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%e use an expansion in T, , /TF to study the influence of strong-coupling eAects on the linear

response of superfluid He. Our results indicate that the enhancement of the order parameter

gives the major strong-coupling corrections to the magnetic susceptibilities, bending energies, and

superfluid density. The additional "nontrivial" strong-coupling corrections depend sensitively on

currently unknown details of the quasiparticle interactions. Hence, precise measurements of the

response coeScients can provide additional information about the quasiparticle interactions.

I. INTRODUCTION

The purpose of this paper is to investigate the
corrections to weak-coupling pairing theory for the
response coeScients of superfluid 'He. By weak-

coupling theory we mean the BCS-type pairing theory
for an interacting Fermi liquid discussed in detail in

Ref. 1. The weak-coupling theory fails for the ther-
modynamic properties of superfluid 'He: it cannot ac-
count for the stability of 'He-A, and significantly un-

derestimates the specific-heat discontinuity at high
pressure. %'e call these and all other deviations from
weak-coupling predictions strong-coupling effects.

The key theoretical idea for explaining the stability
of the axial state is the feedback mechanism suggested
by Anderson and Brinkman, ' and first worked out in

the spin-fluctuation model. ' ' In Ref. 6 (hereafter re-
ferred to as I) we showed that using assumptions no
more restrictive than those implicit in the previous
spin-fluctuation theories, one can calculate the
strong-coupling corrections to the unperturbed equili-
brium free energy within the more general framework
of Landau's microscopic Fermi-liquid theory. The
basis of our calculation was an expansion in powers of
the small parameter T, /Tl, we found that stro. ng-

coupling corrections of order T, /TF result from the.
feedback mechanism and from the frequency depen-
dence of the normal-state irreducible interactions, and
can be expressed in terms of the normal-state quasi-
particle scattering amplitude. Because the quasiparti-
cle scattering amplitude is not fully known, we have

no completely independent test of the applicability to
'He of the T, /Tr expansion scheme. With the s-p ap-
proximation for the scattering amplitude, our theory
gives qualitatively correct results for the phase di-

agram and specific-heat discontinuities, but overem-
phasizes the strong-coupling corrections to the A-

phase free energy by approximately a factor of 2.
Given that these results are obtained with no adjust-
able parameters, and that the s-p approximation also
overestimates the transport collision rates, we feel
justified in using the T, /Tz expansion to calculate ad-
ditional strong-coupling effects in terms of the
normal-state quasiparticle properties.

In the present paper we extend our scheme to calcu-
late the strong-cottpling corrections of order T, /TF to
the linear response functions of a superfluid Fermi
liquid. %'e distinguish two types of corrections to the
response functions. The first, which we call trivial
strong-coupling corrections, come from the strong-
coupling corrections to the magnitude of the
superfluid order parameter. Near T, the trivial
strong-coupling corrections can be accounted for by
adjusting the magnitude of the order parameter to fit
the measured specific-heat discontinuity. Our concern
here is with the possibility of additional, nontrivial,
strong-coupling effects.

In the Ginzburg-Landau region, the nontrivial
strong-coupling effects appear as corrections to the
couplings between external perturbations and the
superfluid order parameter. These couplings are
described by the coeScients in the second-order
Ginzburg-Landau functional
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Here (h(T)~) is the average squared gap in the equili-
brium state

A„, is the complex 3 & 3 matrix order parameter for an
l =1 superAuid, and A„denotes a row vector
(A„),-A„,. For simplicity we have included in (1.1)
only the two most important external perturbations, a
magnetic Acid H and a velocity field v. %C have also
neglected the A]-A splitting term introduced by Am-
begaokar and Mermin', this contribution, which is
outside the scope of our calculation, gives corrections
to the weak-coupling free energy of order (T, /TF)'. .

The superfluid mass-current density j (r) is related to
~el. by

j(r) -—[SnoL/Sv(r)](-,

The coupling constants g, g-, EL, KT, and K~ deter-
mine thc magntK susccptlblllty, thc supcrfluid dcnsl-
ty, and the C tensor in the Ginzburg-Landau region

Xs„=[X"""—
—, N(0)(g +3g )(a(T)')]S„,.

(1.3)

in O«are completely determined by the transition
temperature and the Landau parameters:
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(1.10a)

(1.10b)

(1.11a)

(1.11b)

The simplicity of (1.10b) and (1.11b) does not follow
from general symmetry considerations, and hence
must result from approximations in the weak-coupling
theory. %e call results such as these accidental weak-

coupling symmetries. One motivation for the calcula-
tion described here was to determine which of the ac-
cidental weak-coupling symmetries are broken by
strong-coupling corrections of order T, /TF

%C summarize our conclusions as follows. The
nontrivial strong-coupling corrections to the
Ginzburg-Landau functional are less than f0'Iro of the
weak-coupling contributions, and hence for many pur-

poses can be safely neglected. Nevertheless, these
small corrections are of interest because they carry in-

formation about the frequency dependence of the
pairing interaction. Nontrivial strong-coupling effects
enter the superfluid densities, the C tensor, the 8-
phase susceptibility, and the reduced eigenvalue of the
A-phase susceptibility tensor. The large eigenvalues
of the A-phase susceptibility and the compressibility of
both phases are free of strong-coupling corrections
through order T, /TF at all temperatures. The acciden-
tal weak-coupling symmetries g =0 and K~. = K~ sur-
vive, but KL -3Kr is violated to order T,/TF.

These specific results are derived and discussed
more fully in Sec. IV. In Sec. II we develop our gen-
eral strong-coupling response formalism, including the
T, /TF expansion and. Fermi-liquid renormalizations.
In Sec. III we specialize these results to obtain the
general form of the microscopic strong-coupling
Ginzburg-Landau functional.

