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Surface structure of electron-hole drops in germanium and silicon
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Density-functional formalism of Hohenberg and Kohn is generalized for the case of a multicomponent

plasma. Using the self-consistent Kohn-Sham equations for electrons and holes and the local-density

approximation for the exchange-correlation potential, we investigate the surface characteristics of the
electron-hole liquid in six configurations of Ge and Si. We denote these configurations by X(v„v„), where

X is either Ge or Si, and v, and v„are the number of occupied electron and hole bands, respectively. In
normal Ge, i.e., Ge(4;2), the value of surface tension o. is found to be 3.7 X 10 " erg/cm'. When Ge is

subject to a uniform stress of about 3.5 kg/mm2 along the (111) direction, i.e, , in Ge(1;2), cr is

calculated to be 1,0 &( 10 ' erg/cm . Under a very large (111)uniaxial stress on Ge, i.e., Ge(1;1), cr is
found to be a factor of 20 smaller than in Ge(4;2). The charge on the electron-hole drop (EHD) is also
studied in the above-mentioned systems. In accordance with the experiment of Pokrovsky and Svistunova, we

find that the EHD is negative in Ge(4;2) and positive in Ge(1;2). It is predicted that the drop will sustain a
negative charge in Ge(1;1). Calculations for surfacetension and charge on the EHD are also reported in three

configurations of silicon. The value of cr in unstressed Si, denoted by Si(6;2), is obtained to be 87.4 X 10 '
erg/cm . Application of an intermediate stress along the (100) direction leads to the configuration Si(2;2).
The value of cr in Si(2;2) is found to be 32.8 X 10 ' erg/cm'. In the presence of a large (100) stress, i.e.,
in Si(2;1), the surface tension is a factor of 8 smaller than in Si(6;2). Calculation of the charge reveals that
the EHD is negative in both Si(6;2) and Si(2;1). Within the limits of accuracy of our calculation we find the

drop is almost neutral in Si(2;2).

I. iNTRODUCTION

In indirect-band-gap semiconductors (e.g. , Ge
or Si) excitons are formed under weak external ex-
citation. When the density of excitons becomes
high, their individuality is lost. Further, in the
luminescence spectra a new line appears on the
low-energy side of the exciton line. Detailed ex-
perimental investigations have consistently pointed
out that the new luminescence line originates from
a recombination of electrons and holes condensed
in high-density droplets. ' " Such a condensed
state is now known as electron-hole liquid (EHL).
Experimental investigation of its properties is fa-
cilitated by the fact that the lifetime of particles is
quite long (-10 ' sec) and therefore the condensed
phase is, to a very good approximation, in a state
of thermodynamic equilibrium. It was Keldysh who
first conceived that the EHL is likened to a plasma
of electrons and holes stabilized by Coulomb inte-
action of the constituents. " His conception of EHL
was subsequently confirmed by an abundance of ex-
perimental' "and theoretical" "observations.

The theoretical appeal of the electron-hole liquid
is mainly due to the absence of complications which
can arise from the lattice effects. In view of the
fact that the excitonic Bohr radius in Ge (-17V A) or Si
(-49 A) is large compared to the lattice constant,

and that the fraction of electrons excited into the
conduction band is small, the interaction between
electrons and holes is bare Coulomb screened by
the static dielectric constant of the material. "
Thus, the EHL can be regarded as a collection of
electrons and holes, characterized by proper band
masses and interacting via statically screened
Coulomb interaction. The fact that the system at
hand can be accurately described as a quantum
plasma of electrons and holes makes it an ideal
candidate for testing different many-body approx-
imations. Theoretical efforts to date have been
successful in explaining the ground-state proper-
ties of EHL. ' " Calculations of the binding ener-
gy and equilibrium density in Ge and Si agree well
with experiment. " Detailed investigations have
also been made of thermodynamic quantities like
gas-liquid transition temperature, the compres-
sibility, the temperature dependence of the density
and of the chemical potential, etc."""" The-
oretical results for these quantities are also in
good agreement with experiments, thereby estab-
lishing the validity of the plasma model. "

The surface structure of the EHL has not hitherto
been examined as thoroughly as its bulk proper-
ties. The reasons for the insufficient knowledge
of the EHL surface are essentially twofold. First,
the lack of translational invariance makes any sur-

17



2656 R. K. KALIA AND P. VASHISHTA

TABLE I. List of band masses, dielectric constant, and the excitonic-rydberg value in
Ge(4;2) and Si(6;2). m„and m~ are, respectively, the longitudinal and transverse masses
for an electron, m«and m~ the optical and density-of-states masses for an electron, and

m&h and mhh are the light- and heavy-hole masses. These masses are given in units of bare
electron mass. ft is the dielectric constant of the system and E„ is the value of the excitonic
rydberg. The band-mass values ~ and E„ in Ge(l;2) and Si(2;2) are the same as in Ge(4;2)
and Si(6;2}, respectively.

System mel me) mif e mph E„(meV)

Ge(4-2)
si(6:2)

1.58
0.9163

0.082 0.120 0.22 0.042 0.347
0.1905 0.2588 0.32 0.154 0.523

15.36
11.4

2.65
12.85

face problem more difficult than the bulk problem.
Second, proper understanding of the bulk proper-
ties, which must precede that of the surface, has
come about only recently. Now that the bulk prop-
erties of the EHL are well understood, there is a
basis for a proper investigation of its surface
properties.

In this paper we shaQ examine the surface char-
acteristics, such as surface tension, dipole layer,
and charge on the electron-hole droplet (EHD) in
germanium and silicon under uniform, uniaxial
stress along (111)and (100) directions, respec-
tively. For the sake of convenience we shall des-
ignate these systems by X(v, ; v„),"where X is
either Ge or Si, and v, and v„are, respectively,
the number of conduction and valence bands. In
germanium under zero stress, i.e. , Ge(4; 2), there
are four equivalent conduction bands along the
(111)direction and two hole bands degenerate at
the I"point. " Away from the center of the Brillouin
zone, the hole bands branch out into light- and
heavy-hole bands. The structure of the valence
bands is the same in unstrained silicon and germa-
ium. The difference arises in the number and lo-
cation of conduction valleys. There are six con-
duction bands along the (100) direction in Si. Thus,
the notation for unstrained silicon is Si(6; 2)."

In the presence of a (ill) stress on Ge, one of
the conduction minima moves toward the valence
bands while the remaining conduction bands move
away from it. At a stress of about 3.5 kg/mm' all
the electrons of the condensed phase reside in the
lowest conduction valley because the electron Fer-

mi energy coincides with the absolute minima of
the other three conduction bands. Except for a
slight decoupling at the 1" point, the valence-band
structure remains as in Ge(4; 2). Such a configu-
ration is called Ge(l; 2). When silicon is subject
to a uniform stress along the (100) direction, two
of the six conduction valleys move toward the val-
ence bands while the remaining four move away
from it. At a stress of about 10.5 kg/mm', only
the two lowest conduction bands are populated. The
changes that occur in the valence-band structure
are similar to those in Ge(1; 2). Following our
notation, we denote this configuration by Si(2; 2).

Application of a large (111)uniaxial stress in Ge
and a (100) stress in Si not only removes the val-
ence-band degeneracy at the I' point, but also
modifies the valence-band structure. " In both
systems, the holes occupy a single, highly aniso-
tropic band. In Ge under a large (ill) uniaxial
stress the electrons reside in a single conduction
band, whereas in Si under a large (100) stress they
occupy two conduction bands. We designate these
systems by Ge(1; 1) and Si(2; 1). The band masses,
dielectric constant, and the excitonic-rydberg val-
ues used in the present work are listed in Tables
I and II.

Owing to different masses andlor number of
bands, electrons and holes in EHL possess differ-
ent chemical potentials. Now, the bulk chemical
potential for any component consists of kinetic,
exchange, and correlation contributions. Explicit
calculations for the ground-state energy reveal
that electrons and holes contribute almost equally

TABLE II. Values of constants in Ge{1;1)and Si(2;1). The masses are measured in units
of bare electron mass. m and m~ are the density-of-states masses for an electron and hole;
m and m, l, are their optical masses. ml„and m~ are the longitudinal and transverse masses
for a hole. E„ is the excitonic-rydberg value in Ge(1;1) and Si(2;1}.

System mel met mal mlt f m l, E„(meV)

Ge(l; 1) 1.580 0.082 0.2198 0.120
Si(2; 1) 0.9163 0.1905 0.3216 0.2588

0.040 0.130 0.088 0.075
0.1988 0.2561 0.2354 0.2336

2.65
12.85
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to the exchange-correlation energy. "" In that
event the difference in bu1k chemical potentials of
electrons and holes arises mainly from p, ,*-p, ~,
where p, ,* and p, „are, respectively, the Fermi en-
ergies of electrons and holes. For a system with

v, conduction bands, and light- and heavy-hole
bands pe~ and pa~ are given by

0 -T ~ +o 1 ~lh
2m v'~ ' " 2mhh I. mM,

K, = (3vk, )'~',

where n, is the equilibrium density of e-h pairs,
m„ is the density-of-states mass for an electron,
and m» and mhh are, respectively, the 1ight- and
heavy-hole masses.

Using the band masses given in Table I, for
Ge(4; 2) we find that p r/V, ~r=1.62/v', t'=0.64, which
implies that the holes in the EHL are less tightly
bound than the electrons. Consequently, at a low
but finite temperature the holes will have excess
thermionic emission and, therefore, the EHD will
sustain a negative charge. The holes will continue
to evaporate until, at equilibrium, the work func-
tions for electrons and holes, and therefore their
rates of emission, become eaual. " Similarly, in
Si(6; 2) the ratio P~/P~r = 0.55, implying that the
EHD miQ be negatively charged.

