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Hypernetted-chain solutions for the two-dimensional classical electron gas
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Departtnent of Physics, North Carolina State University, Raleigh, North Carolina 27607

{Receiv d 2 June 1977)

The hypernetted-chain integral equation is solved numerically to yield the pair correlation func-

tion, equation of state, and free energy of a two-dimensional classical electron gas, for values of
I —= (mn)' e /k& T up to 100. The onset of short-range order in the gas is found to occur for

2.8 ( I ( 2.9. In general, the results are qualitatively similar to those of the three-dimensional

electron gas.

I. INTRODUCTION

A gas of charged point particles neutralized by a un-

iform background of opposite charge has long served
as the prototypical model of three-dimensional (3D)
charged fluids. In the classical regime, the equilibrium
properties of this one-component plasma have been
studied with Monte Carlo techniques" and with a

variety of approximate approaches. With the Monte
Carlo data as the standard, it is found that the best of
the approximate results are at present furnished by
the hypernetted-chain (HNC) integral equation. '
This equation additionally leads to fulfillment of the
Stillinger-Lovett moment conditions on the pair
correlation function and reduces properly to the
Debye-Huckel form in &he limit of a very dilute gas.
Thus it seems worthwhile to consider a two-

dimensional (2D) version of the HNC equation to
study the equilibrium properties of a one-component

plasma layer. In this work, we present numerical
solutions of the HNC equation for the free energy,
internal energy, and pair correlation function of a
two-dimensional classical charged gas neutralized by a

rigid, uniform background.
This classical model of a two-dimensional (2D) elec-

tron gas has received much recent attention, ' "
stimulated by the laboratory realization" of what is in

effect such a 2D system: bound electrons in the
ground state of a potential well formed above the free
surface of liquid helium by an attractive image poten-
tial and a repulsive surface barrier, with unconstrained
motion parallel to the surface. The electronic area
density n = N/A in these experiments is widely vari-

able and under typical conditions the behavior of the
trapped electrons may be described classically. In
this case, the thermodynamic state of the electron gas
is determined by the single parameter

I' = (e /a) /ka T,
giving the ratio of the electrostatic energy at the ion-

circle radius a,

ma2n -1
to the thermal energy. Here e is to be interpreted as a
"renormalized" charge incorporating the effects of
the dielectric substrate.

For small I, the equation of state can be written as
an expansion in powers of I', but the Coulomb po-
tential in two dimensions makes the evaluation of the
virial coefficients particularly difficult. The leading
correction to the ideal gas equation of state has been
determined through summation of ring diagrams by
Totsuji and Chalupa' to be

p/nke T —I = I'(ln2I' ——+ y) +I

2

where y =0.5772. . . is Euler's constant. The HNC
solutions that will be discussed below agree numerical-

ly with this result for I && 1. Higher corrections are
effectively obtained through the iterative solution of
the HNC equation; for large I, we find that the re-
duced pressure depends linearly on I ~

The long-range nature of the Coulomb potential in-

troduces difficulties for numerical work which become
particularly severe in two dimensions, as was also not-
ed above for the virial coefficients. We examine in

Sec. II the long-range behavior of the pair correlation
function g(r) and related functions. These large-r
forms must first be analytically extracted before a nu-

merical solution over a finite range can proceed. A

formulation of the problem that accomplishes this is

given in Sec. III and the results then obtained from
the HNC equation for values of I ranging up to
I =100 are discussed in Sec. IV.

II. LONG-RANGE SKHAUIOR

The HNC equation for the pair correlation function

g is obtained by supplementing the Ornstein-Zernike
equation
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G{r)=—g(r) —1 g(r) =exp[H(r) —Pv(r)] (9)

= C(r) +n d rC( r —r ) G(r') (4a) rather than on G itself. The coupled Eqs. (4) then be-
come

which defines the direct correlation function C, with

the approximate closure' C(r) =G(r) —H(r) =exp[H(r) —pv(r)j —1 —H(r)

C (r) = G (r }—lng {r) —P v (r ) (4b) (1Oa)

where p = (kaT) ' and v is the Coulomb potential
here

v(r) =e'/r (S)

The iterative solution of Eqs. {4) can be carried out
using Fourier transforms, in terms of which Eq. (4a)
becomes

6 (k) = C (k) /[I —nC (k) [ (6)