(It(T)') - —, Tr(AAt)

(h(T)') is determined by the fourth-order Ginzburg-
Landau cocfticients js„and is proportional to the
specific-heat jump at T, ,

(h(T) ) = —tr ks T, (T, —T)S.C/C~

In the weak-coupling approximation, the coeScients

II. GKbfKRAL THEORY

In this section, we present a general framework for
calculating the response functions of a superfluid Fer-
mi liquid. Our goal is to extend the conventional
weak-coupling response theory to include leading-
order strong-coupling effects, and to demonstrate that
these strong-coupling corrections can be evaluated
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xa-'
k+qj2. " q/2 P (2.1)

The bare vertex function u„&(k, q;r) represents the
coupling of the external field to an appropriate single-
particle operator. For a magnetic field H(q, r) coupled
to the magnetization fluctuation, we have

within Landau's Fermi-liquid theory.
We base our calculations on the stationary free-

energy functional formalism of I, generalized, as by
Baym, ' and DeDominicis and Martin, to include a
space and time-dependent external potential. We take
the external perturbation to have the form

U(r) - X X u„cc(k, q;r)

I
— [ ]

G (k+ —, q. a„+—,cu„, ;k —
—, q, a„——, ru„,)

S

with cv„, =4m~k~T. The function 56(k, ~„;q, eo„,)
can then be thought of as the linear response of
G(k, ~„) to the component of the external potential
carrying wave vector q and frequency co„,. With this
choice of variables, the second-order functional
decomposes into a sum of terms which couple only
external wave vectors q and —q and external frequen-
cies co„, and —eo„,, in a compact notation the second-
order free-energy-density functional is given by

EOi [SX, SG; Ul -—(I /2 V) k T

x Tr[2(SX —U)SG -SXR SX

u„„(k,q;r) =—(—,
' yt) H (q, r) o

for a velocity field v (q, r) coupled to the mass current
we have

u, ,~(k, q;t) = tv (q, t) k 5„„,
etc. The appropriate stationary functional in the pres-
ence of this external perturbation can be written

O[X,G;U] ——kaTTr[(X —U) G

—SGI SG]

where Vis the volume and TrAB is defined by

TrAB X X—Trc[A (k, a„;—q, —ca„,)
q, rrr k.a

x B( k, , ~„;q, ao„,)]

R SX stands for the matrix

Gcq( k + q, a„+ cd„()SX( k, c,(,q, ccc,(()

(2.3)

(2.4)

+ln( —G, +X)]+4 [G] .

(2.2)

X(k, a„;k', a„) and G(k, a„;k', a„) are the 4 x 4 ma-
trix self-energy and Green's function defined as in Eq.
(2.9) of I, except that they now depend on two mo-
menta and two discrete Fermion frequencies; we will

find it convenient to take X and G as independent in
(2.2). The matrix multiplications and the trace in

(2.2) run over all arguments of the matrix functions.
U is a 4 x 4 matrix representation of the perturbation,
Ali the Udependence of O[X,G;U] is explicit; in par-
ticular cp[G] is the same functional as in the unper-
turbed case, With a time-independent perturbation U,
the functional 0 reduces at its stationary point to an
appropriate thermodynamic free energy. With a time-
dependent external potential, 0 no longer has a sim-

ple interpretation as a thermodynamic free energy, but
its stationarity conditions with respect to independent
variations of X and 6 determine the nonequilibrium
Green's function and self-energy. Because we will

only consider the linear response functions, we can
expand the full functional O[XG;U] thr,ough second
order in the perturbation U and in SX and 56, the de-
viations from equilibrium of the single-particle self-

energy and Green's function. In this case the natural
arguments for SG, SX, and U are the average and
diN'erence of the outgoing and incoming momenta and
frequencies. Specifically, we define SG(k, a„;q, cu„,) to
be the component linear in U of the full Green's func-
tion

xG,q(k —-'q, a„——,
'

co„,), (2.5)

where G„(k, a u) is the equilibriuru matrix Green's
function in the absence of U. The elements of the
tensor I are the irreducible interactions connecting

components of the two matrix Green's functions 56
between which ™Istands in (2.3); the particle-hole ir-
reducible interaction connects SG to SG, the particle-
particle irreducible interaction connects SF to SF, and
the number nonconserving irreducible interactions,
which vanish in the normal state, connect SF to SG,
SF to SF, etc. For example, the particle-hole com-
ponent of 156 is

ka T $ XP"( k, a„'„k ', a„;q, &u„,)

x SG(k', a„;q, cu„,) (2.6)

U (k, a„;q, cue)=S
u(k, q)

0

(2.7)

The requirement that IOz[SX, SG;U] be stationary
with respect to variations of SX and 56 leads to the

Equation (2.6) should of course also include spin
sums, but for clarity we have not shown these expli-
citly. The imaginary-frequency perturtztion U can be
written as a linear combination of matrices U„which

lrr

carry a single frequency co„, -4m mka T,
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two equations SG {lt,e„„q,o)ru)

SG =KSX

5X= U+ISG,
(2.S}

(2.9)

which are together equivalent to the Bethe-Salpeter
equation. The solution of these two equations gives
the physical Green's function defined by

t

56(k, ~„;q, ~„,)

SF(k, &„;q,~„,)
i

SF(k, .„;q, ~„,}
(2.10)

SG ( tt. a», q, (tl )»&

1

5G„~(k, e„;q, o)„,)

G„&(k. err'q. mat) d. J~
dr'

J~
dr" exp li[{.„+—', ~„,) r —(e„—, cu„—,) r' —ru„, r"]]

5F„,(k, .„;q, ~„,) P

&&7( ~ e &q &&~&&&)

Xi

r

(T,[a-„~), ,(r) a-„ i, (r') U(r")]),
(T,[u '-„-,» .(r) u=„~» „(r')U(r")]),

(2.»)

8(U') „=u'(co+i ri) (2.12b)

where u'(z) is the unique analytic function given at
the imaginary frequency points z =i co„, by

u'(ice„, ) =(1/P) Tr(U ' SG[U„]) (2.13)

Although formally exact, the functional (2.3) (or
the equivalent Bethe-Salpeter equation) is not a suit-
able starting point for explicit calculations of the 'He
response functions, because a calculation based on
(2.3) requires as input the equilibrium Green's func-
tion and irreducible interactions at all momenta and
frequencies. Unfortunately, the irreducible interac-
tions are not directly related to any measurable quanti-

ties, and the single-particle Green's function, while in

principle measurable in tunneling experiments, is in

practice unknown except in the quasiparticle region

In (2.11) the statistical averages are in the equilibrium
grand canonical ensemble, and the time dependence
of the operators is governed by the unperturbed Ham-
iltonian. %hen it is necessary to indicate the func-
tional dependence of the physical Green's function on
the perturbation, we will write this Green's function
as SG [U].

