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Comment on tluasiatomic Auger spectra in narrow-banti metals
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The equivalence of the Samatzky approach to an earlier one of the present a+thor is proven and the
extension to degenerate orbitals and bands is given.

In a recent paper Iproposed an exactly solvable
model for the density of states Of two interacting
holes in a solid. As I stressed on that occasion,
this quantity is important for establishing the
relationship between the Auger spectra of solids,
involving two final-state holes in the valence band,
and the one-electron density-of-states matrix.
The solution was achieved by calculating all the
moments of the total Hamiltonian. Subsequently
Sawatzky, &n a very interesting work, ' put forward
a closely related model and solved it exactly by a
Green's- function equation -of-motion technique.
As Sawatzky demonstrated, the interacting density
of states solves the puzzle of the occurrence of
quasiatomic Auger spectra in solids (see also
Ref. 3}.

A comparison between the two exact solutions is
needed because they were achieved by very dif-
ferent mathematical techniques and with unessen-
tial differences in the models. Moreover, the
solutions look very different at first sight. In this
paper I prove that, despite the formal differences,
the approaches of Refs. 1 and 2 are equivalent, and

I extend the theory to the more realistic case of
degenerate orbitals and bands. The extension is
important since the observed more or less quasi-
atomic spectra consist of multiplets.

For convenience, we assume that the band is
initially filled with electrons. Then the initial
state is the hole vacuum ~v) . In the case of a
simple orbital, the Auger transition suddenly takes
the system to the state ~0) =cJ, c~o Iv), where c~„
creates a hole with spin up on the atomic orbital
involved. The density of states is the Fourier
transform of the correlation unction

transition occurs. Specifying Hs further is ir-
relevant here, but since H can be identified with
an Anderson Hamiltonian, this model may be ap-
propriate to describe impurities or chemisorbed
atoms. The solution was obtained by taking the
expectation value of the operator identity

H" =Hs+ Hs HIH (&)
r' ¹:0

using the fact that Hz acts like ~0) U(0
~

and sum-
ming the Taylor series for D(t). Here, it is con-
venient to write down the result in Laplace trans-
formed form

D(s) =D'(s) —iUD'(s)D(s) .

D«(s) =Do~(s) —iU g D', , (s)D@(s), (4)

where, obviously,

D„(f)=(v)c, c„e '"'cto. c', ~v) .

In Eq. (3), D'(t) is the correlation function cal-
culated in the absence of HI, and equals the
square of a one-electron correlation function.
Equation (3) involves the occurrence of localized
resonances if U is large compared with the band-
width, ' in full analogy with Sawatzky's results.

Sawatzky considered a Hubbard model„with HI
= UQ, n„n, , with the index i running over all the
atomic sites. His model is therefore more ap-
propriate to describe an atom in a perfect crystal.
Kith this interaction Hamiltonian, the above argu-
ment runs just as before, and Eq. (3}becomes

D(f)=g -'I"a„, (I)
rf w'0

where h„= (0 jH" ~0) is the nth moment of the Ham-
iltonjgn. In Ref. 1, the Hamiltonian was taken to
be H=Hs+HI, where Hs is a one-electron Hamil-
tonian describing the band of the solid and the

hopping terms between the atom and the solid,
and HI = Un„n0 is the interaction term localized
at the atomic site (n„= c+~ c„),where the Auger

Equation (4) holds for ordered and disordered
solids as well. If we assume a periodic solid,
with wave-vector-dependent single-particle en-
ergies q„we can define Fourier-transformed
quantities like

D,(s) =QD&,e-"'"& .

Let N be the total number of atoms. Then Eq.
(4) becomes

(6)
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1 ~ D',(s)
( I)

In view of the relationship D(-iv&+0) =iG(&u),
where G is the Green's function, Eq. (V) is identi-
cal, to Eq, (9) of Itef. 2, apart from a trivial shift
in the origin of energies and a factor (2v) ' arising
from Sawatzky's use of Zubarev Green's functions.

Also, we can readily verify that

D', (s) =N g [s+ i(g, „»+g, «,)]-~ (8)

Thus, the relationship between the two solutions
is established. We can now extend Eq. (3) to the
case of degenerate orbitals and bands without
special difficulty. Let L be the angular momentum
of the atomic orbital where the two holes are pro-
duced. Then, we are interested in calculating the
spin-dependent two-particle correlation function

D ~,(t}= (m m o
j e '«'

~
m, m~o), (9)

where ~m, m, o) = c~ „c~,~v) and the m& are mag-
netic quantum numbers. The interaction Hamil-
tonian now reads

c~ c+I
2 g g g nlgta&m3m4 m~a ~N m N m&a

tytys ttty ttt2 tttg ttt4

(10)
where

4 3

is a Coulomb integral. The noninteracting cor-
relation functions are related to the single-hole
density matrix p (ur) as follows:

D'.,~,...„(&)= p...(f)p~.,(t),
D'. ....„(f}=p...(f)p„.,(f)

(f)p (f) .

The calculations can be carried out just as before
and Eq. (3) becomes the matrix equation

D,(s}=D', (s) —ID,(s) W~', (s), (12)

where the matrix S', has elements

8' =U
%y ttt2 y ttt3t84s - tÃy m2 ttl4ttt3 t

(13)

In general, Eq. (12) is equivalent to a rather big
system of linear equations. If, however, the solid
does not distort the spherical symmetry of the
atom too much, the off-diagonal p vanish. Then,
the equations for different total angular momenta
I., decouple and become identical to Eq. (3}, each
with its own value of the repulsion U~, . For nar-
rowbands, the spectrum clearly becomes aquasi-
atomic multiplet.

Finally, let us consider a transition metal, com-
posed of identical atoms with valence shells of
angular momentum L ~ The interaction Hamiltonian
is now

x ~
m~ itt m ia' ttt i' ttt4ift

(14)
that is the sum of the interaction Hamiltonians at
all the atomic sites (the notation is obvious). In
order to extend Eqs. (4)-(V) to angular momentum
L, we just define matrices D „with components

D. ..(s) = (c ic„,, c „(s+fH)-'

and introduce their Fourier transform as in Eq.
(6). The final result is

D„,(s) = —Q D'„(s)[E+iW, D'„(s)] ', (15)

where E is the unit matrix. Equations (12) and
(15) should allow for a detailed comparison with
experiment, and this work is currently under way.

As a closing remark, I should like to note that
generalizing the theory to alloys is a rather easy
task and the simple method proposed here and in
Ref. 1 leads to exact solutions to a variety of
problems involving localized interaction terms
in the Hamiltonian. For instance, we can deal with
x-ray-photoemission-spectra or Auger experi-
ments that produce holes in valence states, while
allowing for the coupling of the holes with a plas-
mon field. A paper dealing with such problems is
forthcoming. 4
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