F(k) = d r F(r)e '" '=2m dr rF(r) Jo(kr)
0

%e note that in two dimensions the Fourier transform
of a circularly symmetric function F(r) becomes a
Hankel transform upon integrating over the polar an-
gle:

H(k) =nC (k)/[1 —nC(k)j {iOb)

C(r) —Pv(r) = —Pe'/r—
so that for small k

The numerical evaluation of the transforms in Eqs.
(10) must of course be restricted to a finite range in r
or k space; if significant error is to be avoided, it is
essential that the function being transformed be negli-

gibly small at the termination of this finite range.
This will not be the case for the functions Cand H,
which, as we note below, have long-range Coulomb
tails, and thus a necessary step prior to numerical
solution will be the analytic extraction of these long-
range parts.

It is clear from (4b) or (10a) that the direct correla-
tion function has the usual Coulomb limit for large r,

with the inverse

F(r) =(2~) ' dk kF(k) Jo(kr) (8)

C(k) =—Pv(k) =—2mPe'/k

Using (10b), we have then in the small k limit

(12)

Here Jo(x) is the zeroth-order Bessel function of the
first kind.

It is convenient to perform the iterations on the
function H, defined by

H (k) = 27r pe'kD/k (k + ko) (i3)

where kD =2m pe'n is the Debye wave number.
Inversion of Eq. (13) yields the asymptotic form of H:

H(r) —pe kD dk Jo(kr)(k+kD} '=pe kD dt e " ds Jo(k~s)e "
0 0 0

=pe kht ck e "'(t +khj) ' = ape kD[H—O(knr) —Yo(knr)j2 -[g

where' Ho(x) and Yo(x} are the zeroth-order Struve
function and Bessel function of the second kind. An
expansion of (14) in inverse powers of r can be easily
obtained from the last integral in (14), which gives

th —1

/( ) I X
(ar)'

/-0 J

where 0. is a free parameter whose choice is discussed
below. Resummation of the new expansion

(
pe' Pe'kt& 9pe'kht

(kor) (kDr)
{is} pe2 pe ko

H](r) = f[(r) — f3(f) +
r '

(kyar)'

Our objective now is to remove the asymptotic form
(14) from H without, however, introducing infinities
at the origin, so that simple subtraction of (14) from
H will not do. A suitable long-range function can be
produced from (14) and (1S) by generalizing to all

orders the technique used by Springer, Pokrant, and
Stevens' in their study of the 3D Coulomb problem.
In effect, we weight each r "term in (1S) with a
modulating function

then yields a function
a

H/{r) =pe k dt e "(t +k')
0

(is)

which is finite at the origin and has the form (14) for
large r; the asymptotic limit is evident upon comparing
Eq. (18) with the last integral in (14). The difference
function H —HI will now be properly short-ranged in r
space, but, in contrast to the 3D version of this prob-
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lem, will at the same time have gained a long-range
tail in its transform that H alone did not have. The
transform of H/ is readily obtained as

III. FORMULATION FOR NUMERICAL SOLUTlON

Define now the short-range functions

H/(k) =2~pe ko d(((( +kD) '/'2((2+k2)
0

H, (r) = H(r) —H, (r),
C, (r) = C(r) —C, (r)

(26&

(27)
(19)

which for large k gives

H(k) —2nPe'ko[(a'+ktj)' ' —ko)k '+0(k ')

(20)

where HL and CL are given by Eqs. (21) and (22). In
terms of these well-behaved functions, the HNC
equations become

Cq(r) =exp[Hq(r) +HL(r) —pv(r)]

The contribution from the leading term in (20) can be
non-negligible at the termination of the finite k range,
particularly for small 1. This problem is alleviated by
finally choosing for the long-range part of H

HL(r) = HI(r) —(Pe kp/a) [(a +ko) ko]e
a

=(Pe'ko/a) dt {ae "—te ")
0

—H,-(r) —G, (r) —1

Cs(k) + CL(k)
H, (k) = —Cg(k) —GL(k)

1 —n [Cs{k)+ CL(k)]

where

GI (r) =—HL(r) +CI (r)

and the transforms of HI and CL are

(28a)

(28b)

(29)

„«2+k 2)-) /2 (21)
HL (k) = 2n Pe'k~ dt (t'+ kg) ' 't

which eliminates the first term in (20), giving a
transform HL of order k ' for large k. This is quite
adequate in practice.