From the physical Green's function SG[U], we can
obtain the response linear in U of any single-particle
operator O'. If U is a time-independent operator of
the form (2.1), its static isothermal response is given

by

8(U');,h„,. ~

= (1/P) Tr(U ' SG [U„]) . (2.12a)

The dynamical response 5(U') „to a perturbation of
real frequency cv is found from

a„« ksTq, ~k —kr~ && kr. Furthermore, neither
the Green's function nor the irreducible interactions
can at present be satisfactorily calculated from first
principles for a system as dense and strongly interact-
ing as is liquid 'He.

To progress further we need Landau's insight that
for external frequencies rs « E, /h, external momenta

q && k&, and temperatures T &( TF, all nonquasipar-
ticle contributions to the normal-state response func-
tions can be absorbed into renorrnalized quasiparticle
interactions and into renormalized couplings of the
quasiparticles to the external perturbations. ' The real
part of the renormalized quasiparticle interaction then
determines the normal-state static response functions;
the normal-state dynamical response functions satisfy
a quasiparticle Boltzmann equation whose collision
operator comes from the imaginary part of the quasi-
particle interaction. The extension of this renormali-
zation procedure to weak-coupling BCS-superfluids is
conceptually straightforward, though formally some-
what complicated; Leggett's treatment in Ref. 11 is
closest in outlook to our own. In the present section
we will generalize this approach to show that the
strong-coupling effects of leading order in T, /Tz can.
also be calculated in a quasiparticle theory.

The static response functions of a superfluid Fermi
liquid are most naturally defined in terms of the
coe5cients in a Ginzburg-Landau-type free-energy
functional. For this reason we choose to eliminate the
nonquasiparticle contributions by requiring the free-
energy functional to be stationary with respect to these
variables. %e emphasize, however, that this pro-
cedure is completely equivalent to the more usual one
which begins from the Bethe-Salpeter equation and el-
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iminates the nonquasiparticle parts by a partial surn-
mation.

A. T, / TF C lassittcation

To classify terms in the general free-energy function-
al AQ&[SX, SG;U], Eq. (2.3), we use arguments simi-
lar to those discussed in detail in our study of the
strong-coupling corrections to the equilibrium free en-
ergy. Hence we sketch only briefly the parts of our
analysis which parallel arguments in I. We concen-
trate instead on the new problems in calculating the

response functions, and especially on the elimination
of the nonquasiparticle background.

As a formal device to facilitate the separation of
quasiparticle from nonquasiparticle contributions, we
introduce a cut-off energy Eo (and the equivalent tem-
perature Tg = Eg/ks) which divides high frequencies
from low frequencies. The cutoff must be chosen
such that T, (( T, «T, , but is otherwise arbitrary,
and will not appear in our final results for measurable
quantities.

We first discuss the terms 2{AX—U)hG —5XR SX,
in which the low and high frequencies are decoupled,

Tr[2(SX —U)SG —SXRSX] =Tr[2(SX U)i„(SG))„(SX)i„(R))„(SX)i„„
+ 2(SX —U) high( ) high {SX)high{R ) high(5 X)high] (2.14)

Here the low- and high-frequency parts of the matrix
functions are defined by

[/4 (s„,Q)„,)])„=/i {s„,h),p) e{E) ] c])

[A (s„,gg„, )]hgh = A (s„,h)„,) e(]s„]—Ei))
(2.1S)

To evaluate the kernel of R]„„in {2.14) we can sub-
stitute for G„ the quasiparticle Green's function

G„g( k, c„)= (1/Z) [)'s„—(q r3 —X„,(k, s„)] ' . (2 16)

Our notation for constant matrices in the 4 x 4 space
is as follows: the 7, (0., ) are Pauli matrices in the 2 & 2

particle-hole (spin) space, and r", is the 4 x 4 matrix
7, 1„. Because we want the free-energy functional
through order T, /Tr, the quasiparticle self-energy
X„„{k,~„) must comprise all self-energy terms through
order T, /TF not already absorbed into Z and (, in

(2.16). The strong-coupling functionai hd)[G —Gv]
derived in 1 determines Z '(X —X)v), the superfluid
contribution to X„, through the relation [Eq. (2.13) of
1)

Here and in the following our notation for angular
averages of the quasiparticle scattering amplitude is as
in I.

To simplify the low-frequency part of b O~, we as-
sume that at the stationary point SX(k, ~„;q, ~„,)
varies with k on the scale of kI-, the consistency of
this assumption can easily be verified at the end of
our calculation. In the low-frequency terms of (2.14),
5X always appears together with either (56)]„„or
(R)]„„,both of which are sharply peaked for

~
I —k,

~
~ (T„/ T).) k) (( ki

as can be seen from (2.8) and (2.16). Hence in the
low-frequency terms of (2.14) we-can evaluate AX and
Uat k =k& and perform the k integral only over
(hG)]„„and (R)]„„',neglecting the k dependence of AX

and U in these terms introduces errors of order
{T,/T&)'. In order to eliminate explicitly the ir-

relevant k dependences in (2.14), we define an in-

tegrated quasiparticle Green's function by

X —Xv = 255)P/5(G —Gv) {2.17)

In addition we must include in X„„the normal-state
quasiparticle lifetime term,

~ ~,', —(~k, T)'—X, (.„)=isgn. „—
Z '[p 16 vl' p

x (]T"({})t)('+3]T'")(t) @)]') . (2.18)

.2

', [SG(k, e„,q, o)„,)]]„„(2.19)
N (0) 2m'

Similarly, we define an integrated R tensor which
operates on matrices a (k, e„;q, cu„,),

R„„a{k,e„;q, cu„,) =—,G„„(k + —, q. ~„+—, „,) a (k, e„',q, co„,) G„„(k —
2 q, e„—

2 „,)
Z kdk

N 0)
(2.20)

