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Electromagnetic response of electrons in narrow-band-gap semiconductors

with an energy-dependent relaxation time
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The effective conductivity tensor which includes the effects of both conduction and diffusion of carriers in

electromagnetic fields is derived for charge carriers in narrow-band-gap semiconductors in the presence of an

external magnetic field. The derivation uses an extension of the density-matrix formulation of Greene, Lee,

Quinn, and Rodriquez to include the effects of the nonparabolicity of the energy-band structure and the

possible energy dependence of the relaxation time. The resulting formulation is shown to be both gauge

invariant and charge conserving. It is also shown that our theoretical expression reduces to those of other

workers in the limits of either parabolic energy bands or a constant relaxation time.

I. INTRODUCTION

In a paper published in 1969, Greene eI; al. ' de-
veloped a gauge-invariant formulation of the elec-
tromagnetic response of an electron gas with
particular reference to the study of transport phe-
nomena in metals. Using a density-matrix treat-
ment in which the effects of co11isions and a strong
uniform magnetic field were considered, they cal-
culated the current and charge densities of the
electron gas to first order in the perturbing elec-
tromagnetic field. Moreover, their treatment
also included the effect of the collision-drag cur-
rent caused by moving impurities.

In this paper, we present a gauge-invariant for-
mulation of the electromagnetic response of elec-
trons in solids, taking into account the nonpara-
bolicity of the energy bands and the possible ener-
gy dependence of the relaxation time. It is to be
noted that this extension of the results of Greene
et al. is of particular relevance to transport phe-
nomena in narrow-band-gap semiconductors, es-
pecially in the presence of strong magnetic fields.
Indeed, one of the most thoroughly investigated
consequences of the strong coupling of the energy
bands present in such semiconductors is that the
effective mass of the electron is no longer con-
stant, but increases with the applied magnetic
field. Now because the transport properties in
general depend on the density of states, which in
turn is a function of the electronic effective mass,
the transport properties themselves will also be
affected by the strong coupling of the bands.

This extension also takes cognizance of the fact
that many of the important interactions involving
electrons in semiconductors depend on energy and
cannot be represented by a constant relaxation
time. Typical examples of interactions which are
represented by an. energy-dependent relaxation
time include acoustic and optical deformation-po-

tential scattering, piezoelectric scattering, and
ionized- impurity scattering. Furthermore, since
the interactions, in general, depend on various
fundamental properties of both the electronic sys-
tem and the system which interacts with it, their
inclusion allows one to study the effect of these
characteristic parameters on not only the elec-
tronic but also the other system as well. A rather
important illustration of this occurs in the study
of ultrasonic attenuation in semiconductors where
the electron and phonon systems interact primarily
through the piezoelectric or deformation-potential
coupling mechanisms. Here, as is well known, '
one finds that the absorption coefficient of the ul-
trasound and the change in the sound velocity of
the material depend critically on the effective con-
ductivity tensor of the electron system, which in
turn is a function of the scattering mechanism via
the energy- dependent relaxation time. Moreover,
as we l.imit ourselves to semiconductors where
piezoelectric coupling or deformation-potential
coupling are the dominant modes of the electron-
phonon interaction, we can ignore the collision-
drag effect in our formglation.

To accomplish this extension, we use the two-
band model of Lax' to account for the nonpara-
bolicity of the energy bands. This model which is
derived from the Schrodinger equation of an elec-
tron in a solid is particularly appropriate to nar-
row-band-gap semiconductors. For in such a
semiconductor, one reasonably expects those en-
ergy bands that are closely separated in energy
to be strongly coupled and thus play a more sig-
nificant role than the bands that are widely sepa-
rated.

The effect of the energy-dependent relaxation
time is included via a generalization of the usual.
relaxation- time ansatz. Specifically, we replace
the single term of (p- p,)/r in the collision term
with the anticommutator of p- p, and 1/T. Al-
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though this replacement is strictly valid for the
case of a constant relaxation time, we also as-
sume its validity for the case of anenergy-depen-
dent relaxation time. While this form of the coBi-
sion term was arrived at essentially by appealing
to the correspondence principle, we should men-
tion that the extensive calculations of Argyres'
and the somewhat later one of Arora and Peterson'
indicate that this assumption is indeed valid.