Application of these arguments leads to interest-
ing consequences in strained Ge and Si. It is easy
to infer that in Ge(1; 2) and Si(2; 2) the electrons
will tend to evaporate more than the holes [the
ratio p r/P~r = 1.62 in Ge(1; 2) and 1.14 in Si(2; 2) ]
and therefore the droplet will acquire a net posi-
tive charge. In the case of Ge(1;1) and Si(2;1) the
ratio p, r/p, ~~=m, „/m„vn/'. With the band masses
given in Table II, P r/P~r = 0.40 in Ge(1; 1) and 0.46
in Si(2; 1), which implies that the electrons will
evaporate less readily than the holes. In other
mords, the EHD will be negatively charged in
Ge(1; 1) and Si(2; 1). Measurements of Pokrovsky
and Svistunova have confirmed that the charge on
the EHD is indeed negative in Ge(4; 2) and positive
in Ge(1; 2)." To date, no experimental measure-
ment of droplet charge has been reported in
Ge(1;1), Si(6;2), Si(2; 2), and Si(2;1).

Corning to the question of surface tension, ex-
perimental studies of the coexistence curve have
revealed that the exciton gas becomes supersat-
urated before the EHD begins to nucleate. " This
is a sign of the existence of surface tension. Mea-
surements of the EHL surface tension o have been
carried out only in Ge(4; 2). Westervelt et a/. have
reportedavalueof2. 9xl0 'erg/cm'. " Bagaevand
coworkers have estimated o to be 1.6 x 10 '
erg/cm'. " A recent experiment of Etienne et al.

gives a value of 3&10 ' erg/cm', "while Staehli's
estimate is 3.8x10 ' erg/cm'. 4' To our knowledge,
there does not exist any experimental measure-
ment of surface tension in Ge(1; 2), Ge(1; 1),
Si(6; 2), Si(2; 2), and Si(2; 1). Without conclusive
experiments on surface tension and binding energy
it is inconceivable that any progress can be made
in understanding the coexistence curve or the ki-
netics of EHD formation.

In view of the fact that the EHL is free from
"parasitic" effects of ions, theoretical investiga-
tion of its surface properties can be appropriately
handled by means of the density-functional formal-
ism of Hohenberg-Kohn-Sham" " (HKS). Within
this formalism there are essentially two mays of
approaching the surface problems. The easier of
these two is widely known as variational procedure.
The basic philosophy of the variational method is
to approximate the ground-state energy and use
exponential density profiles for electrons and
holes. Each density is characterized by a varia-
tional parameter. In this way the approximate
ground-state energy becomes a function of varia-
tional parameters. After minimizing the total en-
cl'gy with respect to these parameters one obtains
the minimized total energy. Subtracting the bulk
contribution from the total, one gets the surface
energy. Most authors have retained local-density
contributions from kinetic and exchange-correla-
tion energies, and a first gradient correction to
the kinetic energy. "' ' " The surface-tension val-
ue that they obtain in Ge(4; 2) is around 1 x10 '
erg/cm'. Including the first gradient correction to
the exchange-correlation energy Vashishta, Kalia,
and Singmi find that the value of the surface tension
changes significantly. ' " Their estimate of o in
Ge(4; 2) is 3.5x10 ' erg/cm'. Evidently, it is in
reasonable agreement with the measurements of
%estervelt et al. ,"Etienne eI, al. ,"and of Staehli. "
An important outcome of their variational calcula-
tion as well as that of Reinecke et al."is that the
EHD surface tension in Ge(4; 2) is an order-of-
magnitude (a factor of 16) larger than in Ge(l; 1)."

Variational calculations that include effects of
valence-band coupbng" on the gradient correction
to the kinetic energy of holes, as mell as the ex-
change-correlation gradient correction, ' yield a
positive charge on the EHD in Ge(4; 2) and a neg-
ative charge in Ge(1; 2). These results are in dis-
agreement with the above-mentioned thermody-
namic arguments and the experimental results of
Pokrovsky and Svistunova. " Further, contrary to
what one expects from energetic considerations,
the variational procedure yields a positive charge
on the EHD in Ge(1; 1)." Such an unsatisfactory
feature of the variational method arises from the
approximate treatment of the kinetic energy and the
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absence of Friedel oscillations.
Considerable improvement can be made over

variational procedures, provided one resorts to
the self-consistent scheme of Kohn and Sham"",
the work involved in it is stupendous. The merit
of the self-consistent procedure lies in the exact
treatment of the kinetic energy, which also brings
in part of the effect of Friedel oscillations. We
shall describe in this paper a self-consistent cal-
culation of the surface properties of the EHL in
the aforementioned systems. In accordance with
the observation of Pokrovsky and Svistunova, "the
self-consistent calculation yields a negative charge
on the EHD in Ge(4; 2), and a positive charge in
Ge(1; 2)." On the basis of our calculation we pre-
dict that the EHD will be negatively charged in
Ge(1; 1), Si(6; 2), and Si(2; 1). This is in agree-
ment with the aforementioned thermodynamic con-
siderations. Within the limit of accuracy of the
calculation, the EHD is found neutral in Si(2; 2).

In Sec. II we give a multicomponent generaliza-
tion of the Hohenberg-Kohn (HK) theory and derive
rigorous expressions for the chemical potential of
electrons and holes. This is followed by a des-
cription of the self-consistent Kohn-Sham equations
in Sec. III. Section IV deals with the surface ten-
sion of the EHD in the six systems and Sec. V is
devoted to a discu, ssion of the EHD charge. Fin-
ally, we mention in Sec. VI which improvements
can be made on the present calculation.

E&E'+ Pet', - d rn,.(r) [V', (r) —V,'(((r)]

Interchanging the primed and unprimed quantities
and adding the resulting equation to Eq. (5), we ob-
tain

E+E'&E+E', (6)

which is absurd. Thus, the ground-state energy is
uniquely determined by {n,.( r)}.

It is convenient to separate the classical Coulomb
energy and write the ground-state energy of a
multicomponent plasma as

N g

E[{n;}]=, Z Z~;~,

„n,( r')n, .( r")
IP

where 8„=+1for holes and -1 for electrons. In Eq.
(3), T and V are the kinetic and potential energies,
respectively, and n,-( r) is the density of the ith
component.

Let us assume that lk) and l@'), corresponding
to the sets of external potentials {V',„(r)} and
{V,'(((r)}, give rise to a set of densities {n,.(r)}. If
the ground state is nondegenerate,

(el&le) &(0'l&le') =(O'I&'le')+((t'I&-&'le')
or

Consider an M-component system in the pres-
ence of external potentials {V,'(r)}, each of which
couples with only a particular component. The
Hamiltonian of such an M component system can
be expressed as

II= P drat(r) — V' @,(r)
2m,

'
+ Q drat(r)V, '(r)4,.(r),

j=1

N g—ZZ
i=1 j=1

r d r'4 t(r)+t(r')

II. MULTICOMPONENT GENERALIZATION OF HK THEORY
+ QT', [n, ]+E„,[{n,}]

where the summations are taken over different
components of EHL. The first term in Eq. (7) con-
stitutes the classical Coi 'gamb energy, the third
term is the sum of noninteracting kinetic energies
of each component and the last term is the ex-
change-correlation contribution. A distinct advan-
tage of writing the ground-state energy in a form
such as Eq. (7) lies in the ease with which different
terms in the equation can be expressed in terms of
quantities related to the homogeneous system.

Let 5n, denote an arbitrary variation in the den-
sity of the 1th component. Owing to the stationary
property of E,

x e,,( r —r')4, (r')C, ( r), (2)
6,Z[{n,.}]= 0 . (8)

where 0, ( r) is a field operator for the ith com-
ponent, 4,.( r) is its Hermitian conjugate, and t(, &(r)
is the statically screened Coulomb potential ener-
gy. The expectation value of II taken with respect
to the ground state wavefunction IC) yields the
ground state energy E:

E=1' r ge(, fdr '(rrl(r)e, (3)
i=i

Since, the number of particles of each component
is conserved,

dr 5n, (r) =0 .

Conditions expressed in Eqs. (8) and (9) are basic
to density-functional formalism. Combining them
by means of an undetermined Lagrange multiplier,
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we obtain

8 s p, ) cfrsg r =0

Using Eg. (7) in Eq. (10) we obtain the following
expession for p, ,:

p, , =s),Vt(r)+

»'fs, ] 5Z,.[(sf]
Cs, ( r) 5n, ( r)

Henceforth, we shall suppress the external poten-
tial.

1st (,Q(r) represent the electrostatic energy of
1th component. With Q( r) given by

y(~r) P d~l j( )
tr-r'( ' (12)

the expression for p, , reads

»2& 1 «..K&~] 1 (13)

In view of the fact that the radius of EHD (a5
&10 ' cm) is much larger than interparticle dis-
tance in the system, it is reas'onable to assume
that EHL is a semi-infinite system, occupying half
the space z & 0. The space z & 0 is treated as vac-
uum. Under these conditions, densities of EHL
components vary only in the z direction, thus mak-
ing P a function only of z. Transforming Eq. (12)
into a Poisson equation, we obtain

d'y(z) 4se' p ( )d"
The appropriate boundary conditions for Q(z) are
taken to be

(14)

(15a)

d4 (z)
dz

=0. (15b)

Then, the solution of Poisson equation reads

4n'e
Q(z) = Q(~)+

x &, dz'(z -z')s, (z') .
1 C

Following the conventional definition of dipole
layer, namely,

ae = y(-) —y(--),
and making use of the fact that the total system is
charge neutral, we obtain

dz'z'n, (z') (Is)
j 1 ~oo

Writing Etl. (18) in terms of electron and hole den-
sities, n„(z) and n„(z), we get

4me2
dz'z'[n, (z') -s„(z')] .

