t) Xa, (r, t)x&(r, r) Inx)(r, t), (I)

where N(r, t) is the total number of (r, t) clusters in

the system, N is the total number of lattice points,
and M(r, t;q, s) is the number of (r, t) clusters con-
tained in a (q, s) cluster. Although it appears that we
are now confronted with the formidable task of calcu-
lating N(r, t) and M(r, t;q, s) for all subclusters of the
basic clusters (n, t), the structure of Eqs. (2) is such
that most of the y(r, t) vanish identically. If the larg-

est subcluster of (n, t), let us say (n —l, t'), is such
that it is not completely included in the overlapping
region of two (n, t) clusters, the latter being related by
symmetry operations of the lattice, we have

N(n —l, t') M=(n —l, t', n, t)N(n, t)

and according to Eqs. (2), the coefficient y(n —l, t')
vanishes.

Thus, the largest subclusters of the basic clusters
(nt) fo, r which the coefficients y(r', t') do not vanish
are given by all distinct overlapping regions of two ad-
jacent n-point clusters in the lattice. As wc shall see
in the following examples, when more than one basic
cluster is considered, either with the game or differept
number of lattice points, all possible overlapping re-
gions must be determined. The next subclusters
(r",t") with nonvanishing y(r", t") are likewise given

by all possible overlapping regions of adjacent (r', t')
subclusters. Repeated application of the above pro-
cedure yields a reduced set of clusters for which the
solution of Eqs. (2) is trivial.

A. Octahedron-tetrahedron ayproximation

In the OT approximation, the two basic clusters
considered are the first nn regular tetrahedron and the
octahedron containing first and second nn (see Fig. 1).
In order to calculate the coefficients y(r, t), we need to
determine the overlapping region between a pair of
adjacent octahedra, tetrahedra, or both. Inspection of
Fig. 1 indicates that the subclusters in question are the
first nn equilateral triangle (1,2,3)—given by the over-
lap of the tetrahedron (1,2,3,4) and the octahedron
(1,2,3,5,6,7)—and the first nn pair resulting from the
overlap of either two adjacent octahedra or tetrahedra.
Determination of all possible overlap regions between
the equilateral triangle and the first nn pair yields one
additional "cluster, " namely, the point. Thus the en-
tropy in the OT approximation will contain contribu-
tions arising from five different clusters: point, first
nn pair, first nn equilateral triangle, first nn regular
tetrahedron, and the octahedron. The coefIicients
y.(r) are calculated and shown in Table I, the index t
being omitted since no possibility of confusion arises.
Thus the entropy is written as

Sor = Nktt Xx~(1) lnx (1) +g X at(3)xt(3) Inxt(3) —6 X at(2)xt(2) Inx (2) —2 Xat(4) Inxt(4} —Xat(6)xt(6) lnx (6}
I I l I I

i
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4:

FIG. 1. Basic clusters used in the octahedron-tetrahedron
approximation.

9:.
FIG. 2. Basic clusters used in the double- tetrahedron—

octahedron approximation.

Using the asymptotic form of the factorial function,
we can alternatively write So&/kz as the logarithm of
the number of configurations OoT given by

(1,2,3,4) arising from the overlap of two double
tetrahedra, e.g. , {1,2,3,4,5,6) and (1,2,3,4,8,9); (ii)
the irregular tetrahedron (1,2,3,6) from the overlap of
a double tetrahedron and an octahedron; (iii) the
equilateral triangle (1,2,3) from the overlapping of
both types of tetrahedra; (iv) the triangle (1,2,6)
shared by two irregular tetrahedra; (v) the first nn
pair; (vi) the second nn pair (2,6); and (vii) the point
"cluster. "

Table II gives the calculated coefficients y(r, t), from
which the number of configurations Q~&T(& can be writ-
ten as

10 12

where each bracket represents a product of factorials
of the form

( I = iI [x,(r,r)W!j '

where x, (r, r) is the concentration in the I

configuration of the (r, t) cluster indicated in the
bracket.

16
1

7

3 t
2 3

~ 6

(4)

B. Douhle-tetrahedron —octahedron approximation

The basic configurational clusters involved in the
DTO approximation are the double tetrahedron
(1,2,3,4,5,6) and the octahedron (1,2,3,6,7,&) shown
in Fig. 2. The relevant subclusters for the calculation
of the entropy are: (i) the regular tetrahedron

where each cluster is labeled according to Fig. 1.

