
PHYSICAL REVIEW 8 VOLUME 17, NUMBER 7 1 APRIL 1978

Lattice model for the t~o-dimensional electron liquid
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Through comparison with Hockney and Brown's result of the molecular-dynamics computation
of the radial distribution function, it is shown that a triangular-lattice model with a harmonic-

oscillator potential provides a good account for the screening potential of the two-dimensional clas-

sical electron liquid. The radial distributuion function obtained in such a lattice model is then sub-

stituted in the calculation of the velocity autocorrelation time based on a sum-rule analysis of the

self-motion of an electron; the resulting theoretical values correspond closely to the measured

values of Zipfel, Brown, and Grimes.

I ~ INTRODUCTION

Recently, Zipfel, Brown, and Grimes' (ZBG) have
measured the velocity autocorrelation time 7,. in a
two-dimensional (2D) layer of electrons trapped on
the surface of liquid helium and thereby discovered a
strikingly close correspondence between 7,,

' and

coo =2.1(e'/m)' 'n' '

the harmonic-oscillator frequency for the electrons
forming a triangular lattice, where n is the areal
number density of electrons. This observation, pro-
viding important clues about the motion of electrons
in a liquid state, has had a great impact on the
theoretical study of such a 2D one-component plasma.
The static properties of such a system have been in-

vestigated by Hockney and Brown' with the aid of
molecular-dynamics computations. Their work provid-
ed a significant improvement upon the theory of Platz-
rnan and Fukuyama', revealing interesting features in

the radial distributuion function of the 2D classical
one-component plasma. After completion of the ori-
ginal manuscript of this paper, Totsuji's Monte Carlo
study of the 2D electron liquid4 was brought to the at-
tention of the authors. Totsuji's result shows essential
agreement with Hockney and Brown's result in the
high-plasma-parameter region, and complements
theirs in the low-plasma-parameter region.

In this paper we wish to point out that the detailed
features of the radial distribution function clarified in

the molecular-dynamics computations are closely relat-
ed to the physical notion that the short-range order in

the 2D classical plasma in its liquid phase is already
very much like that in its lattice phase. This observa-
tion leads us to propose a lattice model, which pro-

The screening potential V, (r) of the electron liquid
with a uniform positive-charge background is related
to its radial distribution function g(r) via

g (r ) -exp (
—(1/ka T) (e'/r —V, (r )] I

On analyzing the raw data of g (r) obtained by hack-
ney and Brown, ~ we find that except in the. vicinity of
r =0 the screening potential is expressed in a linear
form,

V, (r) = (e2/a)(co —clr/a) (2)

where a = (m n) ' is the radius of the signer-Seitz
disk; the coeScients cp and c~ satisfy the relationship

c~ (2 cp)

The values

cp = 1.13 ci =0.32

(3)

(4)

vides an explicit expression for the short-range corre-
lation function in such an electron liquid; Sec. II will

be devoted to the construction of this model. In Sec.
III we substitute the expression for the correlation
function in a first-principles calculation of the velocity
autocorrelation time based on a sum-rule analysis of
the self-motion of an electron'6; the numerical results
so computed exhibit a close agreement with the meas-
ured values of ZBG. %e thus intend to show that the
harmonic-lattice model proposed here consistently ac-
counts for those static and dynamic properties mani-
fested in the molecular-dynamics computations and
the ZBG experiments. Concluding remarks will be
given in Sec. IV.

II. LATTICE MODEL
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satisfying (3), are found to fit Hockney and Brown's
data for 33.1 ~ I'» 1875.8 within errors less than 5',
where I is defined by

I' = e'/aks T

Hockney and Brown have shown that a A,-type phase
transition occurs at I -95+2. Linearity of the screen-
ing potential (2) and (4) is observed for 1.0
~r/a ~ 2.0 in the case of I'=33.1, and for 1.65
~ r/a ~2.0 in the case of I'-1875.8. The precise
values of the screemtng potential at short distances are
very dif5cult to deduce from the computed values of
g(r); this function takes on extremely small values at
short distances because of the bare Coulomb term
e'/r.