K
(19)

(21)

The discussion of charge that we presented in
Sec. I can now be made completely general pro-
vided one compares the chemical potential p, of
electrons with that of holes p„. Since the bulk
chemical potential is obtained from the ground-
state energy of a uniform EHL, the quantity of
main interest in a surface calculation is the dipole
layer. The dipole layer depends sensitively on the
density profiles for electrons and holes [see Eq.
(19)]. Therefore, it is important to obtain the
electron and hole densities accurately.

Prom FAI. (21) we can write for the difference
I"a —&e~

&a - &e = &a - &e - 2&(I) ~ (22)

The sign and magnitude of charge is completely
determined by the difference p„—p, . Since twice
the dipole layer is not expected to remove the dif-
ference p~ —p„ the aforementioned conclusions
about charge will remain unchanged.

III. SELFXONSISTENT CALCULATION

There are essentially two reasons for doing a
self-consistent calculation for the surface proper-
ties of EHL. In view of the reasonable agreement
between the variational calculation of Vashishta

It is consequential to the discussion of charge to
express the chemical potential in terms of dipole
layer. For this purpose, we average Eg. (13) over
the volume of tQe drop and obtain

( )».'(, ] 5&,[( ']] (20)

where n, is the density of jtth component in the
bulk. The last two terms in Eq. (20) are, respec-
tively, the kinetic and exchange-correlation con-
tributions to bulk chemical potential of 1th com-
ponent. The expression for kinetic contribution is
simply the Fermi energy for that component. The
exchange-correlation part of chemical potential is
obtained from the ground state energy calculation
for a uniform system. "'"

From now onwards we shall take P(~) = 0 as our
reference level of energy. In that case, E|I. (20)
becomes



et aL. ' and the experimental measurement of sur-
face tension in Ge(4;2),""'"one would like to
know what effect the higher kinetic and exchange-
correlation gradient corrections have. The other
motivation for doing the self-consistent calculation
stems from the failure of all the variational calcu-
lations" ' in providing a satisfactory answer to
the question of charge. Let us remind our reader
that these variational calculations yield a positive
charge on EHD in Ge(4; 2) (Refs. 48 and 50) and a
negative charge in Ge(1; 2)." These features are
in complete contradiction with the findings of
Pokrovsky and Svistunova"; they measure a nega-
tive droplet charge in Ge(4;2) and a positive charge
in Ge(1;2). Further, on the basis of energetic
considerations we showed thai the EHD charge
would be negative in Ge(1; 1), whereas the va, ria-
tional calculation" yields a positive charge on the
EHD. The failure of variational calculations is due
to the fact that the dipole layer is overestimated.
Considering how sensitive dipole layer is to the
density profiles of electrons and holes, the way to
improve upon the variational calculations is to ob-
tain these densities more accurately. Another ser-
ious shortcoming in variational calculations arises
because of truncation of kinetic gradient expansion;
as a result of which one misses out the effect of
Friedel oscillations.

All these shortcomings can be remedied by the
elegant self-consistent scheme of Kohn and Sham. "
It allows an exact treatment of noninteracting kin-
etic energy, and consequently one does not miss
out the effect of Friedel oscillations arising from
kinetic energy. The limitation of the self-consis-
tent procedure lies in how well one can include ex-
change and correlation effects. The Kohn-Sham
formalism is based on the following three equa-
tions:

which resembles the Schrodinger equation. The
first term on the left-hand side of Eq. (23) arises
from the noninteracting kinetic energy of Lth com-
ponent of EHL. The second term on the left-hand
side is the effective potential felt by a particle of
Lth component. It depends on the densities of all
components (n;) and can be written

(24)

where (,Q(r) is the electrostatic potential of /th
component, given by Eq. (12), and 6E„/6n, (r) is
the contribution arising from the exchange and cor-
relation energy of EHL.

The third equation constitutes an expression for
the density of Lth component in terms of eigensol-

utions g(r) of Eq. (23), and it reads

(r)= QIC (r)l', (25)

where n denotes the lowest occupied eigenstates.
Equations (23)-(25) constitute a set of self-con-
sistent equations for the Lth component. Their sol-
ution yields the densities (n;(r)), which are the
basic quantities in density functional formalism.
It is apparent from Eqs. (23)-(25) that these are a
coupled set of equations —the potential of Lth com-
ponent depends not only on the density of Lth com-
ponent but also on the densities of all other com-
ponents. This is the primary source of difficulty
in solving Eqs. (23)-(25) for each component of
EH L.

It is evident from Eqs. (23)-(25) that the central
quantity in the self-consistent method is the ex-
change-correlation potential 6E„[(n;)]/6n, (r) As. -
suming that the densities vary slowly in space, we
may approximate E„, by the local-density term,
whereby

E„,=— dry„((n;)). (26)

))
se„,((n, ))

sn, (r)
(27)

Since the particles belonging to Lth component
may reside in an anisotropic elliptic band, the ki-
netic energy term in Eq. (23) may have the form

1 g2 g2 ] Q2

2PPl1 2PN l t 9x QP 2P+ f l
(26)

where m, , and m, , are, respectively, the trans-
verse and longitudinal masses of a particle belong-
ing to the Lth component. Under the volume con-
serving transformation

The quantity c„,((n;)) is the total exchange-corre-
lation energy density. It is obtained from the
ground-state energy calculation for a system of
uniform densities (n;), and then each n; is re-
placed by a varying density n;(r). Equation (26) is
commonly known as local-density approximation
(LDA). The appropriateness of LDA for the deter-
mination of ground state energy was first discussed
by Kohn and Sham. " Tong and Sham" showed that
in LDA the density n(r) for atoms agrees well with
the Hartree-rock calculations. Using an exact
sum rule, Vannimenus and Budd have argued
strongly for the correctness of n(r) obtained by
Lang and Kohn in LDA." Thus, it seems that the
local density approximation is indeed a good ap-
proximation for the determination of density.

Functional differentiation of Eq. (26) leads to the
following expression for exchange and correlation
potential gP((n, )):
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(29) V;"[{n,.j;z] = 8m~, dz'(z -z') [n,(z') -n„(z')]

where y =m, , /m, „Eq. (28) takes up the form -} ({n;B+[]'({nB, (39)

V'j2mi —V !2m (30)

m, = (m«m»)'~' . (32)

Henceforth, we shall drop the prime from the
kinetic energy operator, and omit the bar over the
density of states mass m, .

Assuming that the EHL surface is perpendicular
to the z axis, the expression for [}[(r) deep inside
the liquid is

[t)] ( r) c(: sin[kz —y (k)]e'{»»" »'} (33)

where the kinetic energy operator V" is given by

82 a2 8V/2 = + +
g~f 2 gyt2 gZ l2

RIld ppl f the density of states mass for a partic le
of Lth component, is defined by

V{]8n,.);z]=8}[), dz'(z -z'}[n,(z') -n„(z')]

]j, , (—n, ) + }],*]'(n](z))

The exchange-correlation potential is given by

(4o)

where n, (z) and n„(z) are, respectively, the elec-
tron and hole densities, and p. , is the bulk chem-
ical potential of Lth component. The exchange-cor-
relation potential {],",

' is given by Eq. (27).
From the ground-state energy calculations for a

homogeneous EHL, we know that to a very good
approximation the electrons and holes contribute
equally to exchange-correlation energy. ""
Therefore, it is reasonable to divide exchange and
correlation contribution in the bulk equally among
electrons and holes. In that case, Eq. (39) simpli-
fies to

where k„, k„k are the three components of wave
vector ({: and y(k) is the phase shift. Substituting
Eq. (33) in Eq. (23), we get

0*,'( n)(= [n, e",'(n])] (41)

e", = (32/2m, )(k2+ k'„+ k')+ V([{0,.];—~] . (34) where *,e'( n) (is the exchange-correlation energy
per particle. Defining a local value of r, by

Using Eq. (24) in Eq. (34) we obtain
n, (z) = 3/4vr', ,(z), (42)

e", = (k'„+ k', + k') + f„(})(-~)n

5n,
(35}

the expression for e"['(n, ) that we have used, reads

& &
&((f)-2

r, , (z)

Substituting Eq. (27) in Eq. (35), w«ind

e", = (a'/2m, )(k,'+ k', + k')+ ],p(- )+ I{",'({n;j),
(36)

e*'(n, ) = (
r, , (z) &r, ,

0.5Bp

r, , (z) C, + r, , (z)

r, , (z)&r, .

(43).

where p. ",
' is the exchange-correlation contribution

to the bulk chemical potential of 1th component.
Equation (36) holds only when the wave function is
given by Eq. (33). In general, g( r) has the form

P( r) = {() (k z)e"'*"'»"' (37)

Substituting Eqs. (36) and (37) in Eq. (23) and ex-
pressing length in excitonic Bohr radius, the ener-
gy in excitonic rydberg (1 rydberg = m„e'/2iI']{'),
we find

(
d2

'V;"[{»,};4 ])4, (4, 4 )

" (k'-kr[)]})g(k, z), (38)
m f

where kz, =3m'n, /v„and m„ is the reduced mass.
For the effective potential of the Lth component V;«
we obtain the expression

In Eq. (43), u is related to the coefficient of ex-
change energy, c(i) are the coefficients of poly-
nomial fit to correlation energy, and Bp and Cp are
the coefficients of %igner fit to correlation energy.
The coefficients of polynomial and %igner fits to
correlation energy are obtained from fully self-
consistent calculation of Vashishta et al. 26 Their
calculation includes the effects of anisotropy of
conduction bands as well as multiple scattering of
e —e, e —h, and h —h. The binding energy, equi-
librium density, the critical temperature, obtained
by Vashishta et al. , agree very well with experi-
mental results Values .of u, c(f), B„daCn, are
given in Tables III and IV.