C. Higher-order entropies for the fcc and bcc lattices

As recently pointed out by Aggarwal and Tanaka, "
q

remarkable property of the CVM is that of reproduc-
ing a given number of the exact temperature expan-

TABLE I. Entropy coefficients for the TO approximations.

Cluster

(Fig. 1)
N(r)/N M(6;r) M(4;I') M(3;r) M(2;r) M(1;r) y(r)

6 (1,2,3,5,6,7)
4 (1,2,3,4)
3 (1,2,3}

(1,2)
(1)

8

12

6

—2

8
—6

1
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TABLE 11. Entropy coefticients for the DTO approximation.

r, t Cluster W(r, t)/NM(6, 1;r,I) M(6, 2;r, t) M(4, 1;r,t) M(4, 2;r, t) M(3, 1;r, t) M(3, 2;r, I) M(2, 1;r, t) M(2, 2;r, t) M(l, 1;I,I) y(T. I)
(Fig. 2)

(6,1) (1,2,3,
6,7,8)

(6,2) (1,2,3,
4,5,6)

(4, 1) (1,2,3,
4)

(4,2) (1,2,3,
6)

(3,1) (1,2,3)
(3,2) (1,2,6)
(2, 1) (1,2)

(2,2) (2,6)
(1,1) (1)

12

8

12

6
3

1

12

8

12

12

3

6

8

4

11

2

6

10

12

—16
0
0
0
1

sion coefficients for the specific heat and the reduced
susceptibility with a minimum of computational
difficulty. In particular, the OT approximation repro-
duces exactly all the known coefficients (19) for the
low-temperature expansion of the specific heat,
whereas for the high-temperature expansion, it yields
four of the eight known coefficients. Thus, by work-
ing with sufficiently large clusters, the CVM may
prove to be an important tool for computing, without
any additional difficulty, the temperature expansion
coefficients in cases where higher-neighbor and
many-body interactions are allowed.

An approximation which is expected to improve
markedly the accuracy of current CYM calculations in

the fcc lattice is that involving the thirteen- and
fourteen-point clusters (TF}. In the TF approxima-
tion, the basic configurational clusters are the
fourteen-point fcc unit cell and the thirteen-point clus-
ter formed by an atom surrounded by its twelve first
nn. The TF approximation results naturally from that
of a 27-point cluster {cube) in the simple cubic lattice
in which an additional component (vacancies) is or-
dered in such a way that the fcc lattice is obtained.
This procedure, ' which allo~s us to identify those
clusters relevant for the calculation of the entropy
when combined with Eqs. (2), results in the following
expression for the number of configurations OT~..

0 „= (T}'(QT}/,'DT}6(13—P} '14—P}

where T, DT, and QT stand for the usual product of
factorials involving the concentrations of single, dou-
ble, and quadruple tetrahedra corresponding in Fig. 2

to the clusters (1,2,3,4), (1,2,3,4,5,6), and
(1,2,3,4,5,6,9,8, 10), respectively, and where 13-P and
14-P refer to the thirteen- and fourteen-point clusters.

An entropy expression for the bcc lattice can be ob-
tained in a similar way by rearranging the vacancies on

, 10

~ 6

3

1

2

I(6

r

2 I

31

~ 12
5

I 10

r

8
I ~

2g
3

, 5

where each cluster has been labeled with reference to
Fig. 3.

The minimization of the free energy in the last two
approximations (TF and bcc) would require a very in-

volved task of determining a set of independent vari-
ables, or, alternatively, the constraint equations

8:.

3

10

FIG. 3. Basic clusters for the bcc-unit-cell approxirnatio.

the 27-point cube of the simple cubic lattice so that
the bcc structure is generated. By meatus of such a
procedure, the number of configurations Ob, , is found
to be
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among the different cluster configurations. Although
the TF and bcc approximations will not be considered
further in this paper, the approach for determing a set
of independent variables to be presented in Sec. III
should facilitate the computations appreciably. The
interested reader is referred to the work by Clapp'
who determined a reduced set of 2SS cluster
configurations (out of 2"=8192 distinguishable
configurations) and their degeneracies for the
thirteen-point cluster in the fcc lattice.