Finally, we introduce a renormalized low-frequency self-energy and perturbation,

50'(k, c„;q, 0)„,) = (1/Z) [SX(k)k, q, Qs)„,)]) u (k 'q, &i)„,}= U(k, h, g„;q, )i)H) (2.21)

In terms of these functions, our approximation for the contribution to d kl, from the low-frequency part of (2.14)
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is

(kaT) Tr(2[(SX)~„„—Ul(SG)k, —(SX)k, (R)~, (SX)~„„,—
&

N(0) Tr ksT X [2(Sa —Z 'ti,)Sg —Sa K„„S&r]
ii

(2.22)

The new trace operation introduced in {2.22) is defined by

Tr(ab) - X jl
—Tr4[B(k, e„;—q, —ru„,) b(k, a„;q, ru„, )]I d01

q, in

(2.23)

In the high-frequency part of SXR SX we can replace
R by its normal-state value, to leading order in T, /TF
and T/To'

normal
R hi&h R high (2.24)

The superfluid propagators modify the diagonal part of
(R)h;,„(GG and FF products) in order (T, /To)'. Th. e
GF products in the oN'-diagonal kernel are of order
T, /T) but we will see below that the off-diagonal ker-
nel always enters the physical response functions ei-
ther quadratically or together with a number-
nonconserving irreducible interaction. Since the
number-nonconserving interactions are themselves of
order T, /TF, the superfluid contributions to (R)h;„,h all

enter the physical response functions in terms of order
(T, /To)' or smaller, which we neglect. We also set
ru =0 and q =0 in (R)h;~!h"'"', an approximation bor-
rowed from the microscopic theory of normal Fermi
liquids, and justiAed by the observation that (R)h„'.hm"

varies with cv on the scale of FT:, and varies with qon
the scale of kI;". The important co and q dependences
of the response functions all come from R„„,which
varies with ao on the scale of kBT, , qv]. , and T ', and
varies with q on the scale of ks T, /&v, -.

The remaining term in AO&, which involves the in-

teraction l, couples the low-frequency and high-

frequency Green's functions:

Tr(SGTSG) =Tr[(SG)~„Tk, ~„(SG)[„+

+ (~ )high high. high(~G)high

+ (~~ ) lo% l )O~.high (~6) high

+ (SG)h;NhTh;gh k,„(SG)i„„],(2.25)

given for (K)h;,h. all diagrams for T„;„„h;„hor T~;,~ ~„„
containing superfluid Green's functions are of order
(T /TF)', e~ xcept for the number-nonconserving di-
agrams with exactly one F function; and these
number-nonconserving interactions always enter either
quadratically or together with (GF)h;gh. %e also
neglect the weak dependence of lh,",h"')",.,'„and
lh'„'h"h, ',,';, on the external frequency and momen-
tum, as in the theory of normal Fermi liquids.

In ll„„l,„we finally encounter strong-coupling
corrections to the irreducible interactions which enter
the response functions in order T, /Tr To leadin. g..
(zeroth) order in T, /Tr, I[ J is given by the
normal-state irreducible interaction evaluated with all
frequencies equal to zero. Corrections to I),„l,„of
order T, /TF come from . all diagrams with a two-
quasiparticle cut. These diagrams are precisely those
generated by twice diN'erentiating the strong-coupling
lid functional of I with respect to the superAuid
quasiparticle Green's functions. The diagrams for the
strong-coupling irreducible interactions of order T, /TF
are shown in Fig. 1. The demonstration that these di-
agrams include all T, /TF correction. s follows closely
the argument given in I for the d4 functional itself;
in particular we again emphasize that in order to avoid
double-counting, one must subtract from diagrams
1(a), 1(b), and 1(d) their normal-state, zero-
frequency limit, since these parts are already included
in the zeroth-order interactions.

+ +

where the interactions ll,„)„„,l),„h;„h, etc. are defined
by a straightforward extension of (2.15). SuperAuid
corrections to l)„„h,gh, lh;gh )o„, and lh;gh h;gh 6irst enter
the response functions in order (T, /TF)', and hence.
for our purposes these interactions can be approximat-
ed by the corresponding normal-state interactions,

(a) (b) (c)

Iph', hh
= Iph', pp=

(q)

(d) (e)

Ipp'pp= Ih~, hh

(h)

I tlornlal
high, )os high, lou

()oe, high) l)ota. high)

nor nw)i high. high i high. high

(2.26)

The argument for this approximation parallels that

FIG. l. Diagrams for the strong-coupling corrections to
the low-frequency irreducible interactions. Open circles
represent the normal-state quasiparticle scattering amplitude,
and the Green's-function lines represent quasiparticle propa-

gators.
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We assume that the irreducible interactions are
slowly varying functions of momentum, and therefore
in (2.25) we replace the rapidly-varying function
(SG)l„„by the integrated Green's function Sg, and
restrict to the Fermi surface all momentum arguments
which the irreducible interactions share with a
(SG) „..

and

(SG)hah=(/l)hgh "(»)h;gh . (2.27)

(SX}„„„=U+ I„,„.,„;„,(SG)„„

b, 02 be stationary with respect to variations of
(SX)&;,h and (SG}h;„h. This condition implies that

+ Ih 1.[" (SG ) l (2.28)
8. Elimination of the high-frequency parts

By using the results of the preceding section to
evaluate Eq. (2.3} for 402, we obtain the strong-
coupling functional needed to calculate the response
functions of a superfluid Fermi liquid through order
T, /Tr Th. e hi.gh-frequency parts of the Green's func-
tions, self-energies, and interactions still appear expli-
citly in this formulation, however. To eliminate these
unknown, nonquasiparticle quantities, we require that

We can formally solve these equations for (SX)h,g&,

y)high [1 /h&r((. i»('h ( )high

x [U + 1(I&l' (' (SG)io ] (2.29).