Performing the sum over bands and the lowest
states in Eq. (25) [see Appendix A], we obtain

, (»)= ', f 44(4', —4')[4, (4, »)]'. (44)
p



2662 R. K. KALIA AND P. VASHISHTA

TABLE III. Coefficients of exchange and correlation
energy per particle in unstressed Ge and Ge under uni-
form uniaxial stress along the (ill) direction. The co-
efficient of the exchaoge energy 0, is measured in exci-
tonic rydberg. For rs(Z) & ro correlation energy is fitted
to a polynomial in r, (Z), where r, (Z) =I, 43m'(Z)] . The
coefficients of the polynomial fit are given by e{i)
= 0.5A(i)/b(i), where b(i) = i+ 0.25. The correlation en-
ergy is taken to be of the %igner form for r, (Z) & ro. Bo
and C0 are the coefficients of the signer fit. A(i) and

Bp are expressed in excitonic rydberg; Co and rp are
dimensionless.

t.0

O.S

Ge (4;2)

Coefficients Ge(4;2) Ge(1; 2) Ge{1;1}
0.4

A(1)
A{2)
A(3)
A{4)
A(5)
A(6)
A(7)
Bo
Co

ro

-0.568 1
0.721 272 9
4.126 567 9

-9.648 830 1
13.999 805 2

-10.316521 9
3.566 S68 4

-0.456 742 2
-3.102 47

1.451 38
2

-0.709 0
0.412 530 0
4.019 290 3

-9.406 637 0
13.284 314 0
-9.291 202 7

3.044 632 9
-0.372 536 2
-3.275 50

2.18922
2

-0.8297
0.468 3S5 7
1.847 558 2

-1.538 206 4
0.923 238 3

-0.269 056 8
0.028 218 2
0.0

-4.21484
3.91350
3

TABLE IV. Values of coefficients of the exchange and
correlation energy per particle in Si(6;2), Si(2;2), and
Si{2;1). The coefficients of the polynomial fit to the cor-
relation energy are given by c{i)= 0.5A(i)/b(i}, where
b(i) = i+ 0.25. Values of O', A(i), B, C, and r are tabu-
lated below. Note, &, A(i), and Bo are measured in
units of excitomc rydberg. Co and ro are dimensionless.

Coefficients Si{6;2) Si(2; 2) Si(2; 1)

A(2)
A(3)
A(4)
A(5)
A(6)
A(7}
Bo
Co

ro

-0.583 2
0.710 561 1
3.515996 8

-6.514 1196
8.094 530 0

-5.458 0137
1.790 152 8

-0.221 764 1
-3.327 45

1.762 94
2

-0.689 1
0.400 029 5
4.863 425 1

-13.059 023 6
20.431 628 1

-15.607 008 0
5.501 5154

-0.712 584 9
-3.162 11
1.959 52
2

-0.802 6
0.436 295 2
2.358 770 7

-3.198 232 0
3.413 521 3

-1.905 081 2
0.493 172 6

-0.046 933 3
-4.21917

3.93928
3

The EHL in Ge(4;2), Ge(1;2), Si(8;2), and

Si(2; 2) consists of three distinct components—
electrons, light holes, and heavy holes. Corres-
ponding to each component we have a set of equa-
tions like Eqs. (38), (40), and (44). It is well
known that density-of-states mass of light holes is
much smaller than that of heavy holes with the con-
sequence that the light-hole contribution to equi-
librium density is much smaller than that of heavy
holes. Therefore, it is reasonable to solve only

0.2

l.0 3.0

the set of equations for electrons and heavy holes.
In the set of equations for holes we include the ki-
netic contribution of light holes by defining an ef-
fective hole mass m~:

mg = m~[1+ (m, n lmn„)"]'~' „ (48)

where mug and m~ are, respectively, the light-
and heavy-hole masses in Ge and Si. The use of
mg in Eq. (38), for example, insures an exact
treatment of kinetic energy of holes in a homogen-
eous EHL. In Ge(1; 1) and Si(2; 1), there is only
one hole band, with the consequence that there are
only two sets of coupled equations to be solved.

%e start with exponential trial density profiles
for electrons and holes, and construct their effec-
tive potentials from Eq. (40). Having obtained the
effective potentials, we solve Eq. (38) for g, (k, z)
of each component and then use them in Eq. (44) to
construct new densities (s, (z)). This procedure is
continued until {n,(s)}converge satisfactorily. We
find that the straight iteration procedure does not
work because the quantum oscillations in densities

FIG. 1. Self-consistent density profiles of electrons
and holes in Ge{4;2). Solid curve —electron density
n,, (z); dashed curve —hole density n& (z). The distance z
is measured in units of excitonic Bohr radius a (=177 A.

in Ge), and the densities are in units of a„a. n, (z) and
n ~ (z) are normalized to the mean particle density (= 3/
4mr3, where r, is the average interparticle separation)
in a homogeneous EHL. Note, the hole density spills
out more than the electron density, because the binding
energy of holes is less than that of electrons {pz -P,
=1.41 meV). This is why the EHD sustains a negative
charge in Ge{4;2).
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I.O
Ge(l;2}

CTRON I.O

Si(6; 2} ~

N-

0.8 0.8

0.6

C

0.4 0.4

0.2 0.2

—I.O
z

I.O 5.0

FIG. 2. Normalized self-consistent electron and hole
densities as a function of z in Ge(1;2). Solid curve—
electron density; dashed curve —hole density. In
Ge(1; 2), the binding energy of electrons is smaller than
that of holes (P„-P~=-1.01 meV), causing the electron
density to spill out more than the hole density.

-5.0 -5.0 -I.O
Z

I.O 3.0

FIG. 4. Self-consistent electron and hole densities
as a function of z in Si(6;2). Unit of distance is excitonic
3ohr radius a» (~ 49 A. in Si), and the unit of density
is a» . The electron and hole densities are normalized
to the mean particle density in the homogeneous EHL.
Since the binding energy of electrons is larger than that
of holes (Pz -P~ = 6.17 meV), the electron density spills
out less than the hole density in Si(6; 2).

I.O

0.8

0.2

I.O-5.0 -I.0 30
z

FIG. 3. Normalized self-consistent electron and
hole density profiles in Ge(1; 1). Solid curve —electron
density; dashed curve —hole density. Note, the hole
density tail is longer than that of electrons. It is a
consequence of the f'act that the binding energy of elec-
trons is larger than that of holes {P —p,, =1.24 meV).

and potentials require a careful treatment (for de-
tails of our numerical procedure, see Appendix B).
The degree of convergence that we attain for each
density profile is better than 0.6% of the mean den-
sity. The one-dimensional analog of Friedel sum
rule" (see Appendix A) is well satisfied in our cal-
culations.

The self-consistent density profiles in Ge(4; 2),
Ge(1; 2), Ge(1;1), Si(6; 2), Si(2;2), and Si(2;1)
are shown in Figs. 1-6. Tables V and VI contain
normalized values of n, (z) and n„(z) in the six sys-
tems. It is evident from Figs. 1, 3, 4, and 6 that
the hole density spills out more than the electron
density in Ge(4; 2), Ge(l;1), Si(6;2), and Si(2;1).
The excess spilling of holes is due to the fact that
in these four systems the binding energy of holes
is less than that of electrons. It further indicates
that in Ge(4;2), Ge(l;1), Si(6; 2), and Si(2;1) one
would expect the EHD to carry a negative charge.
In Ge(1; 2) and Si(2; 2), there is an excess leakage
of electrons than holes, indicating that the holes
have a greater binding energy than electrons. Con-
sequently, the EHD is expected to sustain a posi-
tive charge in Ge(1; 2) and Si(2; 2).

It is apparent from Figs. 1-6 that the larger the
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I.O

Si(2;2)

ELECTRON

rrin, ] = ,' ' dk k(k', —k') ——z(k))
0

z yerf n

0.8

0.4

—V']"K&(l' -"])s](z) (47)

In evaluating v', it is extremely important that the
Friedel sum rule" (see Appendix A) be well satis-
fied. Violation of Friedel sum rule can lead to
serious errors in the kinetic contribution to sur-
face energy.

The exchange and correlation contribution of /th

component is given by

0.2

a,', [n, ] J dz n, (z)[s]'(n, ) —s",'(F7, )] (48)

-3.0 -I.O
Z

FIG. 5. Normalized self-consistent density profiles
for electrons and holes in Si(2;2). Solid curve —elec-
trons; dashed curve —holes. In Si(2;2), the binding
energy of electrons is smaller than that of holes, which
should lead to a positive charge on the drop. But the small
difference in the chemical potentials of electrons and
holes [[ps -]k, ~=1.02 meV, compared to 6.17 meV in
Si(6;2) and 4.89 meV in Si(2;1), see Table VIIJ is almost
compensated by twice the dipole layer. Thus, within the
limits of accuracy of the calculation, our conclusion is
that the drop is almost neutral.

