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A method is presented of solving for the vibrational Green’s function of a silicon-dioxide Bethe lattice when
it contains second-nearest-neighbor interactions. The method is used to find the density of states of a Bethe
lattice constructed with a Keating Hamiltonian. The primary effect of the second-nearest-neighbor
interactions is a softening of the rocking bands below 450 cm™~".

In a recent publication, we showed how a con-
tinued-fraction technique could be used to calculate
the vibrational Green’s function of a silicon-
dioxide Bethe lattice constructed using a nearest-
neighbor Born® force law. In this publication we
show how a similar technique can be used when the
force law involves second-nearest-neighbor inter-
actions as well.

The inclusion of non-nearest-neighbor inter-
actions into a Bethe lattice increases its complexity
considerably by introducing rings of interactions
into the Hamiltonian. For example, two oxygen
atoms bonded to the same silicon atom can now in-
teract with each other, as well as with the silicon
atom to which they are bonded, to form a threefold
ring. It is ordinarily the absence of rings of in-
teractions in the Bethe lattice which facilitates its
solution, rather than the absence of rings of bonds.
There is no distinction between these two when only
nearest-neighbor interactions are included. Even
though it contains rings of interactions, however,
such a system may generally be solved,® provided
the atoms are consolidated into larger units which
interact only when they are adjacent. This pro-
cedure regularly produces an intractable numerical
problem. In silicon dioxide, however, the twofold
coordination of the oxygen atoms makes a solution
with second-nearest-neighbor interactions pract-
ical.

In Fig. 1 we show the silicon-dioxide Bethe
lattice partitioned into units which we will hence-
forth refer to as bubbles. Each bubble interacts
only with itself and with its nearest neighbors.
Interaction in this case means an atom in one unit
interacting with any atom in the other one. If one
now thinks of a bubble as a site with 12 degrees of
freedom, then the system transforms into an
ordinary tetrahedrally coordinated Bethe lattice
with the exception that there are now four dis-
tinct kinds of divected sites. The four oxygenatoms
in a tetrahedron are distinguishable, causing there
to be four distinct kinds of bubble. The bubbles
also point outward in a way that is evident in
Fig. 1.

In Fig. 1 there is a central bubble which is dif-
ferent from all the rest. The inclusion of a cen-
tral bubble is necessitated by the artificial di-
rectionality induced by the partitioning. The atoms
in the central bubble are not physically distinguish-
able from the atoms in the periphery, and it is im-
portant to emphasize that the solution to the vibra-
tion problem is independent of the location of the
central bubble. The physical system, in this case,
has more symmetry than the formalism would in-
dicate.

Since the bubbles are basically tetrahedra, we
assign to them local coordinates as discussed pre-
viously.! As before, we number the bond direc-
tions in a tetrahedron 1-4, and pick an outward
bond-matching convention v— o (v), where v runs
from 1 through 4 and o is a cyclic permutation.

We now number the four kinds of bubble by the
direction of the bond which points into them. For
example, if the cyclic permutation is 1+-2-3-4
-1, then a bubble which is missing a 2 oxygen
atom is a 1 bubble, one that is missing a 3 oxygen

FIG. 1. Diagram of silicon-dioxide Bethe lattice
showing how it can be partitioned to remove second-
nearest-neighbor interactions.
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atom is a 2 bubble, and so on.

Given that the displacements of the atoms in a
bubble are expressed in the bubble’s local co-
ordinates, the dynamical matrix elements are well
defined and can presumably be obtained. The part
of the dynamical matrix connecting the central
bubble with itself we denote A. The part con-
necting the central bubble with its nearest neigh-
bor in the v, direction we denote D, . The part
connecting this nearest-neighbor bubble with it-
self we denote A, . The part connecting this bubble
with its nearest nleighbor in the v, direction we
denote D,,I,, . Since the Bethe lattice repeats from
this point out, there are no more independent ma-
trix elements. Note that v, cannot be o(v,), so that
there are only twelve matrices D, ,,. A isa 15
X 15 matrix, the D, are 15X 12 matrices, and all
the rest are 12 x12,