Thus, I,(p) takes value one if species i is at lattice
point p and zero otherwise. The concentration of (r, t)
clusters in the i = [i,j, . . . , k] configuration can then
be written as

x, (r, t) =x„.. . j, (r, t)

(6)

III. CLUSTER ALGEBRA

The final step of the CVM consists in the minimiza-
tion of the free energy with respect to the
configurational variables. A procedure most comrnon-
ly used is that of minimizing the free energy with

respect to the concentration of the largest clusters,
subject to the @roper constraints. The resulting sys-
tem of equations can then be solved by means of a
simple iteration technique proposed by Kikuchi. ' Such
an approach, although particularly simple for small
cluster sizes, becomes extremely cumbersome for
large clusters due to the intricacy of the linear con-
straints existing between different cluster
configurations. An alternative approach is that of
defining at the onset of the calculations a set of in-

dependent variables, of which the most convenient are
the r-body correlation functions ({r,t). In order to
compute the cluster concentrations for a binary system
in terms of the correlations functions ((r, r), we intro-
duce the operator

where N(r, t) is the total number of (r, t) clusters in

the lattice and ~here the summation is performed
over all lattice points p],p2, . . . , p, consistent with the
cluster in question. Combining Eqs. {5) and {6),we
can write the concentration x. . .(r, r) as

x( i

„(r,t;r', t') g(r', t')

where g(r', t') is the r'-body correlation function
defined by

I', (p) - —,
' [1+io(p)] (5)

where i takes values 1 and —1 for each one of the two
components in the system and where o (p) is the spin

operator at lattice point p given by

t+I if species i = 1 at p,
o.(p) =' —1 if species i =—1 at p

and where v, ; I (r, r;r', i') is, in general, a sum of
r'-order products involving the indices i,j, . . . , k
(ij, . . . , k take values of +1). The structure of
v, , I, (r, t;r', i'), which depends on the symmetry of
the cluster in question, can be best illustrated through
a specific example. For the first nn equilateral triangle
in the fcc lattice, Eq. (6) reads

x„,(3) = X I', (p)I, (p )I,. (p ) =—[1+(i +j +k)$(1) +(ij +ik +jk)g(2) +ijk((3)]1 1 (s)

and therefore

and

v,g(3;1) =i + j+k, v„t, (3;2) =ij +j k +ki

v„t, (3;3) =ijk.
Thus, in the first nn triangle approximation, the
number of independent variables is three
[$(1),C(2), and g(3)], and the concentration of any
one of the 2' triangle configurations can be calculated
from Eq. (8).

Equation (7), trivial for small clusters, is particularly
useful for large cluster sizes since it has a straightfor-
ward geometric interpretation. The number of in-

dependent variables associated with a given cluster
variation (CV) approximation is simply determined by
the total number of distinct clusters in which the basic
cluster can be decomposed, i.e., all subclusters plus
the largest cluster itself. To each one of such clusters,
a correlation function ((r, t) is associated. Further-
more, the coeScients v, , ~ (r, t;r', t') for each (r, t)
cluster are given by a sum of r'-order products of
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TABLE III. Point cluster: {1,1). TABLE V. First nn equilateral triangle: (3,1).

Cluster (Fig. 2) v, (l, 1;r,t)

Cluster (Fig. 2) v, (3, 1;r,&)

i,j, . . . , k, the number of terms being equal to the
number of subclusters (r', t') contained in (r, t).

Talbes III—IX show the subcluster decomposition
for those clusters relevant to the entropy expressions
Eqs. (3) and (4) derived in Sec. 11. The second and
third columns show, respectively, the geometry of the
cluster and the notation (r, t) adopted. The complete
expression for the coefficients vl(r, t;r', t') for an arbi-
trary I = [ij, . . . , k } configuration is given in the last
column.

In view of the fact that the ((r', t') in Eq. (7) are
linearly independent, the degeneracy factor at(r, t) can
be calculated by determining those configurations for
which the coefficients vt(r, t;r', t') are equal for all
values of (r', t') Table . X shows an example of such a

calculation for the first nn regular tetrahedron in the
fcc lattice.