I.O 3.0

binding energy. of a component, the bigger the am-
plitude of the first peak in Friedel oscillations.
This trend is in line with the results of Lang and
Kohn for a metal surface. " %e would like to men-
tion here that the Friedel oscillations in effective
potential are not as pronounced as in electrostatic
potential.

where (49)

d (z ) = kzf dz ' (z -z ') [ .(z ') -n, (z ') ]

Using the self-consistent density profiles, effective

I 0~~-

I
[

l

Si (2;[}

0.8—

0.6—

where s]'(tt, ) is obtained from Eq. (43).
The electrostatic contribution to surface tension

can be written
00

]["r]]= k f r(z d(z)[,(z) —n„(z)]

IV. SURFACE ENERGY

The surface tension of EHL consists of three
contributions; kinetic (a,), electrostatic (0,', ), and
exchange and correlation (a„):

0'= 0'~+ 0' + 0'„

Each of these terms is further made up of contrib-
utions arising from electrons and holes. Using the
superscript l to denote a component of EHL, we
shall give below the expressions for 0'„0,'„and

10'xc.

The expression for cr,' is obtained in the same way
Lang and Kohn did. " In terms of phase shifts and
effective potential, kinetic contribution of /th com-
ponent to surface tension is

04—

0.2—

3.0-3.0-5.0 I.O-I.O

z
FIG. 6. Normalized self-consistent electron (solid

curve) and hole {dashed curve) densities as a function
of z in Si(2;1). It is evident from the smaller electron
density tail that the electrons are more tightly bound
than the holes (p& -p, =4.89 meV), thereby giving
rise to a negative charge on the EHD.
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TABLE V. Self-consistent density profiles of electrons
and holes in Ge(4;2), Ge{1;2,), and Ge(1;1). The origin,
z = 0, is taken to be the position of the geometrical sur-
face of the EHL. The distance z is measured in units of
excitonic Bohr radius a„(=177A), and the densities in
units of I. Here the densities have been normalized to
the mean e-h pair density. Although w'e calculate the
density profiles at points separated by a distance of
0.15a„, we quote the values of n, (z) and n„(z) only at
every other point.

Ge(4; 2)
n~(z) n~(z)

Ge(1; 2)
n~ (z) n~(z)

Ge(1;1)
ne(z) n~(z)

-5.85
-5.55
-5.25
-4.95
-4.65
-4.35
-4.05
-3.75
-3.45
-3.15
-2.85
-2.55
-2.25
-1.95
-1.65
-1.35
-1.05
-0.75
-0.45
-0.15

0.15
0.45
0.75
1.05
1.35
1.65
1.95
2.25
2.55
2.85

1.000
1.007
1.002
1.001
0.993
1.002
1.00g
1.005
0.989
0.985
0.994
1.015
1.017
0.989
0.974
0.997
1.030
1.010
0.871
0.602
0.315
0.135
0.046
0.014
0.002
0.000
0.000
0.000
0.000
0.000

1.001
1.004
1.003
1.000
0.994
1.003
1.008
0.999
0.989
0.991
0.996
1.011
1.013
0.990
0.980
1.001
1.022
0.992
0.859
0.610
0.336
0.139
0.049
0.017
0,003
0.001
0.000
Q.QOO

0.000
0.000

0.997
Q.997
1.001
1.005
1.000
0.995
0.996
1.005
1.006
0.997
0.990
0.999
1.012
1.006
0.985
0.981
1.003
0.979
0.840
0.594
0.344
0.166
0.069
0.026
0.008
0.002
0.001
0.000
0.000
0.000

0.996
0.996
1.002
1.006
1.000
0.994
0.995
1.007
1.007
0.996
O.g87
0.999
1.015
1.008
0.982
0.976
1.006
0.999
0.864
0.606
0.336
0.150
0.053
0.017
0.004
0.001
0.000
0.000
0.000
O.OOO

0.996
0.985
0.9S3
0.994
1.004
1.O17
1.020
1.015
0.994
0.976
0.963
0.974
0.996
1.033
1.055
1.043
0.975
0.852
0.682
0.507
0.344
0.208
0.122
0.066
0.027
0.011
0.006
0.003
0.001
0.000

Q.998
0.991
0.990
0.995
1.002
1.009
1.002
1.008
0.998
0,985
0.981
0.986
1.004
1.019
1.017
0.988
0.908
0.797
0.649
0.500
0.366
0.248
0.166
0.106
0.059
0.031
0.019
0.014
0.010
0.007

potentials and phase shifts we evaluate the electro-
static, kinetic, and exchange-correlation contribu-
tions to surface tension. Table VG contains values
of surface tension o for EHL in Ge(4; 2), Ge(1;2),
Ge(l; I), Si(6;2), Si(2; 2), and Si(2;I). We find
that c= 3.7x10 ' erg/cm' in Ge(4; 2). It agrees
favorably with the measurements of Westervelt et
al. ,3' Etienne et al. ,~' and Staehli. ~' Note, the self-
consistent value of o in Ge(4; 2) differs appreciably
(almost a factor of 4) from the values obtained by
Rice,"Sander et al. ,"and Reinecke and Zing. "
It substantiates similar claims made by Lang and
Kohn in the context of a metal surface. " However,
when one includes in the variational calculation the
gradient correction to exchange and correlation en-

TABLE VI. Self-consistent electron aed hole densities
in Si(6;2), Si(2;2), and Si(2;1). z is measured in units
of excitonic Bohr radius a„(=50 A) and the densities in
a„. The origin is taken to be the position of the geo-
metrical surface of the EHL. Here the densities have
been normalized to the mean e-h pair density.

si(6 2)
n, (z) n„(z)

Si(2 ~ 2)
n, (z) nI, (z)

Si(2;1)
n (z) ng(z)

-5.85
-5.55
-5.25
-4.95
-4.65
-4.35
-4.05
-3.75
-3.45
-3.15
-2.85
-2.55
-2.25
-1.95
-1.65
-1.35
-1.05
-0.75
-0.45
-0.15

0.15
0.45
0.75
1.05
1.35
1.65
1.95
2.25
2.55
2.85

0.996
0.992
0.987
0.994
1.004
1.012
$.013
1.016
1.002
0.990
0.977
0.981
1.003
1.030
1.048
1.034
0.971
0.852
0.684
0.496
0.332
0.197
0.103
0.053
0.026
0.008
0.002
0.001
0.000
0.000

0.995
0.994
0.987
0.997
1.007
1.011
1.011
1.011
1.002
0.995
0.981
0.982
1.009
1.032
1.035
1.013
0.949
0.841
0.700
0.523
0.339
0.204
0,106
0.055
0.028
0.010
0.003
0.001
0.000
0.000

1.006
1.000
0.994
0.992
Q.992
1.000
1.008
1.013
1.012
1.001
0.987
0.978
0.982
1.002
1.025
1.029
0.986
O.SSQ

0.721
0.536
0.357
0.218
0.122
Q.Q63

0.031
0.015
0.006
0.002
0.001
0.000

1.002
0.996
0.994
0.997
1.000
1.004
1.004
1.003
1.003
1.001
0.998
0.991
0.988
Q.g93
1.008
1.017
0.988
0.901
0.746
0.553
0.367
0.211
0.109
0.050
0.021
0.008
0.003
0.001
0.000
0.000

1.011
1.017
1.014
1.010
1.002
0.990
0.979
0.974
0.977
0.986
1.006
1.031
1.052
1.058
1.037
0.982
0.893
0.772
0.631
0.487
0.356
0.244
0.158
0.095
0.057
0.036
0.019
0.008
0.003
0.001

1.004
1.003
1.001
1.000
0.999
0.998
0.996
0.993
0.992
0.994
1.001
1.008
1.022
1.022
0.997
0.953
0.869
0.757
0.631
0.499
0.370
0.268
0.181
0.122
0.073
0.048
0.030
0.016
0.008
0.004

ergy, ""the value of c in Ge(4; 2) is found to be
3.5x10 ' erg/cm'. Such an agreement between
self-consistent and the variational calculations is
rather fortuitous. Within the framework of density
functional formalism, Rose and Shore have carried
out a partial self-consistent calculation for EHL
surface in Ge(4; 2); the authors report a value of
2.6xlo ' erg/cm' for EHL surface tension. " We
find that the value of o in Ge(1; 1) is a factor of 20
smaller than in Ge(4; 2).

In Si(6; 2), the surface tension of EHL is calcu-
lated to be 87.4x10 ' erg/cm'. " It is again a fac-
tor of 3 larger than the variational result of Rei-
necke and Ying. " The self-consistent result for o'

in Si(2; I) is a factor of 8 smaller than in Si(6; 2).
Considering the important role played by surface
tension in the determination of coexistence curve,
kinetics of EHD formation, and in establishing the
validity of density-functional formalism, there is



2666 R. K. KALIA A WD P. VAS HIS HTA 17

TABLE VII. Results from the self-consistent calculation for the surface properties of the
EHD in Ge(4;2), Ge(1;2), Ge(1;1), Si(6;2), Si(2;2), and Si(2;1). 0. is the surface tension of
the EHD. P, and P„are the bulk chemical potentials of electrons and holes. These are ob-
tained from the Mly self-consistent calculation of Vashishta et al. (Ref. 26}.Dg denotes the
dipole layer.