(5G)h;, h is then given by (2.27) and (2.29). Substitut-
ing these results into (2.3), we obtain a quasiparticle
functional, 502qp, defined on the low-freqpeacy vari-
ables Sa and Sg alone,

50$"[So, Sg; ti] = —, t((r (0) Tr Sgo(A „„+V„„)Sgo+ 2(i„„Sgo+Fi'X""(""(6

+ ka T X (Sg/„I, Sg + 5& R„„5&r—25o Sg) (2.3O)

The quasiparticlc Green's function enters the first two terms of 502qp only through

Sg(((k'„q, ru„, ) = ka T XSg(k, a„;q, a(„,) (2.31)

because the interaction (Aqp
m + ~qp } and the renormalized Perturbation uqpo'"'"' are indePendent of both the

in&ernal and external frequencies. In A,„+V„„we collect the zero-frequency Fermi surface limit of
/(,",„"'(",,

'„' and of the kernel of the terms quadratic "in (SG)(„„generated by eliminating the high-frequency parts.

ql

'
denotes the particle-hole part of this quasiparticle interaction, and ~&„' denotes the particle-particle part.

e emphasize that through order T, /TF, all contributions to A„„' and V„„can b'e evaluated in the normal-
state limit. For convenience we have included a factor IV(0)/Z' in A„"„"'"'" + V„„,and also in the strong-
coupling interaction, I,„,given by Fig. 1. A„po

m
can be expressed in terms of the normal-state Landau parame-

ters,

r c(c(

A qp Sgo P/(k k ')
4

A /' 1 Tr45go(k ) + 7 3 Tr4T35go(~ )
/=0

+ —A("[I (r, Tr41 (r, ggo(k') + r3a, Tr4ri(T, Sgo(k')]) (2.32)

The corresponding interaction in the particle-particle channel has the form

r 00

V„„Sgo= j) X (2/ + 1)P (k k') V [Sg„(k')]„(r
4m

(2.33)

where (Sgo),q d;„.„denotes the off-diagonal part of Sgo.
We eall the angular momentum components V/ pairing
pseudointeractions; unlike the A/'", which are cutoff
independent, the V/ depend logarithmically on the
cutoff F0. This cutoff dependence of the V/ just com-
pensates for the cuto6' dependence of the nonconver-
gent low-frequency sums in the particle-particle chan-
nel, and hence assures that Eo drops out of all observ-
able quantities. The term uqp Sgo, which represents

the coupling of the external field to y renormalized
quasipartiele vertex, contains the low-frequency part
Z ]i Sg from (2.22) and all contributions linear in U
generated by eliminating the high-frequency parts.
The final ~„-independent term in (2.30),

~ (0) Tr(& ~normul&)

consists of all the contributions quadratic 'in U; X"""""'
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is a generalized normal-state isothermal static suscepti-
bility tensor. We again emphasize that for calculating
the superfluid response functions through order
T, /TF, tlnn a'nd X""' " can be evaluated at zero
external frequency and momentum using the normal-
state Landau theory.

From the strong-coupling, quasiparticle functional,
Eq. (2.30), we can calculate the linear response
coefficients of a superfluid Fermi liquid through first
order in T, /TF. The familiar weak-coupling theory for
the static response coefficients is obtained by omitting
the term containing I,, ' and approximating the
equilibrium Green's functions in R„„by the weak-

coupling equilibrium Green's functions; the latter ap-
proximation amounts to keeping only the weak-
coupling part of L4 in (2.17).

For the explicit calculations that follow, we find it
convenient to isolate all the strong-coupling effects in
a single term of the free-energy functional. To this
end, we introduce a new strong-coupling kernel
defined by the following implicit equation:

C
5

R p'-R//+R//Iqp 'Rqp {2.34)

Here the pre- and post-multiplying R„„'sagain allow us
to take /nrn' on the Fermi surface. We use A„„ to
define a new stationary functional,

5 02 [SrTO Sgo M] i N(0) Tr[Sgo(Ann + Prllr )Sgo+ SooKSaro 2(5(To llnnr, ) Sgo+ ll $ "'"u] (2.35)

The strong-coupling effects enter this functional
through the operator K, which is obtained from Rq„'
by summing over all the internal frequencies. 02' is
defined on the variables Saro(k;q, ro„,) and

Sgp(k;q, ao„,), which have no internal-frequency
dependence. The stationarity conditions fcr 4 02' are

go = K~~p (2.36)
normal (~ normal

@normal ) g (2 37)

At the respective stationary points of b 02q" and 502'
these functionals have the same value; the stationary
points (So., Sg) and (So o, Sgo) are themselves related
by

Sg R qp 50p

Acr =Scr +I„'„'5g

(2.38)

(2.39)

The new functional EQi [Sao, Sgo, u] has the practical
and conceptual advantage that So-p is ~„ independent,
and hence represents a more convenient choice for
the order parameter than does the ~„-dependent self-
energy So-.

Equations (2.34)—(2.37) form the basis of our
strong-coupling theory for the response functions of
superf1uid 'He. These equations hold for long-
wavelength, low-frequency perturbations, an.d include
all effects through first order in the expansion parame-
ter T, /TF Depending on th. e specific problem of in-

terest, it may be more convenient to work either from
the stationarity conditions (2.36) and (2.37) or directly
from the generating functional (2.35). Calculations of
the dynamical response functions begin from the sta-
tionarity equations, analytically continued to real fre-
quencies; for the normal state, Eqs. (2.36) and (2.37)
are then equivalent to the quasiparticle Boltzmann
equation derived in Ref. 12.

To calculate the static response functions, we find it
useful to work directly with the free-energy functional.
This procedure avoids subtleties connected with the
q 0 limit of the stationarity equations.

and

normal (l ~
normal

)ll qp qp

Xnormal " norma9 =Mqp

(2.40)

(2.41)

These important relations allow one to express most
of the interesting normal-state susceptibilities and re-
normalized quasiparticle operators in terms of the
Landau parameters.