Before proceeding with the minimization of the free
energy, it is convenient to establish some basic pro-
perties of the coefficient vt(r, t;r', t') Although .the
following properties are valid for any arbitrary cluster,
the reader is referred to the example of Table X for
further clarification. For each configuration
I = }t'j, . . . , k } of the (r, t) cluster, there is a comple-
mentary one I - } i —.I, .—. .. , —k } such that

(1)
(1,2)

(1,2,3)

(1,1)
(2, 1)
(3,1)

i+j+k
ij +ik+jk

ijk

Furthermore, by combining Eqs. (7), (10), and (12),
it can be shown that

(13)

where the configuration l = 1 corresponds by conven-
tion toi =j= . k =+1.

IV. MINIMIZATION OF THE FREE ENERGY

and the fact that the g(r, t) are linearly independent, it
follows that

v, (r, t;r', t') = (—1)' v;(r, t;r', t')

for all subclusters (r', t'). An important property
which follows directly from definition of the
v, (r, t;r, t ) is

(9)

(10)

E/N =—
—,zi((2, 1) (14)

where z, l, and g(2, 1) are the coordination number,

The energy per lattice site for the Ising ferromagnet
is given by

for (r', t') ~ (r",t"). Likewise, from the normalization
condition

TABLE VL First nn regular tetrahedron: (4, 1).

TABLE IV. First nn pair: (2, 1).

Cluster (Fig. 2) v, (4, 1;r, t)

Cluster (Fig. 2)

(1)
(1,2)

{1,1)
(2, 1)

v, (2, 1;r.I )

i+j

(1)
(1,2)

(1,2,3)
(1,2,3,4)

(1,1)
(2, 1)
(3,1)
(4, 1)

i +j +k+l
ij +ik +il +jk +jl +kl

ijk +ikl +ijl +jkl
ijkl
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TABLE VII. Irregular tetrahedron (1,2,3,6 in Fig. 2):
(4,2).

the following minimization conditions for the free en-
ergy:

=—
—,:P5((r', t');(2, 1))Bg(r', t')

~ y(r t)
patt(r, t) v, (r, t;r', t') lnx&(r, t)

(t. t)

Cluster (Fig. 2) v, (4, 2;i., j)
=0 (16)

(1)
(1,2)

(2,6)
(1,2,3)
(1,2,6)

(1,2,3,6)

Cl, 1)
(2, 1)

(2,2)

(3,1)

(3,2)

(4,2)

i+j +k+I
ij +ik +jl +jl +kl

il

ijk + jkl
ijl +il I

ijkl

1 F—=f =—zpg(2, 1)
kgT N

—X y(r, t)pat(r, f)xt(r, t) lnxt(r, t)

(15)
with P -Jl kTttFrotn Eqs. (.7) and (15), we obtain

coupling constant, and pair correlation variable,
respectively, for the first nn. The free energy F in an
arbitrary CV approximation can be written by combin-
ing Eqs. (14) and (1) as

where 5((r', t');(2, 1)) takes values one for (r', t')
= (2, 1) and zero otherwise.

In the disordered state of the Ising ferromagnet, all

correlation variables associated with clusters contain-
ing an odd number of lattice points vanish. Thus, for
odd values of r', Eq. (16) is trivially obeyed since the
sum over configurations I vanishes identically [see
Eqs. (7) and (9)]. The remaining equations, i.e. ,

those arising from even clusters, were solved by a

simple iteration scheme based on the method of the
steepest descent. The following recursive relation was
used:

(rt)= (rt)— a 82f
8((r, t) 9(2(r, t)

where the iterated value g(r, t) is calculated using the
previous values of ((r, t) on the right-hand side. Such
an iteration scheme converges in a manner similar to
that of the natural-iteration method proposed by Kiku-
chi, ' although in general the number of operations in-

volved in each iteration step is generally reduced.