System o (erg/cm ) P, (meV) Pz (meV) Pz —P~ 24@ (meV) Sign of charge

Ge(4; 2)
Ge(1; 2)
Ge(l; 1)
Si(6; 2)
Si(2; 2)
Si(2;1)

3.7 x10-4
1.0 x10 4

0.2 x10 4

87.4 x 10 4

32.8 x10 4

11.4 x10 4

-3.62
-1.75
-2.17

-14.01
-8.87
-9.77

-2.21
-2.76
-0.93
-7.84
-9.89
-4.88

1.41
-1.01

1.24
6.17

-1.02
4.89

0.77
-0.98

1.20
3.34

-1.02
3.86

Negative
Positive
Negative
Negative
Neutral ~

Negative

In Si(2;2), we find that the difference in the chemical, potentials of holes and electrons
(=p„-p, —2AP) is a very small negative quantity, which implies that the drop is positively
charged. However, considering the limit of accuracy of the calculation we can only conclude
that the EHD is neutral in Si(2; 2).

a dire need for conclusive experiments on EHL
surface in the various configurations of Ge and Si.

V. CHARGE ON ELECTRON-HOLE DROP

dzz[n, (z)- n„(z)] Ry . (50}

It is implicit in Eq. (50) that the total number of
electrons is equal to the total number of holes.
Using the self-consistent electron and hole den-
sities, we calculate from Eq. (50) the values of
dipole layer in the six configurations of Ge and Si.
These values are given in Table VH. Evidently,
holes have lesser binding energy than electrons
in Ge(4;2) and Si(6;2). In order that the dif-
ference between the binding energies of holes and
electrons be reduced by the presence of EHL sur-
face the sign of dipole layer should be positive in
Ge(4;2) and Si(6;2), which is indeed the case.
Similar considerations lead us to conclude that
4P should be negative in Ge(1; 2) and Si(2;2) and
positive in Ge(1;1) and Si(2;1).

Charge on EHD is determined by the difference
in the chemical potentials of electrons and holes.

Calculations for the ground-state energy of a
homogeneous EHL lead us to believe that the con-
stituents of EHL, namely, electrons and holes,
have different binding energies. "" In the pres-
ence of a surface the difference in binding energies
results in dissimilar density profiles for electrons
and holes, and consequently in a dipole layer. The
sign of dipole layer is dictated by the energetics of
electrons and holes, since the purpose of dipole
layer is to reduce the difference in their binding
energies. "

Following the conventional definition of dipole
layer, we write

In terms of bulk chemical potentials and dipole
layer, this difference is given by [see Eq. (22)]

V&- V, = I &- ~.—2&4 ~ (51)

It is apparent from Table VII that the difference
p„- p, , is positive in Ge(4; 2} and Si(6;2), which
means that the holes are less tightly bound than
electrons. At a finite temperature (7& T„ the
transition temperature for EHL) there will be an
excess thermionic emission of holes, and as a
result the electron-hole droplet will acquire a
negative charge whose magnitude will be deter-
mined by the condition that at equilibrium the
work functions for electrons and holes become
equal. ~'" A similar situation occurs in Ge(1; 1)
and Si(2; 1), wherein the EHD develops a negative
charge. In Ge(1;2), however, we find that the
difference p,„-p, , is negative, implying that the
EHD sustains a positive charge, ' whereas in
Si(2;2) we find that the difference p„- p,, is ex-
tremely small. %'ithin the limits of accuracy of
our calculations, we obtain a neutral EHD in
Si(2;2). Insofar as the sign of charge is con-
cerned, our results in Ge(4;2) and Ge(1;2)
agree with the experiment of Pokrovsky and
Svistunova. " Recent measurements of Nakamura
has also shown that EHD is negative in Ge(4;2)."
No measurement of charge has yet been reported
in Ge(1;1) or any of the configurations in Si.

There are two idealized situations in which one
can determine the magnitude of charge on EHD.
First, under pulsed excitation, i.e., when the
medium outside of EHD is regarded as vacuum,
the magnitude of charge Q is calculated from the
equation"

(52)

where all the quantities are measured in reduced
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ra =(ksT/8vn, )'t' . (54)

All the quantities in Eels. (53) and (54) are mea-
sured in reduced units. Under conditions of
thermodynamic equilibrium at 4.2'K, the density
of free carriers, n, =2@10 "cm '. Using this
value of n, we obtain a droplet charge of -VOO Ie I

in Ge(4;2}." Measurement of Pokrovsky and
Svistunova yields a value of -100

I
e I,"while

Nakamura obtains a value of -40lFIe
I

at 1.6'K."
The apparent discrepancy between theory and ex-
periment is mainly due to the fact that theoretical
estimates of charge'"~ are made under the sim-
plifying assumption that the screening length is
much less than the radius of the drop. Also, the
real experimental condition may not conform well
to the above mentioned assumption. It should also
be borne in mind that in the experimental deter-
mination of charge, there are ambiguities arising
from the assumption of collision time."

It is evident from Eqs. (52) and (53) that in order
to obtain the magnitude of charge one needs to
know the radius of EHD. Experimental measure-
ments of droplet radius have not yet been made
in Ge(1;2), Ge(1;1), Si(2;2), and Si(2;1), which
prevents us from estimating the charge on EHD
in these systems.

VI. CONCLUSION

%e have shown that in order to resolve the ques-
tion of the EHD charge it is important to treat the
kinetic energy of electrons and holes properly.
Since the variational method provides a poor ap-
proximation for the kinetic energy, 37'~8'~ it fails
to account for the experimental observation that
the EHD sustains a negative charge in Ge(4; 2}
and a positive charge in Ge(1; 2) 3' By solving a

units. For a typical drop of radius A =284m„
(-5x10 ' cm), we find that the EHD carries a
charge of -2V

I
e

I
in Ge(4; 2).M Variational cal-

culations of Rice" and Reinecke and Ying~ yield
-18lsl and+6Iel~ respectively. Calculation of
Rose and Shore also yields a negative charge on
EHD in Ge(4;2) 7' The authors, however, do not

quote the magnitude of charge.
The second situation occurs when the EHD be-

comes surrounded by ionized carriers. The prob-
lem is now much more complicated because of
screening by free carriers. Assuming that the
screening length is much less than the radius of
EHD and treating ionized carriers as a classical
gas, Rice obtains the following expression for the
droplet charge"

Q =M2 r a'ksTR' sinh[(I p,„—p, , I)/2ksT j, (53)

where Debye-Huckel screening length is given by

set of coupled Kohn-Sham equations for the. con-
stituents of the EHD, we indeed find that the EHD
is negatively charged in Ge(4;2) and positive in

Ge(1;2). Although the Kohn-Sham procedure in-
volves much more numerical work than the varia-
tional method, the former has the advantage that
it treats the kinetic energy exactly and also in-
cludes the effect of Friedel oscillations. Qn the
basis of a self cons-istent calculation roe Predict
that the EHD carries a negative charge in Ge(1; 1).

Similar features are also expected to occur in
silicon under. a uniform stress along the (100)
direction. In Si(6;2) and Si(2; 1}our calculations
show that the EHD sustains a negative charge.
However, in Si(2; 2) we find that the electron-hole
drop is almost neutral.

%ith regard to the surface tension of the EHD,
the value in Ge(4;2) agrees favorably with the ex-
perimental estimates of %estervelt et al. ,

"
Etienne et al.,"and of Staehli. " The self-con-
sistent estimate of c in Ge(1; 1) is found to be a
factor of 20 smaller than in Ge(4;2). The surface
tension in Si(6; 2) is calculated to be 8'1.4 x 10 '
erg/cm', a factor of 8 larger than in Si(2;1). The
values of a in Ge(1;2) and Si(2;2}are found to be
1.0 x 10-' and 32.8 x 10 ' erg/cm', respectively.

One of the approximations in this work amounts
to dividing equally between electrons and holes the
exchange and correlation energy per e-h pair in the
bulk of the election-hole liquid. This is a rea-
sonable approximation, since we know from the
ground-state energy calculations for a uniform
EHL that the electrons and holes contribute almost
equally to the exchange-correlation energy. "'"
One would expect it to be the case, because ex-
change and correlation effects arise from the
Pauli principle and the Coulomb interaction. To
avoid confusion. , we would like to emphasize that
this approximation does not imply that the ex-
change and correlation potentials for electrons and
holes are equal in the surface region of the EHL.

The major approximation in our calculation is
that we have retained only the local-density con-
tribution to exchange-correlation potentials of elec-
trons and holes. It may seem feasible to improve
the local-density approximation by including the
exchange-correlation gradient corrections. The
first gradient correction to exchange-correlation
energy is typically of the form

~ (Vn(r} (

n"'( r)

It can be easily seen that the potential, obtained by
taking the derivative with respect to n(F), be-
haves pathologically in the density-tail region.
For this reason, it is not possible to include in
the self-consistent calculation the first gradient
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correction to the exchange-correlation potential.
One should note, however, that such a difficulty
does not occur in variational calculations that in-
clude the first gradient correction to the exchange-
correlation energy, which is well behaved every-
where. Kohn and Sham have suggested including
in the LDA not only the first gradient correction,
but also the higher terms in the gradient expan-
sion.~ Such a calculation will involve enormous
numerical work. Many calculations have demon-
strated the appropriateness of the local-density
approximation. Gunnarson et al have used the
spin LDA in calculating the binding energy of the
hydrogen atom. " Their result for the binding
energy differs from the exact value by less than
2%. Tong and Sham have shown that the density
of atoms, obtained in the local-density approxi-
mation, agrees well with the Hartree-Fock cal-
culations. ~ The classic work of Lang and Kohn
also shows that the LDA is a good approximation
in the study of metal surfaces. " Recently, Ando
has used it in the calculation of the intersubband
separation in the Si inversion layer. " His results
are in excellent agreement with experiment.

In view of the fact that the EHD surface is a
genuine inhomogeneous plasma of electrons and
holes, it is an ideal system for testing the validity
of the density-functional formalism; in particular,
of the local-density approximation in the Kohn-
Sham procedure. Thus there is a great need for
careful measurements of the surface tension and
charge on the EHD in the aforementioned systems.

h 8'
„*')' I(;);*))((),*)

For the present discussion it is not necessary to
specify the form of potential V, .