III. GINZBURG-LANDAU FUNCTIONAL

As a first application of the scheme developed in

Sec. 1I, we will study the strong-coupling corrections
to the Ginzburg-Landau free-energy functional. To
obtain the Ginzburg-Landau functional, one first
makes the static (co„,=0) free-energy functional sta-
tionary with respect to all variables except for the
superfluid order parameter. Expanding in powers of
the order parameter then yields the Ginzburg-Landau
functional, whose arguments are the order parameter
and the static external perturbations. The physical,
fully stationary free energy is finally obtained by

The parameters which enter our theory are: {i) the
equilibrium quasiparticle Green's functions generated
by the strong-coupling functional of I, (ii) the
normal-state Landau parameters A/' and A/", (iii) the
pairing pseudolnteractions V„(iv) the normal-state
isothermal "susceptibility tensor" X "o' "', (v) the
normal-state renormalized perturbation u, po . and
(vi) the normal-state quasiparticle scattering ampli-
tudes T" and T'"', which determine the quasiparticle
lifetimes and the strong-coupling corrections. For-
tunately these parameters are not all independent.
The Landau parameters A/'" fix the forward-scattering
limit of T"'"', and conservation laws lead to rela-
tions among the normal-state quasiparticle quantities
(Ref. 11 contains a careful discussion of this point).
For example, for any conserved single-particle opera-
tor Uwe have
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minimizing with respect to the order parameter; this is

equivalent to solving the Ginzburg-Landau equation
f'or the order parameter. Proceeding in this way from
our strong-coupling functional, Eq. (2.35), we do not
directly arrive at the full Ginzburg-Landau functional

given in (1.1) but instead at the functional obtained
by expanding (1.1) to second order in the external
perturbations and in SA „„the deviation of the order
parameter from its unperturbed uniform equilibrium
value 3,"„:

I ~{P) ' ~ ~~ ~ + K (g ~~ )(g ~~ ~ ) + (&t + 0 )(&t ~ 0

[vA„', (())gW,',)) —(B,ga„,)v(a,'I'] + + , g, H„—A„',H, A,'. , "+.
h

{3.1)

(goo), (r „;„.g
= 55 = $ 8())(

0
(3.2)

and represent the t = 1 order parameter appropriate to
superfluid 'He by

—5A „', (—q ) (k),i a )fT„T (3.3)

To eliminate Sgp and (harp)d;„. „we use the stationarity

Here, for brevity, we have given only a few charac-
teristic terms of AQ~L. From our microscopic deriva-
tion of (3.1), we obtain the coefficients KL, Kr, K&,
gz, and gz. These coefficients suffice to determine the
full Ginzburg-Landau functional, which applies even
in some circumstances when the assumption of small
deviations from uniform equilibrium breaks down.

The functional 502", Eq. {2.35), depends on the
4 x 4 matrix variables Sap and Sgp. We wish to retain
as explicit variables only the oA'-diagonal components
of the self-energy. We introduce a partial-wave ex-
pansion[ with respect to k for [Sop(k;q }]„ff—d g,

conditions with respect to these variables:

IlOCI11JI ~ AOCCI1ttl

}~p + qp

from stationarity with respect to 5gp, and

(Sgp) „,„. g
= K'. (5o-0)d;„., + K.~bh

(3,4)

(3.5)

from stationarity with respect to (Sa.p)d;„.„. In writing
(3.5) we have used the following decomposition of K:

K = K. ~ + K.q + Kq. + Kgq (3.6)

where K" connects two diagonal self-energies, K.&

and K&. connect one diagonal and one oF-diagonal
self-energy, and K» connects two off-diagonal self-
energies.

We now substitute (3.2) and (3.4}—{3.6) into (2.35}
and expand to second order in the order parameter,
noting that for co„, =0, K.. is of order 5' and K.& is
of order b, . This yields the Ginzburg-Landau func-
tional, for small deviations from equilibrium, in the
form

k )
kk A

k() [kk: )= (0) XkJ J —, T kk(k; k) +K (k, k';k) kk(k';|T)
7r n

) k

+ Ii„",',
"""(I'; —q) K.,(l-, k-', q) hi(l-';q)

+uqp
" (k; —q)K" (k, k';q)Oqp

' (k';q) (3.7)

To calculate the strong-coupling K kernels in (3.7) we
must solve Eq. (2.34) for R,„'. Through first order
in T,'/TF, we can solve this equation by a perturbation
expansion in I„,' and in the strong-coupling correc-
tions to the equilibrium quasiparticle self-energy, X„p,
discussed following Eq. (2.16),

Rqp + SRqp

+ R„"„'I„„'R„„'+o/T, /T, )

% —C kk hk q
Rqp 0 = d( I f„/+1'p

OO 2
k

' —
I

+ T3 50(k) a (k, e„;q )

fk qi e„—(—~y T3 A()(k)

Here R„p denotes the weak-coupling kernel (3.9}



J. %. SERENE AND D. RAINER

and 5R„p denotes the strong-coupling kernel con-
taining the T, /T& cor-rections to the equilibrium
weak-coupling self-energy. For the Ginzburg-Landau
functional, I„'„ is given by diagram (1d) alone. "

In the next section, we use (3.7)—(3.9) to calculate
gz, gz, KL, Kr, and K, through first order in T, /Tr

IV. SOME SPECIFIC RESULTS

Rqp~3 =0 (4.2)

and from (4.2) and (2.34) we see immediately that

new g~ dependence, compared with R„„;they iatro-
duce an ~„-dependent correction to the diagonal se)f-
energy, which can be included in (2.16) by the re-
placement ~„R(e„).From this one easily sees that
(4.1) also holds for the full Rqp,

R„'p' ~3 =0 (4.3)

A. Compressibility

In the weak-coupling limit the compressibility of a
Fermi liquid is unchanged by the superfluid transition.
We will show that this result holds through order
T, /TF. We first observe that the tensor R,„given by
Eq. (3.9) annihilates r3,

Rqp ~3 =0 (4.1)

We next consider the effect of replacing R,„' in (4.1)
by the full R,„ tensor, including the order T, /TF-
corrections to the equilibrium self-energy, as specified
by (2.17) and (2.18). These corrections introduce no

In the preceding sections we have derived the
strong-coupling response theory for a superfluid Fermi
liquid through order T, /Tr O. ur .general result, valid
for all temperatures, is contained in Eqs. (2.34) and
{2.35). We saw in Sec. III that for static perturbations
and for temperatures near T,. these equations can be
considerably simplified to yield the Ginzburg-Landau
functional given in Eq, (3.7). Except for a few
temperature-independent exact results, we will con-
centrate on the Qinzburg-Landau region. Extending
our calculations to lower temperatures, while concep-
tually straightforward, should in general require exten-
sive numerical computation.