In Sec. II, we solve the quantum Liouville equa-
tion to first order in the self-consistent electro-
magnetic field. With this solution, we then calcu-
late the induced current and charge densities in
Sec. III. In addition, we demonstrate that the
electromagnetic response of the electron system
is both charge conserving and gauge invariant. We
then specialize and compare our results for the
longitudinal effective- conductivity tensor with
those derived in other papers in various limits.
Finally, it should be noted that whereas in the
main we have used the same conventions and nota-
tions as were employed by Greene et al. , our
treatment does differ in that we have utilized a
different phase convention for the spatial and time
variations; i.e. , we have assumed that all such
variations are of the form exp[i(q r- ~t)].

II. SOLUTION OF THE QUANTUM LIOUVILLE EQUATION

We begin our analysis by introducing the quan-
tum Liouville equation which includes the effects
of the nonparabolicity, the electromagnetic field,
and collisions on the electron system:

(2.1)

Here H is the two-band Hamiltonian of the eI.ec-
tron, which can be expressed succinctly in terms
of the 2 ~ 2 unit matrix I, the Pauli spin matrices
o„a„o„and the two-band matrix elements
~mn as

1 eH= p+-A —ef I+—' p+ —A
26% C c

As we have previously mentioned, we assume that
the collision term (sp/st), in Eq. (2.1) can be ex-
pressed in, the form

(2.6)

where p, (H) is the Fermi-Dirac distribution, 7'(H)

is the energy-dependent relaxation time, and [, ],
is the anticommutator bracket.

We commence the analysis of the quantum Liou-
ville equation by noting that for our purposes it is
sufficient to consider the linear response of the
system to the electromagnetic field [A(r, t),
p(r, t)]. Accordingly, we rewrite H as H=H, +H,
and seek a solution of the form p= p, (H)+ p, such
that p, (H) = p„+p„, where the subscript denotes
the corresponding order of the term in the elec-
tromagnetic field. Moreover, we assume al.l first-
order quantities to vary as exp[i(q r- rut)].

If we substitute the above decompositions for
H, p, and p, in the quantum Liouville equation and
retain terms of first order in H, we obtain

ik (vI p„ I v'&

7„,„E„'—E„+R&u+ i N/ r,„

(t.'- t.)(vIH, I v'&

E„'—E„+S(d+ N/7. „„,'
(2.7)

where we have used the eigenstates of H„which
satisfy the H, equation:

H, i
v&=E„i v&. (2.8)

In addition, we have defined the average relaxation
time in the final and intial states as

Bloch-function basis evaluated at k=0. In the
above equations, we have introduced the free-
electron mass m, the energy gap E~, and the vol-
ume of the unit cell 00. Also, we note that the
vector and scalar potentials A(r, t) and P(r, t),
respectively, determine the electromagnetic
fields E and 8 via the relations

1&A
and B=&&A.

C Bt

e Ecr,
+—~ p+—A o'+

m c 2
(2 2)

o, = ~(o,+ig,),
o = ~(a, -io,),

(2.3)

(2.4)

(2v)'
+~n= g ~mop e)~r

0

for nz, n=1, 2. Here P „are the two-band matrix
elements of the momentum operator p in the

and for simplicity, have denoted the matrix ele-
ments of the equilibrium density operator p~(E„)
as p„. From Eq. (2.V) we see that to completely
characterize the response of the electron system
to the perturbation H„we only need to substitute
the known expressions for H, and p„. To find H„
we simply expand Eq. (2.2) to first order in the
electromagnetic field. Expanding Eq. (2.2) we
find the following explicit expressions for H, and
H, :
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1 e ' f» e0 = p+—A I+—"~ p+ —A. 00
—

2m q 0 m ~ 0 +

E
+—~ p+—A 0+—&

m (} 2 zf (2.10)

We obtain a more compact expression for
(vl pl v'), if the notation of Greene et a/. is modi
fied to include an energy-dependent ~, i.e. ,

&vlplv'&=p„6„„. +A„„,&vlH, p,, lv &

e ~
H, =— vT~, —A, I —eQI

-'+
where

+A', &vl p, lv'), (2.17)

where

V(q) ~ Aioe
'" ' —e &ti, I,

C

(2.11)

1 —l&d Tv, v 1 —S&dTV, V

(2.18)

1 e- m„
VTg p+ Ap I+ 0'++

m c ' m + m
(2. 12) (2.19)