Multiplying Eq. (Al) with (),(k', z), interchanging
prime and unprimed quantities in the last equation,
and then subtracting the resulting equation, we ob-
tain

a
(&, )

a(, (),', *) (), )
a(', (&', ))

= (k" -k') (C), (k', z)&, (k, z) . (A2)

Integrating E(I. (A2) from z to ~ and taking the
limit k'-k, we find

) s(, ()., *) a(, (a, )
(& )

8'(', ()', z))
2k gz gk

' '
Bz ek

(A2)

Deep inside the liquid, the wave function takes the
form

)), (k, z) = A, (k) sin[kz -y(k)],

where

m even integer
m~ ~(k
2L, I, and 0~y k ~&m.
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APPENDIX A

Let us assume that the EHL has dimensions
(L„L„2L,) along the x, y, and z directions. Fur-
ther, we suyyose that L„L,»2L, and that the geo-
metrical surface of EHL lies at z =0.

The Schrodinger-like equation for the 1th com-
ponent is given by

Taking the limit z = -L, in Eq. (A3) and making use
of E(I. (A4) we get

dz $) kqz

]-k[I„+ (k)]

dz P& k, z '= dz g, k, z

1
2I (A6)

we obtain from E(I. (A5) the expression for the nor-
malization constant A, (k):

[X,(k)]'[I+y'(k)/L, ] = 2/n„ (A7)

where 0~ = 2L„L,L, is the volume of the electron-

+ —, sin2[kI, +y(k)]}, (A5)

where y'(k) = dy(k)/dk.
Making use of the fact that the wave function is

either symmetric or antisymmetric about z = -I.„
l.e.~
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hole liquid.
The expression for the density of 1th component

[Eq. (25)] reads

N)/f4 = v) g, ,/3w

Comparing Eqs. (A16} and (A17}, we obtain

(AIV)

n, (z)=2v, +PAL [y, (k, z)[',
m fftz m&

(A8)
1k„-k„t+ ~

pi z

where the factor of 2 arises from spin summation
and v, comes from the sum over the bands accom-
modating the particles of tth component. The low-
est filled states are characterized by m, m„, and
m„such that

(„„) 2w m, 2w m, mw y(k)I„' L„'2I,
Now, the states in wave-number space lie on
sheets normal to k axis and are spread according
to Eq. (A9). Since L„L,»2L„ the states on any
sheet are much more densely packed than the
spacing between the sheets. It is clear from Eq.
(A9) that on a given sheet there are L,L,/4w'

states per unit area. %e take the occupied states
to lie within a hemisphere of radius k» in the k & 0
half-space. The hemisphere cuts the k axis be-
tween the Ath and (8+ 1)th sheets so that

k~ «kq «k„„. (A10)

The radius of the circular sheet, which accommo-
dates particles of mth state, is given by

]k'„- [mw/2L, y(k)/L„—]'}'" (All)

Therefore, the expression for n, (z) becomes

(*)=(~
2z

') g(l&, (()(l*(l( ((:, )I'

x (k'„—k') . (A12)

Changing the sum over m in Eq. (A12) into an inte-
gration over k and using Eq. (AV), we obtain

n, (z) = —,' dk (k'~ —)k')~(I)) (k, z) ~',
0

where

)t))(k, z) = sin[kz -y(k)].

(A13)

(A14)

X, =2v, gggi. (A15)
%g tfly

Carrying out the summations in Eq. (A15) we find

Now, total number of particles of /th component is
given by

x ykk — y k +0 (A18)

In the limit z t,„-we obtain, from Eq. (A13},

n, (-I.,) = v, k,'p/3w'+ O(1/L,') . (A19)

Owing to the fact that no free charges can exist
deep inside the EHL, we demand

n)(z)l. i, = X)/f4 = v)kw)/3w', (A20)

and therefore from the last two equations, we find

k, = kp) + 0(I/L, ) . (A21)

In order that Eq. (A21) be consistent with Eq.
(A18), we must demand that for each component I,

P1 7 —
2dk ky(k) = —kw) (A22)

and thus

n, (z) = —', dk(k;, -k')l)t, (k, z)l'.
0

(A23)

Equation (A22) is the one-dimensional analog of
Friedel sum rule. It provides a check on the
phase shifts obtained from the wave functions. Fur-
ther, by satisfying this sum rule one ensures that
both the electron and hole densities are equal to
the mean density deep inside the liquid.

APPENDIX B

%e shall deal here with the numerical procedure
used in solving a set of coupled Kohn-Sham equa-
tions for the case of EHL surface. Owing to quan-
tum oscillations in densities and potentials, the
straight iteration procedure does not converge.
The procedure outlined below is a generalization
of the one developed by Lang and Kohn for a metal
surface. "

%e start with trial density profiles for electrons
and holes. These profiles decay exponentially
outside the surface and approach the mean bulk
density well inside the surface. Further, the
parameters in the initial profiles are so chosen
that we obtain overall charge neutrality

N, =Q ' j.-
k)p 'lr

x dkk ——y (k)
0 4

However,

(A16)

dz n, (z) = dz n„(z) .

Using the trial profiles in Eq. (40) we calculate
the effective potentials for electrons and holes.
Substituting the effective potential in Eq. (38), we
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solve it for p, (k, z) in the range 0 to kr, . Imposing
the condition that the wave function should approach
a sine wave deep inside the electron-hole liquid,
i.e.,

g, (k, z) = A, (k) sin[kz y(k}],

we obtain y(k) from Eq. (82) and check if the phase
shifts satisfy the phase ruleM [Eq. {A22)j

r

�kg
g

dk ky(k) = —
keg 3}

fOr eVery COmpOnent. If the p&aZIS rale ffl ural

satisfied to a few percent, we@oeax4 the initial
trial profiles, choose a gee se4 qf yagarigt, ega in
the initial profiles argg go@Ng' Che gg@xezeentjoaed
procedure until Eq. {Qg is shak satisfied No.te,
imposition of pimps@ ~~ Rs ~@op~y of insuring
that the densities a~~ac'.b 5e ecg rect bulk values
deep inside thy EH& '/he asyxgytc@c form for
wave functions [Rq. (No] is Ideality achieved only
if & - -. Hesg8ver, iq, practice it is not feasible
to go to an aASmxgy long dhMnce inside the
liquid. Qbgxe5)re, om} has to introduce correc-
tion Shams to Eq. {92). In order to deal effec-
tively qtgh the asymytetic region we observe that
the IN4NN@Cg ef Nh cong)onent esumes the Mlowingasy~ form:

() -( i '""P' g-&'t~~ &I
( o(')(2k z}z + ~z

(84)
With this form for the densities, the asymptotic
value of potential of lth component becomes

V, '[{n,};z] ~ P„
c~-& g

P, , cos 2[K+,iz y(kgb, )]-+ - - -p
gt 8

$,(k, z) ~ sim[kz -y(k)].
g+ ~

We substitute these p, (k, z) in Eq. (44) to obtain
the density s, {z} .When the new {n,(z}& are close
to the initial density profiles, we resort to a lin-
ear response procedure to bring about self-con-
sistency. Let us denote by {n',}and {n,"'}the
trial densities and the densities obtained after
first iteration. Then, the set of Eqs. (38), (40),
and (44) [with {n,}replaced by {n',}in Eqs. (38) and
(40) and {n,"'}in Eq. (44)] may be taken to define
the following functional relationship:

(as)

(89)
Let us assume that the addition of {5nI"}to {nI"}
brings about self-consistency. Then we obtain,
from Eq. (89),

s&"+5n&"=Z,[{n&~'+5m'"} z]. (810)
Since {n,"'}are close to the true solutions, the
quantities {5n,"'}must be small compared to
{nI"}.Making a Taylor series expansion of the
right-hand side of Eq. (810), we find

n"'+5n"'=n "+ 5n"'(z') "' ' ' ' ' dz~
gP if&(»l- zl

5n" '(z')

(811)
We choose for &g"' a linear combination of

derivatives of harmonic oscillator functions:
NH

n = ng (87)

Using the set of densities {n,"'}, we obtain from Eqs.
(38), (40}, and (44) another set of densities {nI2'}.

In the spirit of Eq. (87) we write

{n"'}=F[{n,"};z]. (88)
In order that {R,}be the true solutions we must

have

+0 —
3 . B5 5nI" = — s, (i) Q, (z),

~1
(812}

The coefficients Pg g. are determined by fitting
the effective potentials to Eq. (85). Using this
asymptotic form for effective potential we find
1/z' correction term to the asymptotic value of
wave function r/r, (k, z), namely, Eq. (82). Now the
wave function is fitted to a form given in Eq.
(82) plus the 1/z' correction term. From such a
fit we extract the value of normalization constant
A, (k).

The expression for density involves g, (k, z},
which must attain a sinusoidal form deep inside
the liquid. In order that the density of a given
component attains its correct bugr. value, the
amplitude of the sine wave must be unity. Thus,
the knowledge of A, (k) enables one to construct
g, (k, z) such that

NH ~

gg ~Sg{i) (2& a~(I }
(F[n„n, —XQq, ~ ~ ]

~1 ~1

-F[n„s, 1+&~g,Q,), (813)

where A. is a small parameter. Multiplying Eq.

where Q, (z) are derivatives of harmonic oscil-
lator functions, NH is the number of such func-
tions, and a, (i) are the coefficients whose deter-
mination shall enable us to obtain the self-con-
sistent density profiles. In order that {Q,(z}].
form a basis set, NH must be infinite. However,
in practice, one needs a reasonably large but
finite number (-20) of Q, (z) to achieve conver-
gence. Substituting Eq. (812) in (811) and using
the definition of a functional derivative, we obtain
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(813) with harmonic oscillator functions P&, (s),
and integrating over z, we obtain

l

dll
[n,"'(s) —I,"'(z)]P,(s)

w oo

x (F,[n„n, —XQq, ~ ]

(814)

To make this procedure effective one has to
choose carefully the position and width of har-
monic-oscillator functions. It is our experience
that these functions should always be centered
near the surface and their width should be on the
order of surface thickness.