Sg(k;q) =0 . (4.4)

For a static change in the chemical potential, we have

u (k;q) = S/&(q) r3, (4.5)

and hence the superfluid corrections to the compressi-
bility vanish through order T, /Tr at all .temperatures.

B. Magnetic susceptibility

For a static, homogeneous, external magnetic field
H coupled to the magnetization, the renormalized per-
turbation is

u„p'
' ———[—,

' y/I/(I+Fp)]H &r, (4.6)

where

a = —, [(1+r"i) rr —(I —ri) rr']

From (3.9) we find [for a unitary dp(k)]

It follows from (2.32) that Aqp acting on a function
proportional to 73 gives another function proportional
to ri Toge. ther with (2.36}, (2.38), (2.40), and (4.3),
this implies that if u(k;q }is proportional to ri and
represents the coupling of a static external field to a
conserved quantity, then

~W t. ~ A

R H (r= —mqp 2

[Zp(k) H][Zp'(k) &r]+[Xp'(k) H][Xp(k) &r]

[pi+
I &p(k) I']"'

+ 2/ pg[H ~[(k) + rHhp'(k)r —]i ot
[a,', +

( X (k) [']'" tp

(4.7)

When H is perpendicular to the equilibrium order
parameter,

H Kp(k) =0 (4.8)

the right-hand side of (4.7) vanishes. If (4.S) hoids
for all k, then from (2.34) —(2.37) we see that the
free-energy diA'erence Q~ —0/I/ is independent of H,
and the corresponding components of the susceptibili-
ty tensor are unchanged by the superfluid condensa-
tion, through order T, /Tr. In particular this means.

gg(P&+g&l&+&&(T /T)

where g-' ' is the weak-coupling. coefticient,

(4.9)

that through order T, /Tr the maximum . A-phase sus-
ceptibility is equal to the normal-state susceptibility.
Furthermore, by comparing (4.7) with the general
Ginzburg-Landau functional, Eq. (1.1), we see that
g. =0 through order T, /Tr. .

The coefficient g carries nonvanishing strong-
coupling corrections of order T, /T&. From.
(3.7)—(3.9) we find
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~o) 2y dQ I

(1+F")' ' 4n

three parts,

(l) (~) + (g) + (I) (4.»)

xkaT, XRq, ,
'H ~ a

t —l

Jt [H Z, (k)][H Eo'(k)]

'I

7 ((3) 1

1+F," ' (~k, T)'. (4.10)

We decompose the strong-coupling correction into

g '-' and g 's' come from the term 8R,„ofEq. (3.8);
g

'-' contains the order T, /Tr corrections to the diago-
nal self-energy, while g(~) contains the corrections to
the oA'-diagonal self-energy. g"' gives the strong-
coupling corrections from the term of (3.8) containing
I„;,'. We evaluate these contributions using the
techniques described in I and in the appendix to per-
form the spin traces and to integrate over all variables
except those in the quasiparticle scattering amplitudes.
In this way we find

1

k T. 3%2g'-~=g~o~ o.39 ' ' (}T' '(e d)}'+3}T&«~(t},4~)}'), o.39= ' (1-—,', ~')-,'~2,
~'FPF 28'(3)

'I

g's'=g-' ' —2.23
' ([T"'(t}@)T"(f}', qb') + T'"'(g p) T'"'(r}', @')][cos'(—t}) +sin'( —8) cosg])

~'FPF

(4.12)

2 23
8n'

X X
2(r™)

7((3) „~„, (2m + 1)(2n + 1)'
1

g"' = g' ' 7 98
' l[T"'(t} @)T"'(&' d') —3 T'"'(t},d) T'"'(f}' tt ')] [cos'(—' t}) + sin'( —' t})costi])

~ FPF

(4.13)

e'
X ~ sgn [(2n + 1}[2 (n + m }+ 11}

7~(3) „, (2n +1)' (4.&4)

To estimate the size of these corrections, we evaluate
the averages of the scattering amplitude in the s-p ap-
proximation. '~ We Lake Ao, Ao, and A] from Ref. 15,
and fix A] by the forward. scattering sum rule. At
melting pressure this gives approximately 20, 1, and
—11 for the averages in (4.12), (4.13), and (4.14),
respectively, and implies that g is reduced by about
10'/o of its weak-coupling value. The average in (4.12)
can also be obtained from the normal-state relaxation
time r(0),

(}T( )(t} d)}t +3}T(a)(t} d)}2)
16aTr

rr'ka T'r(0)

(4.15)

Using the value T2r(0) =0.26 estimated from spin
and orbital relaxation experiments, one finds
l}T"}'+3}T'"'}')=15." The accuracy of the s-p ap-
proximation for the more complicated averages in g'~'
and g"' is difticult to assess. A rough guess, based on
the errors in the s-p approximation for the normal-
state transport coeScients and for the A-phase
specific-heat discontinuity, would be that the s-p
results for g(~' and g"' are two times too large, and
hence that the total strong-coupling corrections to g
are approximately 5% of g' '. Some further discussion
of the implications of this result can be found in Ref.

17. We note that the dominant contribution to g"'
comes from g"', which is determined by the p-wave
component of the leading frequency-dependent correc-
tion to the singlet pairing interaction.

C. Super8uid density

In order to find the strong-coupling corrections to
the Ginzburg-Landau bending energies and to the
superfluid momentum density, we will calculate the
free-energy functional to first order in an external
velocity field v ( r ). It is important to understand the
connection between these terms and the pure gradient
terms in the Ginzburg-Landau functional. Only two
of the three gradient terms allowed by symmetry have
independent physical significance; the third can always
be eliminated by a partial integration. In contrast, the
three distinct terms linear in v (r) are a)l independent
and physically significant, as can be seen from Eqs.
(1.6) and (1.7). Hence, one can find both the gra-
dient terms and the superfluid current density from a
microscopic calculation of the coupling between v (r)
and the order parameter; one cannot, however, be
sure of obtaining the correct superfluid current density
from a microscopic calculation of the gradient terms
alone, combined with Galilean invariance.
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1'r v (r) g (r)

is

22„"„"'"'"(k;q) =—[pF/(1+
&

F&)][v'(q) ' k]1
A A=—m)r[v (q) k]1 (4.16)

Using (3.9), and keeping only terms linear in 50(k),
we find

Because the total momentum density g (r) is a con-
served quantity, the quasiparticle operator
corresponding to the perturbation

R„"p '[v(q} k]1

ho(k) [v {q) k]
~,', + (@iFk —'q)'

A

mSFk —q
i„(k)r,[v(q) k] .