TABLE VIII. Octahedron: (6,1).

n Cluster (Fig. 2) (r, t) )((6. I .r, j)

1 (1) (l, l)
2 (1,2) (2, 1)

3 (2,6) {2,2)
4 (1,2,3) (3,1)
5 (1,2,6) (3,2)
6 (1,2,3,6) {4,2)

(2,3,6,7) (4,3)
8 (1,2,3,6,7) (5,1)
9 (1,2,3,6,7,8) (6,1)

i+ j+k+I+in+n
(n+l)(i +k +j +in) +(ni + j)(i +k)

ik +jm +ln
(I+n)(j +m)(i+k)

ik(j +I+n+m) +In(i +j +k +in) +jm(i +k+I +n)
ik (jn +j I + Im + nm ) + In (ij +i m + mk + jk) + nij (i n + il + kl + kn )

ilkn +ijkm + j%nn

jlmn(i + k) +ilkn(in +j ) +ijkin(l + n)
i/kIniil
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TABLE IX. Double tetrahedron: (6,2).

1

2

3

4

5

6
7

8

9
10

11

12

13

14

15

16

Cluster {Fig. 2)

(1)
(1,2)
{2,6)
(2,5)

(1,2,3)
(1,2,6)
(2,4,5)
(1,2,5)

(1,2,3,4)
(1,2,3,6)
(2,4,5,6)
(2,3,4,6)
(1,2,3,5)

(1,2,3,4,5)
(1,2,4,5,6)

(1,2,3,4,S,6)

(1,1)
(2, 1}
(2,2)
(2,3)
(3,1)
(3,2)

(3,3)
(3,4)

(4, 1)
(4,2)
(4,3)
(4 4)
(4,5)
(5, 1)

{S,2}
(6,2)

i,{6,2;r, t)

i +j +k + I+m+n
ij +ik +il+jk+jl+kl+km+kn+Im+ln+mn

Im+j n

in +jm
ij (k +I) +kl{i + j) +mn(k +/) +kl{n +m)

im (k + I) +jn(k + I)
ji (m + n) + mn (i + j )
in(k +/) +jm{k +I)

ijkl + klmn

iklm + jkln

ijmn

jI(ln + kn + km + Im ) + mn (i k + i I +jk +j I)
jklm +ikln

ijkl (m + n) + klmn (i +j )
ijkmn +ijlmn

ij klmn

The critical temperature T is determined by the
equation

det(F) & =0

where the elements of the symmetric matrix F are
second derivatives of the free energy given by

From Eqs. (9) and (18), and noting that in the disor-
dered state xI(r, t) -x;(r, t), it follows that the second
derivatives are diA'erent from zero only when r and r'

are both either even or odd. Thus, in the disordered
state, F has a block structure and Eq. (1'7) becomes

det(F, , ) ~ det(Fo) y- =0

$a, (p, s) v, (p, s;r, t)y(p ~) v((p, s;r', t')

( ) 2 ( xt(p s)

where the elements of F,, and Fo are second deriva-
tives of the free energy involving even and odd clus-
ters, respectively. The singularity in the zero-field
susceptibility, which determines the critical tempera-
ture T, , occurs when the matrix Fo becomes singular,
i.e. , when

(18) det(Fo) r =0 (19)

TABLE X. Coeflicients v, (4, 1;r, t) for the regular tetrahedron.

a, (4, 1) v, {4,1;1, 1)

4

2

0
—2

v, (4, 1;2, 1)

6

0
—2

0
6

v, (4, 1;3, 1)

4
—2

0
2

—4

v, (4, 1;4, 1)

1

—1

1

—1

1
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Equations (16) and (19) where solved for the DT,
OT, and DTO approximations. The entropy expres-
sion for the DT approximation, shown in Fig. 4, was
derived by Kikuchi~; for the OT and DTO approxima-
tions, Eqs. (3) and (4) were used.

The total number of independent variables for the
DT, OT, and DTO approximations are, respectively,
16 (Table IX), 10 (Tables VI and VIII), and 19
(Tables VIII and IX). However, since in the disor-
dered state all odd correlation functions vanish, the
number of equations to be solved above the critical
temperature are only 9, 6, and 11 for the DT, OT,
and DTO approximations, respectively. Note that the
total number of distinguishable configurations of the
largest clusters, equal to the number of simultaneous
nonlinear equations used in the natural-iteration
scheme, are 64 (DT), 80 (OT), and 128 (DTO).
Hence the scheme presented here results in a consid-
erable saving of computational labor. Figure 5 shows
a plot of the smallest eigenvalue A, „,(T) of the matrix
Fo as a function of the reduced temperature ktt 7/zj
for the three approximations in question. Note that
the smallest eigenvalue A, „,(T) is, close to the critical
temperature T,. , strictly proportional to (T —T, )
Since the zero-field susceptibility diverges at T,. as
A. ,„,the linearity of A. „, vs T in Fig. 5 illustrates the
fact that the CVM predicts a classical critical exponent