P(q) = ,'[vT„e'-' I). (2.13) pv pv
VV' (2.20)

Similarly, to determine p~ and p„we use the
expression for p, (H), which we write

p (H) = (1+e~ ' "") ' (2.14)

(p„,—p„)(v I H, ( v')

E„,—E„+hid+ ihlr„
(2.16)

where I3= 1!keT and ii= p(r, I) is the chemical po-
tential. Expanding and retaining only first-order
terms, we obtain the following matrix expression
for p,(H):

&vip, (H) l
v') = p„5„„.+ " "

&vlH, ii, l
v'&. (2.15)

v' v

With this expression, we can relate p to II, and g&'

&v p v'&=p. 6. .+
imp„, A,

.
&vlH, ii, l

v &

r„,„E„.—E„E„.—E„+irui+ih/T„, „

Tr 6(r- r,)I — = 0.
C-

(2.21)

Using our expression for the collision term and
the following representation of the Dirac 6 func-
tion:

6(~p r ) y-1 Q e-il (I Po) (2.22)

we find that

Finally, to express the nonequilibrium density
matrix p solely in terms of the perturbing elec-
tromagnetic potentials A, and P„we make use of
the fact that the collision mechanism conserves
the number of particles. Thus we must require
the

e @(d

p, (q, ~)=—g g "'"& 'le "l & —,&vl~(q)l "&A,(q, )-e&vle*"I'&&(q ~) E,
v vp v v

(2.23)

where

(2.24)

It is apparent that Eqs. (2.11), (2.17), and (2.23)
allow us to relate the matrix elements of p to the
electromagnetic potentials A, (r, I) and P, (r, I).
Moreover, we note that although we have only de-
termined p in the linear response regime, it is
also clear that because the Hamiltonian of the
system incorporates the effects of the electro-
magnetic field via A, and Q„ the fact that p
= p(A„Q, ), will also persist for the nonlinear re-
sponse. On the other hand, it is axiomatic in
quantum theory that all measurable (observable)
quantities must be gauge invariant under a trans-

III. CURRENT AND CHARGE DENSITIES

With the expression for p given by equation, we
can now evaluate the current density at the point
ro&

J(r„t) = Tr(——,e [v, 5(r- r,)I],p)I,

to first order in the field, where

v= vTs+ (e/mc)A, I

(3.1)

(3.2)

formation of the electromagnetic potentials. Con-
sequently, since the measured quantities are com-
puted using p= p(A„Q,), we deduce that the Ham
iltonian cannot be arbitrary, but must be con-
strained to satisfy certain restrictions in any
consistent formalism.
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where

~ —(K-K,} 8,,(q, x)), (3.3)

M= g A„,„(v lv(q) Iv')*(v lp(q) Iv'&,

(3.4)

(3.5)

g A. .'& v
I &(q) I

v'&'& v
I
e"'

I
v'&,

Vse

Upon substituting the expression for &vIIf, v'), we

see that J(q, u&), the Fourier transform of J(r„t),
can be written in the form

J(q )= (-A, N, ~ ) —M A, (q, )+Kq(q, tx)

(3.11)

(3.12)

Upon examination of the expressions for the cur-
rent density J(q, (e) and the charge density p(q, ~},
in accordance with our previous remarks, we ob-
serve that they are not manifestly gauge invariant.
Nevertheless, we will show that the two-band
Hamiltonian allows a gauge- invariant formulation
of the electromagnetic response of the electron
system. To this end, we first consider the ex-
pression for p,,(q, u&). It is readily verified that
the two-band Hamiltonian is such that the follow-
ing relations hold:

[ff„e"'I]=K(T P(q} (3.13)

and

and

(S.6)
(v

I &(-q) Iv'&=(v' l&(q)lv& . (3.14}

(d,' = (4ve'/m) (fi/V) .