Salient features of the screening potential for r +2a
which the molecular-dynamics computations have re-
vealed may thus be summarized in the following three
aspects'. its apparent linearity (2), the relationship
(3), and the absolute magnitude of either co or c] in

(4). We now wish to show that those empirical
features can be exylained consistently in terms of a
lattice model based on a harmonic-oscillator potential.
In so doing, we shall first compare the screening po-
tential in the liquid phase with that in the triangular-
lattice phase.

In order to investigate the screening potential of the
2D classical electron liquid, based on a triangular-
lattice model, we consider the 2D counterpart of the
relaxed-lattice model due originally to Salpeter and
Van Horn. s '0 For this model we impose the condi-
tion that the screening potential tends to that of the
harmonic lattice near the lattice points" and to one
obtained from the Wigner-Seitz disk model near zero
separation

—1.76(1—g) 2+6.26(1—rt)3

—7.14(l —g) 4+ 2.46(1—q) ']

(8)

where q is the separation between the two electrons
measured in units of d. In these units, the
molecular-dynamics screening potential (2) and (4)
reads

VMo(rt) = (e'/d) [0.99+1.16(1—rt)]

The two screening potentials (8) and (9) are plotted in

Fig. 1. We find a good agreement between them:
The screening potential in the relaxed lattice model is

nearly linear over the range 0.2 + q & 1.0. The
molecular-dynamics screening potential almost coin-
cides with the prediction of the triangular-lattice
model at the nearest-neighbor distance.

We have thus seen that the triangular-lattice model
qualitatively accounts for the behavior of the screen-
ing potential for O~g «1.0. ' To obtain additional,
quantitative accounts for the remaining points (3) and

(4), and thereby to provide a model describing the
salient features of the screening potential in the liquid

phase, we further investigate the harmonic-oscillator
potential model in the vicinity of the nearest-neighbor
distance.

In the harmonic-oscillator potential model, ' the
effective potential between two electrons

V,&(r) = e /r —V, (r)

tremes, and interpolate these two by a polynomial for
intermediate distances. The screening potential in the
relaxed lattice model is hence written

V„~(g) = (e'/d) [1.00 + 1.00(1—rt)

V, (0) =4 K2 —I I—4 e2

3n a
i

e2= 1.8164—
d

(6)

3.0

vs
e-'

d

2.0—

where d =1.9046a is the nearest-neighbor distance of
the triangular lattice. The Wigner-Seitz disk is the 2D
analogy of the Wigner-Seitz sphere. Expression (6) is

simply the difference of energy between two separate
Wigner-Seitz disks of radius a and one "fused"
Wigner-Seitz disk of radius J2a which contains two
electrons at its center. Furthermore, in order to calcu-
late the quadratic part of the screening potential near
zero separation, we employ the 2D counterpart of
Jancovici's model", we place two electrons at the
point —r, ——r in the Wigner-Seitz disk of radius J2a
centered at the origin. The resulting potential turns
out to be

V,"(r) = e'r'/4v 2a'—
Thus, we have two model potentials near the two ex-

I

0.2 0.4
rr/=
d

0.6 08 1.0

FIG. 1. Two screening potentials V, as functions of g, the

interparticle distance r measured in units of the nearest-

neighbor distance d for the triangular lattice. I represents the

screening potential in the relaxed lattice model (8); II, the

molecular-dynamics result (9) in the liquid phase. The
dashed line of the liquid-screening potential for 0 ~ q «0.55

is an extrapolation.
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satisfies the conditions

V„(d) -0, d V„(r)
dr

(10)

at the equilibrium position r = d. The former condi-
tion arises from the assumption of perfect screening at
the nearest-neighbor distance; the latter implies that
the potential takes on an extremum (minimum) value
there. Assuming linearity (2) for the screening poten-
tial, we obtain from (10),

I
cj = (

&
cp), cp=2ct/d

The former is identical to (3); the latter gives
co=1.0501 for a triangular lattice. This value is again
reasonably close to {4).