y =1. The critical temperatures obtained by different
CVM approximations are compared to Table XI with

the value obtained from the high-temperature expan-
sion of the zero-field susceptibility. Note that the DT
approximation, although involving a larger cluster
than the single tetrahedron approximation, yields a

higher critical temperature. In fact, in the DT approx-
imation the octahedron correlations are not taken into
account properly. %hen such correlations are con-
sidered, as in the DTO approximation, a considerably

TABLE XI. Critical temperature for the fcc Ising fer-

romagnet.

Approximation

Tetrahedron
DT'

OT
DTO

High- T expansion""'

kg T, /12J

0.83544
0.84045

0.83394
0.82981
0.81627

improved value of the critical temperature, only 1.5%
higher than the high-temperature expansion estimate,
is obtained.

V. HIGH-TEMPERATURE SPECIFIC HEAT

I

k T c(T) z d((2 1)
J k, 2 dP

(20)

The conditions for the minimization of the free ener-
gy, Eq. (16), provide us with the relations needed for
the calculation of the specific heat. Taking the deriva-
tive with respect to the inverse temperature P in Eq.
(16), we obtain

Noting that dg(r', t')/dP vanishes for r' odd, and that
the matrix F whose elements are the second deriva-
tives of the free energy has a block form in the disor-
dered state, we can write

The specific heat per lattice point c,. (T) for the Ising
ferromagnet can be written as

1

&5

dtI(2 I) z
X

R,.'(2, 1;r, t)
dP 2 (, , ) x, , (r t)

(21)

I
'

I
' I

DTO

I
I

I
I

I

5 10

DT t,24,
1 2 2

12 i, 13
'2 6'

3 4 5 6 l2

E

0
O

-4—

-8—
I ~ I I I I I I .. ~ I I I I.828 .830 -832 .834 .840 -842

kaT/t2 J

FIG. 4. Form of the number of configurations OD& for

the double-tetrahedron approximation (Ref. 5).

FIG. 5. Smallest eigenvalue A, „, of the matrix Fo as a

function of temperature for the DT, OT, and DTO approxi-
mations.
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where R,, (r, t;r', t') and k, , (r, t) are, respectively, the
eigenvector components and eigenvalues of the matrix
F,, defined in Sec. IV.

The high-temperature specific heat, calculated using
Eqs. (20) and (21), is shown in Fig. 6 for the DTO
approximation. For comparison, the specific heat cal-
culated in the single tetrahedron approximation is also
shown in Fig. 6. ' The calculation of the low-

temperature specific heat, which requires the solution
of Eq. {16)in the ordered state, will not be performed
in this paper. Although the minimization of the free
energy in the ordered state does not impose any fun-
damental difficulties, the number of equations to be
solved is roughly twice that of the disordered state,
making actual computations more cumbersome.

Of considerable interest is the calculation of the
high-temperature expansion coefficients of the specific
heat. In the disordered state, t, , is written as

and with the coeScients a„given by

a„=—,zg'"+"(2, 1) for n =0, 1

g
(n +1 }(2 1) g'" "{2,1)

2 n! '
(n —2)!

for n «2

where (0'"'{2,1) stands for the nth order derivative
with respect to co of the pair correlation function
((2, 1) evaluated at as=0.

A simple recursive equation for calculating the nth
order derivative of the correlation functions g(r, t) can
be obtained from the relation

d Qf =0
d~" 8$(r, t)

with

f ! p

ka T c,, (a))
g Qt(OJ

o) = tanhP

(22} which follows from the minimization conditions given
by Eq. (16).