Similar considerations dictate the choice C/(k) =—2~Pe kg)

x [(t'+k') '"—(a'+k') '"]
(30)

Ct {r)=—(pe'/r)(1 —e ') + —,
' pe'ae "

=—(pe'/a) dt (ae "—te ' )
0

(22)

for the long-range part of C.
1t will be noted that Eq. (14), read as an approxi-

mate equality for all r, is equivalent to the Debye-
Huckel approximation. Used with Eq. (9), it yields
the nonlinear Debye-Huckel result for g,

g (r) ~ e
—Pu (r] (23)

which is valid for low densities. The same approxi-
rnate H used with (10a), G =C+Hand (11) gives
the linearized Debye-Huckel g,

g(r) =1 —Pu(r) (2S)

In contrast with the three-dimensional case, the
linearized form diverges at the origin. Equation (23)
was given by Totsuji as an interpolation between the
long-range form (25) and the short-range correlation
between a single pair of electrons, exp( —pv). Totsuji
also notes that Eq. (23) will produce the correct equa-
tion of state to order I' [Eq. (3)).

There will of course be no difference in the g's ob-
tained through Eqs. (9) and (10a) when a self-
consistent H is used.

u(r) =(e /r) [1 —
2

rrknr[Hp(knr) —Yp(knr))}, (24)

(32)

F(k, ) =Jj2(p, , ) X W;, F(r, ) (33)

where

F(k, ) =—pgF(k, )/2rrR2 (34)

W„= Wp = (2/p~) [Jp(tL, tt, , /tt y)/Ji'(p, ,)J((p,)l

(35)

dt ( [((2 + k2) —3/2 (~2 + I 2) —3/2) (31)
0

The integrals over the second term in (30) and both
terms in (31) can of course be easily evaluated and we

display them in this fashion to bring out similarities.
The remaining first term integral in (30) must be nu-
merically evaluated, as must the corresponding in-
tegral in (21).

Besides the physical parameter I, the numerical
parameters to be freely chosen in a calculation are the
maximum value R of the radial coordinate, the
number of points 4'in the range (O, R) at which H~
and C& will be determined, and the "smallness" para-
meter 0., chosen to ensure that H&(R) and C&(R) are
negligibly small. (A useful rule of thumb has been
aR =20.) With these parameters given, the numeri-
cal Fourier transforms are performed according to the
orthogonality-preserving prescription"

/t/ —1

F(r, ) = J,' {p, , ) $ W„F(k, )
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r, = p„R/pn, i =1,2, ..., N —1

k, p, ;/R, j -1,2, ..., N —1

(36)

(37)

and p, ; is the jth root of Jo(x). The matrix W„must
be computed at the beginning of a calculation and
stored, imposing a severe limitation on the size N of
the arrays. With W;, defined as a symmetric matrix in

(35), the storage needed is reduced from (N —1}'to
essentially half this, at the cost of an extra multiplica-
tion in (32) and (33), a worthwhile exchange. It is
apparent also that for efticiency transforms should be
kept in the form p, nF/2rrR' during the iterations,
with F extracted only at the end. The maximum N in
this calculation was N =300.

The iterative solution of Eqs. (28) may be started
with H& =0 and continued until a self-consistent Hq is
achieved, this being defined to have occurred whenev-
er the largest difference between the input array H~
into Eq. (28a) and the output Hs from inversion of
(28b) is smaller than some preassigned ~. In the
present calculation ~-5 x 10 ' was used. For larger
values of I, H was found to grow roughly linearly
with I and a considerable number of iterations could
be bypassed by using a linear extrapolation of an ear-
lier solution as the initial guess. Other aids for ac-
celerated convergence are discussed by Broyles' and
Ng6

Finally, the calculation was carried out using dimen-
sionless quantities, specifically a reduced distance
x = r/a and a reduced wave number q - ka, where a is
the ion-circle radius.

IOO
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FIG. 1. Pair correlation function of the two-dimensional

electron gas for various I, as labeled, obtained from the
HNC equation.