As before, we index the submatrices of the
vibrational Green’s function by the sequence of
directions v, v,,...,V, used in traveling from
the central bubble to the one in question. G, de-
notes the part of the Green’s function connecting
the central bubble with itself. G%: denotes the part
connecting the central bubble to its neighbor in
the v, direction. G}1'¥2 denotes the part connecting
to a second-nearest neighbor, and so on. G, is a
15X 15 matrix, and all the rest are 12X 15,

We now have the following sequence of equations:
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This sequence has a solution of the form
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provided that 12 transfer matrices ¢,, satisfy
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These equations may be solved as before by in-
tegrating the continued fraction starting at ¢,
=0. Note that the quantity in parentheses de-
pends only on v. There are thus only four in-
dependent quantities, these corresponding phys-
ically to the Green’s function of a terminated Bethe
lattice restricted to the bubble at the terminus. If
we let

-1
Fu=<w2_Av_ Z Duucbuu> ’ (8)

pEow)

then we have

F,= <w2 A, - D,

pEo(v)

-1
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For the central bubble we have
-1
G=<w2-A—Z D,J«“,,Dj) : (10)
m

In order to illustrate the validity of the method
we have constructed and solved a Bethe lattice for
silicon dioxide using a Keating®? Hamiltonian. The
Keating Hamiltonian assigns a quadratic potential
energy to bond-length and bond-angle distortions,
rather than to bond-length and bond-direction dis-
tortions, as does the simpler Born? Hamiltonian.
For this reason it is rotationally invariant, and
therefore more realistic than the Born Hamilton-
ian. For a bond-length distortion A» we have

AU=1% K, (A7)?, (11)

while for every O-Si-O angle distortion A cosé we
have

AU=3K, (bAcos)?, (12)

where b is the bond length. Following Kleinman
and Spitzer,® we set the Si-O-Si angle distortion en-
ergy to zero as a fitted parameter. We use Klein-
man and Spitzer’s value forK,, 4.32 X 10° dyn/cm,
and a value for K, of 0.27X 10° dyn/cm. This
value, slightly lower than the 0.29 X 10° dyn/cm
suggested by Kleinman and Spitzer, was picked to
make the frequency of the third A, mode of quartz
agree with experiment.

In Fig. 2, we compare the density of states of the
Keating Bethe lattice with that of quartz constructed
using the same Hamiltonian, and with previous
calculations performed using the Born Hamilton-
ian.! The distinctions between the crystal and
Bethe-lattice densities of states are again due to
the presence of 12-fold rings in the crystal. The
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FIG. 2. Comparison of Keating Bethe-lattice density
of states against that of a-quartz constructed with the
same Hamiltonian, and against similar calculations
performed using a Born Hamiltonian.

high-frequency band peaking at 1080 cm™ is
virtually identical to that produced by the Born
Hamiltonian. These vibrations are dominated by
the bond-stretching forces, which are the same
in both models. The siliconlike states at 750

cm™! are unchanged for the same reason. On the
other hand, the low-frequency bands are broadened
and shifted downward slightly in the Keating Bethe
lattice. These bands are predominantly angle-
distorting vibrations® and are sensitive to changes
in the angular force constants. The fact that they
move downward when the Keating Hamiltonian is
substituted for the Born Hamiltonian indicates that
the SiO, units in the glass tend to be rigid at these
frequencies and that the bond directions tend to
vary without distorting O-Si-O angles. The Keating
model agrees more closely with'experiment at
these frequencies.® Overall, however, the Keating
and Born Bethe lattices are remarkably similar,
and it is clear that in most respects the simpler
theory is an excellent approximation to the more
realistic one. The overall similarity of the pre-
dictions of the two Hamiltonians has also been ob-
served by Alben et al.® in calculations performed
for silicon.
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