Expanding the logarithm of the concentrations
x, (r, t) in Eq. (16) in powers of the sum on the right-
hand side of Eq. (7), and using Eqs. {10)and (13},
we obtain, after some straightforward algebra,

$0"'(r', t') =C '(r', t') ——zp 0"('8( {r',t');(2, 1)) + X X y ' Xa, (r t)v (r t;r', t')[y,'(r t)j0"'(u ) , , ) , , i („,
"

( 1)" y(r ()
I -2 (r t ) I

(24)

with

C(r', t') = X y(r, t)v, (r, (;r', t'),

d"
[y,"(r,()j~"'- X vt(r, t;p, s)g(p, s)

(p, ~)
to=0

I

(25)

and

P0'"' = tanh 'o)
d"

de

~4

0 n even

!(n —1}! n odd
'

( crt f}

Since yl{r,() vanishes at ao =0, the right-hand side of
Eq. {24) will only contain derivatives of the correla-
tion functions g(r, t) of order smaller than n. Thus,
by means of Eq. (24), the (0"'(r, t) can be calculated
recursively starting from the initial values

f"'(2, 1) =—zl2C(2, 1)

and

(0"(r, t) =0 (r, t} W (2, 1)

Cl

2

I

1.0

T/ Tc

I

1.2

Table XII shows the calculated values of the expan-
sion coefficient a„ for the specific heat in the DTO ap-
proximation. Four coeScients are reproduced exactly,
the fifth one being determined to within 0.4'/0. Note
that the value of the fifth expansion coeScient calcu-
lated in the DTO approximation is, as expected,
slightly improved with respect to one calculated in the
TO approximation.

VI. CONCLUSIONS
FIG. 6. Specific heat in the disordered state for the DTO

(upper curve) and the tetrahedron (Ref. 1) (lower curve) ap-

proximations.

We have calculated the critical temperature T,, and
the high-temperature specific heat for the fcc Ising
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TABLE Xll. Expansion coeScients for specific heat.

OT
ait

DTO Exact

0
1

2

3

4

6
48

390
3216

26004

6
48

390
3216

26724

6
48

390
3216

26844

spin- —, ferromagnet in the cluster variation approxi-

mation by using larger clusters (double-
tetrahedron —octahedron) than were heretofore con-
sidered tractable. The resulting value of T,. was only
1.59o higher than the one determined by an exact
high-temperature expansion and the expansion for the
high-temperature specific heat gave four coefticients
exactly and the fifth one to within 0.4'k.

The handling of large clusters was made possible by
the development of a "cluster algebra" in Sec. III. The
results of Sec. III can be summarized as follows. (i)
The number of independent variables for a given
CVM approximation is given by the total number of
subclusters in which the basic clusters can be decom-
posed. (ii) The concentration of (,r, t) clusters in the
configuration i - (ij, . . . , k I can be written as a
linear combination of the correlation functions
((r', t') (r ~ r) associated with aii the subciusters of
(r, t) The coefficie. nts v, (r, r;r', r') of such a linear
combination are given by a sum of r'-order products
of the i,j, . . . , k indices (ij, . . . , k =+i), the
number of terms being equal to the number of (r', t')
clusters in (r, t). (iii) The degeneracy factor ot., (r, t)
for the configuration i of (r, t) can be determined by

counting the number of distinguishable configurations
'iij. . . . , k} for which the coefficients

v, , (r, r;r', t') are equal for aii (r', t') (subciuster of
(r, r)). The cluster algebra summarized above greatly
facilitated the task of minimizing the free energy,
since it is then no longer necessary to derive subsidi-
ary constraints which are often very diScult to deter-
mine in the case of large clusters.

Although the CVM, being a "classical" theory, fails
to yield accurate critical exponents, it yields useful ap-
proxirnate results, provided that large enough clusters
are used, with far less computational labor than is
commonly required with more precise theoretical
methods. More importantly, the CVM as handled
here allows the incorporation in the energy expression
of second and third nn pair interactions and even
many-body interactions with absolutely no additional
difFiculties. This is a very significant consideration
since the stability of various ordered structures found
experimentally in fcc and bcc binary alloys can only be
demonstrated by appealing to higher-than-first-neigh-
bor pair interactions. " " Hence clusters large enough
to contain explicitly second- and third-neighbor dis-
tances must be used in the CVM calculations. In fact,
the primary objective of the present investigation was
that of selecting the most appropriate cluster to be
used in calculations of order-disorder binary phase di-
agrams presently being carried out. The application of
the method to the Ising ferromagnet was done for the
purpose of testing the various cluster approximation in

a case where precise results were well established.
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