IV. RESULTS

The product of the iterative solution of Eqs. (28) is
a self-consistent H&, from which the pair correlation
function is obtained as -40

g(r) =exp[Hs(r) +HL(r} —Pv(r)] (38)

Figure (1) displays a number of such solutions, rang-
ing from I'=1, for which g still has the monotonic
dependence characteristic of the (nonlinear) Debye-
Hiickel approximation, to I = 100, where g is highly
structured. The onset of the oscillations in g occurs
for 2.8 & I &2.9. For I' &&1, the pair correlation
function is well described by Eq. (23). Qualitatively,
the curves in Fig. (1) are much like the three-
dimensional solutions. '6 If this parallel holds quanti-
tatively as well, the peaks and valleys in Fig. (1) will

be some~hat underestimated compared to Monte Car-
lo results.

Figures (2) and (3) show the direct correlation
function C and structure factor

-80

-I 20
0

r
0

S(k) =1+nG(k) (39)

for the same values of I as in Fig. (1). The similarity
with the 3D case is again evident. For all I, C differs

FIG. 2. Direct correlation function of the two-dimensional
electron gas for various I, as labeled, obtained from the
HNC equation.
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I OO ~
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TABLE I. HNC values of the excess internal energy and

free energy of the classical two-dimensional electron gas.

—(E/Nks T —1) (A A p)//Vks T

S tIL)
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FIG. 3. Structure factor S(k) =1+nG(k) of the two-

dimensional electron gas for various f', as labeled, obtained
from the HNC equation.

tained from the HNC equation are given in Table I.
For I' « 1, the computed results agree with Eq. (3).
As I increases, the dependence of the reduced energy
on I becomes linear and for I &30 can be fitted by

E/Wks T —1 = 1.0273 —1.0967 I' (43)

from the asymptotic limit —Pv(r) only for relatively
short distances, going smoothly to a finite value at the
origin. In Fig. (3), we see that S, again for all I, van-
ishes at the origin, reflecting the shielding property of
the one-component plasma: the total charge around a
given electron is +e.

Finally, the thermodynamic properties may be calcu-
lated from g. A standard analysis gives the internal
energy F. and pressure p as

As noted earlier, the Helmholtz free energy A may
be obtained directly from g in the HNC approxima-
tion. Adapting the general analysis" to the 2D
Coulomb gas, we get

A —Ap OO

= (4n n ) ' dk k [n G (k ) —In [1 + n G (k ) ] ]
Nks T

—n n dr r t —G (r) + G(r) —g(r) Ing(r)

E p—1 =2 - —1 =vrnPe drG(r)
Nks T Nks T —G (r) P v(r)] (44)

Since for smaller values of I', G will decay quite slow-
ly, it is convenient to evaluate this integral in the form

—1 = ' +7rnPe' Jl dr [G(r) —G, (r)]
Nks T Nks T 0

(41)

where

UL/Wke T = I" [ln(2kp/a ) [(a + kp) ' —kp]

—a '[kp(a'+kp)'" —kp ——,
' a']] (42)

results from an integration over GL, defined by Eq.
(29), leaving a short-ranged integrand G —GL in (41)
which can be numerically evaluated. The energies ob-

where Ap is the ideal gas free energy. The long-range
terms in the second integrand can again be extracted
using the functions HL, CL, and GL. The computed
results are shown in Table I. For I &30, the reduced
free energy is essentially linear in I and can be fitted
by

(A —A )(lVks T =0.9851(lnl' —0.7540) —1.09521'

(45)

The internal energy resulting from (45), namely,

l'.-1=" ' ' "' =09851-10952"
NksT er Nk T
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differs only slightly from Eq. (43).
Hockney and Brown" have recently studied the pro-

perties of the two-dimensional electron gas using a

modified molecular dynamics method, wherein the
long-range part of the Coulomb 1/r potential is incor-
porated through a coarse-graining technique. Their
results differ significantly from those of the HNC
equation reported above. We are unable to account
for these differences. Earlier work' cited by Hockney
and Brown for the details of their method does not
deal with the 1/r potential but rather with the Inr po-
tential which satisfies the two-dimensional Poisson
equation, making a comparison of approximations

diScult.
Note added in proof. The results of a Mont Carlo

calculation on the 2D electron gas have very recently
been published by H. Totsuji [Phys. Rev. A 17, 399
(1978)]. The energies obtained from the HNC equa-
tion, given in Table I above, agree very well with
Totsuji's Monte Carlo values, differing by about 1% or
less. Totsuji notes that, within experimental error. his
results are consistent with those of Hockney and
Brown if the ordinate scale of Fig. 1 in Ref. 111 is
shifted to yield the correct Madelung energy at low
tern peratures.
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