1e„1[&,', + (tv, k —q ) ']

(4.17)

After expanding (4.17) to first order in q and substi-
tuting into (3.7), we find that the weak-coupling limit
of the coupling between 55(k; —q) and v(q) is

tm&
iV{0) mk„T, g, f (q k)[v(q) k] —, Try[55(k; —q)h ((&k) r])4)r

(4.18)

= —, iV(0) 1()~'-"'[q v(q}{&„+q,), (q)+q, ), (q)] [A(&, 'SA „(—q) —3",, SA „'(q)], (4.19)

~here KT ' is given t)y Eq. (1.11). From (4.19) and
(3.1) we immediately deduce the weak-coupling rela-
tions

K (0) K (0)
C T (4.20)

These relations follow from the particularly simple
form of the coupling in (4.18) between v (q) and the
order parameter Auctuations, and hence are accidental
weak-coupling symmetries which may be broken by
strong-coupling corrections. We will see that the
strong-coupling self-energy corrections modify the
overall coupling strength while preserving the relations
in (4.20}, but the strong-coupling corrections from

lq( violate the first relation in (4,20) . The calcula-
tion of the strong-coupling corrections to KT, K~, and
IC& follows the same lines as the calculation for the
magnetic field energy. We ~rite

)
))' (

ql ~~)&2[T-~]ug
=—

~,', +(ti, l:.—,
' q)-'

x 1e 155(k;q }+i
(

x sgn(~„) 55(k;q) i3

(4.22)

and similarly for KL and K~. The only additional
result we need is the off-diagonal component of
R„„hh (the diagonal component does not contri-
bute because R„„[v{q) k]1 is purely off-diagonal
through first order in 50, and I„;, ' is nurnber-
conserving in the Ginzburg-Landau limit),

K, = K,'"+K,'"
K(I) K( ) + K(5) + K [l) (4.21)

By substituting (4.22), (4.17), and (3.8) into (3.7),
and integrating out all variables except those in the
quasiparticle scattering amplitudes, we find

=~'"' 0.39 ' ' {1T"'(e,4)1'+31T"({),y)1')
ksT
~FPF

K (') 3K (') K (,") K (')

{4.23a)

(4.23b)

K (3)
l = Kg' —2.23

' {[T"({)(t&)T"({)'., (t&') + T'"'(6, (t&) T'"'({)'$')][cos2( ,, {)}+sin'( ——' i)) cos(t&]), (4.24a)
)'FPF

3) 3K 5) K{A K 3) (4.24b)
(

~ (I& g (0& ~ ' {[T(&(g 4) T(s&({) 4 }+ T(r &{{2 y) IT(a (g 4&)][3[cos2( g) +sio2( (()) cos4] 2

&FPF

(4.25a)
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K"'=3K"'+K'"' 5
' ' ([T"(e y) T"(e' y')+ T'"'(e y}T'"'(e' d')]7 98 kaT,

VFPF

x [1 —[cos'( —,e) + sin'( —,
' e) cos@l']) (4.25b)

K & I ) K (I )
T (4.25c)

The constants 0.39, 2.23, and 7.98 have the same ori-
gins here as in (4.12) —(4.14).

Estimating these contributions with the s-p approxi-
mation, we find at melting pressure that
K (I I/K ~0~ K&ll ~/K&(0) 0 02 K (Il/K &0) 0.06, and

(Kt —3Kr)/Kr'"' =0.12. For most purposes these
corrections should be negligible. If, however, some
eA'ect which measures the violation of the accidental
weak-coupling symmetry KL ' —3K& ' =0 can be
found, this will provide information on the leading
frequency dependence of the triplet pairing interac-
tion. Thus, although the nontrivial strong-coupling
corrections to the bending energies and to the magnet-
ic energies are relatively small, they nevertheless can
yield valuable new insight into the nature of the mi-

croscopic pairing interaction.

x (k3 e,) (k4 ~„) (A1)

S„„S,„A (a, , l;,;i,,i,)

+ 5„~5p„A {k],k3, kp, k4)

Here ]f„] is a set of orthogonal unit vectors, and
k], . . . , k4 are unit vectors with fixed orientations re-
lative to one another, which form a rigid body whose
absolute orientation is given by ~ and Q. Hence the
integral (A1) is over all orientations of the rigid tetrad
of vectors k], . . . , k4. On symmetry grounds, (A1)
must have the form

with

+ h, „„h~,A (k],k4', kp, k3) (A2)
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A {k,, k 'k/, k, , ) = a](k, k ) (k/ ' k„,)

+ a, [ (k, k, ) (k, k„,)

+(I, k„,)(k, k)] .

(A3)

APPENDIX

The purpose of this appendix is to describe simple
techniques for evaluating the momentum integrals in

the / =1 strong-coupling free energy. By following
the steps leading to Eqs. (3.20) and (3.21) of I, one
can reduce the strong-coupling momentum integrals to

I

integrals over the arguments cos(—,0)$ of the

scattering amplitudes; for I = 1 pairing the integrands
contain functions of the form

To find the constants a] and a i we evaluate {A1) in
A Jl A

the special cases 0. = P & y = a-, k] = k& = k3 = k4 and
J% Jh A

o. =P &y=a-, k] =k&, k3=k4, k] k3=0. In this way
2 1

we obtain a] = —„and a~ =—
—, .

We also note that in the s-p approximation with A']'

fixed by the forward scattering sum rule, the expres-
sion for the triplet scattering amplitude T, (H', $')
simplifies considerably. Using Eq. (3 ~ 22) of I, we find

T(e', 4 ') = [(A 0 + A g) + (A [ + A '~') ense'] cosP'

= (A ] +Ao)(3cos'( —,
'

0) —1+sin'( —,
' 8) cos@)
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