We have thus shown that the short-range order ob-
served in the 2D classical one-component plasma is al-

ready very close to that predicted in a harmonic-lattice
model for I as low as 33.1, as manifested by the simi-
larity between the screening potential in the liquid

phase and that in the lattice model.

j j

e2 d r
exp — ——2+—

g(r) = kgTD r d
j

1 (r &d)

(r d)

(15)

values of g (r). The result is sho~n in Table I. The
measured values v,. of the velocity autocorrelation
time by ZBG have been interpolated or slightly extra-
polated to make a comparison at the same values of I
where the molecular-dynamics' or Monte Carlo data
exist. The agreement is within the experimental error
of ZBG (+109o). Hence, this comparison provides ad-
ditional confirmation that the v, . of ZBG corresponds
to 0 ' defined by (14).'

To obtain an analytical expression of (14) for a 2D
electron liquid (p = n) in the harmonic-lattice model,
we use the radial distribution function (1) as given by
(2} and (11}for the short-range domain r~d. For
r & d, the radial distribution funtion generally exhibits
a damped-oscillatory behavior around unity. Contri-
butions from the peaks and troughs of g (r) tend to
cancel each other in the integration of (14). We may
thus take

III. VELOCITY AUTOCORRKLATION TIME

where r, (t) is the position of the electron; ( )
denotes a statistical average. Defining the frequency
moments of S;„,.(k, ~) by

(Cjj ) jjjc jI d Ccj Cjj Sjjjc( k Cp) {13)

The velocity autocorrelation time may be calculated
from a sum-rule analysis of the dynamic structure fac-
tor S;„,(k, ao) associated with the self-motion of a
"tagged" electron

S;„,(k, pj) = Jt dt( xpe( i k [rj(t)—r—j(0)]})e' ',
2K

{12)

as an approximate expression, to be substituted in

(14); the result for 1 »1 is

ere n Ot' 7r0'= 1+
cx Nl 2I'

=0.66 '(1+1.2231 ' )

where u 1.0746.
The theoretical values 0 ' of the velocity auto-

correlation time are computed from (16) for the
values of the electron density studied by ZBG„ the

(16)

one calculates with the aid of the rigorous equation of
motion in the many-particle system'6

2 4(~)- 3( 2)
(pj')-

TABLE 1. Comparison of the interpolated or extrapolated

experimental values T;. of the velocity autocorrelation time by

Zipfel eI al. (Ref. 1) and the molecular-dynamics (Ref. 2)

and Monte Carlo (Ref. 4) values based on the fundamental

relationship (14). Temperature is fixed at 1.2 K.
j j

I d r ———g(r)pe' ~ 8 1

m 8x r Qx
(14)

Here p is the average number of electrons in a unit
volume" of the system; the x axis is chosen in the

direction of k; vi„and i i„are the velocity and the ac-
celeration of the tagged electron in the x direction. It
is clear from the definition of (14) that 0 '

corresponds to the velocity autocorrelation time of an

electron.
To examine the validity of the use of (14) for com-

parison with the experimental values of ZBG, we have
carried out numerical integration of (14) by substitut-

ing the exact molecular-dynamics' and Monte Carlo4

7.1

15.&
22.4
33.1
46.8
50.0

"Reference 4.
bReference 2.

(10 "sec)

16.0
5.1

3.2
1.9
1.00
0.95

(10-"s.c)

17.5"'

5.5"'

3.3"

19
1.0&b

1.01"
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{108cm 2 (10 "sec)
o-'

(10 "sec)

0.15

0.20
0.51

1.4
2.2

9
11

17

29
36

9.9
7.2
4&
2.1

1.4

13.1
10.6
54
2.7
1.9

TABLE 11. Comparison of the measured values r,. of the

velocity autocorrelation time by Zipfel et al. {Ref. 1) and the

theoretical values 0 ' based on a harmonic-lattice model
(16).

IV. CONCLUDING REMARKS

%'e have shown that the harmonic-lattice model
correctly accounts for the salient features of the radial
distribution function in the 2D electron liquid ob-
tained from the molecular-dynamics computations.
The measured values of the velocity autocorrelation
time are explained consistently in terms of such a lat-
tice model. These results strongly indicate that the
short-range order in the 2D classical plasma in its
liquid phase is already very much like that in its lattice
phase.
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