From equations such as (814) we obtain the
coefficients a, (j) and subsequently use them in
Eq. (812) to obtain 5n,"'. Straightforward addition
of 6n,"' to n,"' yields the self-consistent values of
density of 1th component.

+Permanent address.
~V. M. Asnin and A. A. Rogachev, Zh. Eksp. Teor. Fiz.

Pis'ma Red. 9, 415 (1869) [JETP Lett. 9, 248 (1969)).
2Y. E. Pokrovsky and K. I. Svistunova, Zh. Eksp. Teor.

Fiz. Pis'ma Red. 9, 453 (1969}[JETP Lett. 9, 261
(1969)].

3The first experimental observation of the shifted radia-
tion in Si was by J.R. Haynes [Phys. Rev. Lett. 17,
860 (1966)). His interpretation of the result was based
on biexciton rather than the electron-hole plasma.

4Y. E. Pokrovsky and K. I. Svistunova, Fiz. Tekh.
Poluprovodn. 4„491 (1970) [Sov. Phys. -Semicond. 4,
409 (1970)].

A. S. Kaminsky and Y. E. Pokrovsky, Zh. Eksp. Teor.
Fiz. Pis'ma Red. 11, 381 (1970) [JETP Lett. 11, 225
(1970}j.

C. Benoit h la Guillaume, F. Salvan, and M. Voos,
J. Luminesc. 1, 315 {1970}.
Y. E. Pokrovsky, A. Kaminsky, and K. I, Svistonova,
in Proceedings of the Tenth International Conference
on the Physics of Semiconductors, Cambridge, Mass-
achusetts, 1970, edited by S. P. Keller, J. C. Hensel,
and F. Stern, CONF-700801 (U. S. AKC Div. Tech.
Information, Springfield, Va. , 1970), p. 504 ~

V. M. Asnin, A. A. Rogachev, and N. I. Sablina, Zh.
Eksp. Teor. Fiz. Pis'ma Red. 11, 162 (1970) [JETP
Lett. 11, 99 {1970)).

9C. Benet h la Guillaume, M. Voos, F . Salvan, J.M.
Laurant, and A. Bonot, C. R. Acad. Sci. (Paris) B 272,
236 (1971).
Y. E. Pokrovsky and K. I. Svistunova, Zh. Eksp. Teor.
Fiz. Pis'ma Red. 13, 297 (1971) [JETP Lett. 13, 212
(1971)J.
For a more extensive list of references of Russian
work, see the review article by Y. E. Pokrovsky fPhys.
Status Solidi A 11, 385 {1972}].
C. Benoft h la Gui11aume, M. Voos, and F. Salvan,
Phys. Rev. B 5, 3079 (1972); C. Benoft a la Guillaume
and M. Voos, Solid State Commun. 12, 1257 (1973).
J.C. Hensel, T. G. Phillips, and T. M. Rice, Phys.
Rev. Lett. 30, 227 (1S73).

~4T. K. Lo, B.J. Feldman, and C. D. Jeffries, Phys.
Rev. Lett. 31, 224 (1973).

~SR. B.Hammond, T. C. McGill, and J.W. Mayer,
Phys. Rev. B 13, 3566 (1976).

~6G. A. Thomas, T. G. Phillips, T. M. Rice, and J. C.
Hensel, Phys. Rev. Lett. 31, 386 (1973).

~~L. V. Keldysh, in Proceedings of the ¹inth Interna-

tional Conference on the Physics of Semiconductors,
Moscow, 1968, edited by S. M. Ryvkin and V. V.
Shmastsev {Nauka, Leningrad, 1968), p. 1303.
E. Hanamura, in Ref. 7, p. 487.

~ B.Bergersen, P. Jena, and A. J.Berlinsky, J. Phys.
C 8, 1377 (1975).

0%. F. Brinkman, T. M. Rice, P. W. Anderson, and
S. T. Chui, Phys. Rev. Lett. 28, 961 (1972).

+W. F. Brinkman and T. M. Rice, Phys. Rev. B 7, 1508
(1973).
M. Combescot and P. Nozieres, J.Phys. C 5, 2369
(1972) ~

23P. Vashishta, P. Bhattacharyya, and K. S. Singwi,
Phys. Rev. Lett. 30, 1248 (1973).

24P. Vashishta, P. Bhattachaz~a, , and K. S. Singwi,
Phys. Rev. B 10, 5108 (1974).

25P. Bhattacharyya, V. Nassida, K. S. Singwi, and
P. Vashishta, Phys. Rev. 8 10, 5127 (1974}.
P. Vashishta, S. G. Das, and K. S. Singwi, Phys. Rev.
Lett. 33, 911 (1974).

2 I..J.Sham and T. M. Rice, Phys. Rev. 144, 708
(1966).

28M. Combescot, Phys. Rev. Lett. 32, 15 (1974).
2 T. M. Rice, in Excitons at High Density (Springer-

Tracts in Modern Physics No. 73), edited by H. Haken
and S. Nikitine (Springer-Verlag, Berlin, 1975).

3 R. N. Silver, Phys. Rev. B 8, 2403 (1973).
+T. L. Reinecke and S. G. Ying, Phys. Rev. Lett. 35,

311 (1975).
32T. L. Reinecke and S. C. Ying, Phys. Rev. B 13, 1850

(1976).
'3G. A. Thomas, T. M. Rice, and J.C. Hensel, Phys.

Bev. Lett. 33, 219 (1974).
34The notation is due to C. Kittel (private communication);
J. P. Wolfe et al ., Phys. Rev. Lett. 34, 275 (1975).

~~C. Kittel, Quantum Theory of Solids {Wiley, New
York, 1963).

+J. C. Hensel and G. Feher, Phys. Rev. 129, 1041 {1963).
T. M. Rice, Phys. Rev. B 9, 1540 (1974).

3 Y. E. Pokrovsky and K. I. Svistunova, in Proceedings
of Tscelfth International Conference on the Physics of
Semiconductors, Stuttgart, Germany, 1974, edited by
M. H. Pilkhun (Teubner, Stuttgart, 1975), p. 71.

9R. M. Westervelt, J. L. Staehli, E. E. Hailer, and
C. D. Jeffries, Proceedings of t'he 0)i Seminar on the
Physics of Highly Excited States in Solids, edited by
M. Ueta and Y. Nishina (Springer-Verlag, Berlin,
1976) Vol. 57, p. 270.



2672 R. K. KALIA AND P. VA8 HIS O'FA 17

40V. S. Bagaev, N. N. Sibeldin, and V, A. Tsvetkov,
JETP Lett. 21, 80 (1975).

4~B. Etienne, L. M. Sander, C. Benoft h la Guillaume,
M. Voos, and J, Y. Prieur, Phys. Rev. Lett. 37, 1299
(1976).
J. L. Staehli, Phys. Status Solidi 8 75, 451 (1976}.
P. Hohenberg and %. Kohn, Phys. Rev. 136, B864
(1964).

44%. Kohn and L.J.Sham, Phys. Rev. 140, AI133
(1965).

~An excellent review is given by N. D. Lang, in ZeBd
State Physics, edited by F. Seitz, D. Turnbull, and
H. Ehrenreich (Academic, New York, 1973), Vol. 28,
p. 225.
L. M. Sander, H. B.Shore j and L.J.Sham, Phys. Rev.
Lett. 31, 533 (1973); these authors have neglected the
correlation effects in the local density approximation
and have included the first gradient correction to ex-
change energy.

47H. Buttner and E. Gerlach, J. Phys. C 6, L433 (1973).
4 T. L. Reinecke and S. C. Ying, Solid State Commun. 14,

381 (1974); these authors have shown %at if Rice
(see Ref. 37) were to include the effect of valence band

coupling on gradient correction for holes, he would
find a positive charge on EHD in Ge(4;2).
T. L. Reinecke, F. Crowne, and S. C. Ying, in Ref.
38, p. 61.
P. Vashishta, R. K. Kalia, and K. S. Singwi, Solid
State Commun. 19, 935 (1976).
P. Vashishta, R. K. Kalia, and K. S. Singwi, in Ref.
39, p. 187.

~~R. K. Kalia and P. Vashishta, Solid State Commun.
24, 171 (1977).

538. Y. Tong and L.J.Sham, Phys. Rev. 144, 1 (1966).
+J. Vannimenus and H. F. Budd, Solid State Commun.

15, 1739 (1974).
5 N. D. Lang and W. Kohn, Phys. Rev. B 1, 4555 (1970).
@D.C. Langreth, Phys. Rev. B 5, 2842 (1972).
J.H. Rose and H. B.Shore, Bull. Am. Phys. Soc. 21,
223 (1976).

+R. K. Kalia and P. Vashishta, Bull. Am. Phys. Soc.
22, 269 (1977}.

59A. Nakamura, Solid State Commun. 21, 1111(1977).
~DO. Qunnarson and B.I. Lundqvist, Phys. Rev. B 13,

4274 (1976).
8~T. Ando (unpublished).