We next consider the charge density at the point

If we next substitute

)
icE(q, (o} c

~ ( )1 +q xq (3.15)

ro:

p(r„t) =-e Tr[5(r- rU)I pj . (S.7)

+Eq, (q, xq+- (A-E, )X,(q, x))

(3.6)

Here the primed K's, K' and K,', are derived from
the corresponding unprimed K's by carrying out
the following operations: (a) write K and K
= F((@+i'„',„); (b) define an operator T which re-
places (8}+is„',„ in K by (d —ir„',„; (c) define an
operator C which takes the complex conjugate of
the result in (b). Thus, we have

K =c(r(KQ)

((8}—1' 7„8„)

(3.9)

K; = c(r(K„))

Following the same procedure used in determin-
ing the current density, we obtain

CO

p(q, ~) = —[K,' —(K' —K,') ) A, (q, &u) Upon substituting this expression in the equations
for J(q, v) and p(q, ur), we find after considerable
manipulation the following result:

QP

J(q, lx)= (( —(U+M) ~ E+

x(K —K,}(K'—K') E) (3.17)

2

p(q, &u) = ~, (2K,' —K') ~ +

x (A - I ) (R' —K') E), (8.}8)

where U is the unit dyadic and for simplicity, the
subscript on the field E is dropped. Thus we see
that both the current density J(q, (d) and the charge
density p(q, (d) have two contributions. In parti-
cular, J(q, (d) is the sum of two vectors, one in-
volving the conductivity tensor cr and the other
the diffusion tensor 5, where

and the above relations in the expression for
p, (q, (d), we obtain upon simplifying

p, (q, (d)+ e(I},(q, &u) = (eN/2mcG)(KJ —K,') E(q, (d) .
(3.16)

4) 'E7
N

x & v Ie"'
I
"'& &" Iv(q}

2

J,=q E= —(U+M) E)4mc ~ (3.19)
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('d

l =5 E= (K-K,)(K' —K,') E).4rc 2mc6

(3.20)

Now as the above equations are clearly indepen-
dent of the electromagnetic potentials A„and (t)„
we can conclude that the two-band Hamiltonian
permits a gauge-invariant description of the elec-
tromagnetic response of the system.

Finally, we show that not only' are the expres-
sions for J(q, a)) and p(q, (d) gauge invariant, but

they also satisfy charge conservation. If we
form the scalar product of q and J(q, &u), we get

2

q ~ J(q, (d) = iK,' ~ E —i(K' K,') E

Using this expression we find that the effective
longitudinal conductivity is given by

)

' ' lM, —' l., (l —L,))4scsqE M, —i(u (L L,)
(4.1)

where g is a unit vector in the direction of q and

2mc I
itf, =

2™'
QQ +'"

l &" ls "'
I

~& l' (4 2)

With the derivation of the above expression, which
is valid for an energy-dependent relaxation time
r(E) we now consider two important limiting cases.

In the case of a constant relaxation time, we
find that Eq. (4. 1) reduces to

~ (L L,)(K' —-K,') E) .

(3.21) where

ru' 7.+2 L,L,
4nq'c' L, —i ~T L, (4 3)

Comparing this expression with p(q, u)), we see
that

(3.22)
and

LE-LL le=o

CO = (d + S T

(4 4)

(4 6)
Hence, the two-band Hamiltonian is also consis-
tent with charge conservation.

IV. EFFECTIVE CONDUCTIVITY TENSORS

Having demonstrated the gauge invariance of the
electromagnetic response of the electron system,
we now limit ourselves to a consideration of a
longitudinal electric field. This case is of extreme
importance for those semiconductors in which the
principal electron-phonon interaction is via either
the piezoelectric or deformation, -potential coup-
ling mechanisms; for in, these semiconductors the
interaction of the charge carriers and the piezo-
electric or deformation-potential. fields is known

to be strongest for longitudinal electric fields.
Accordingly, we need only consider the longitud-
inal component of the diffusion and conductivity
tensors. The effective longitudinal conductivity
tensor, which combines the phenomena of con-
duction and diffusion, follows immediately from
our expression for q ~ J(q, (d).

For the case of no collisions, i.e. , an infinite
collision time, Eq. (4.3) simplifies to the following

expression:

'ECOp (d
+li

4%/ c

where

L, =L, ll/r =O.

(4.6)

(4.7)

In conclusion, we should mention that the expres-
sion for o, in Eq. (4.3) agrees with the formal
expression of Greene et al. when it is evaluated
for a nondegenerate semiconductor. It also agrees
with the corresponding expression derived by
Spector' on the basis of a Boltzmann-equation
formulation. Finally, we note that Eq. (4.6) is
identical to the expression derived previously by
Wu and Spector. ' For a detailed application of
the above expressions, we defer to a later paper,
which will investigate magnetoacoustic pheno-
mena in semiconductors. '
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