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The paper presents an analysis of minority-carrier injection into lifetime and relaxation semiconductors

containing traps, linearized within the framework of a "small-signal theory. " In that sense it parallels a
previous paper on the trap-free case. The restrictive assumptions customarily made in the literature as
regards injecL'ion ratio, mobility ratio, carrier lifetime, dielectric relaxation time, doping levels, and specific
characteristics of the trapping centers, zero recombination rate np = n, , and neglect of diffusion current,
are avoided here, Explicit solutions are obtained of the carrier concentration and field profiles, and plotted
for a series of interesting cases, some designed to illustrate the nature of the phenomena, some to facilitate

experimental verification. The results show that the establishment of lifetime and relaxation regimes depends

in a complex manner on the parameters of the system. Minority-carrier injection can result in the

appearance of a field maximum and a total resistance increase, not only in the trap-free case as previously

reported, but to a greatly augmented extent in the presence of traps in suitable concentrations and energetic
positions. The results have a potential bearing on the interpretation of many types of electrical measurements

on semiconductors and semi-insulators. The equations themselves are general (except for the restriction to
small currents} and can be extended to a variety of other nonequilibrium transport effects in solids.

INTRODUCTION

In a previous paper, ' the authors discussed
solutions to the linearized transport equations
(small-signal theory) for the case of minority-
carrier injection into a homogeneous trap-free
medium. The conclusion was that, in the right
circumstances, a field maximum could arise
near the injecting boundary, leading to an overall
resistance increase. Such an increase would be
expected, for instance in an n-type "lifetime"
semiconductor (rn& r,), with p„& p~. It arises
essentially from a diffusion of majority carriers
in a direction opposed to the current. In order
to keep the total current constant, the local field
must increase. At higher current densities, the
resistance increase is expected to disappear; the
system then conforms to the conventional expec-
tation of a resistance decrease due to injected
carriers. The present paper is concerned with
corresponding cases in the presence of traps. In
practice, trap density and carrier lifetime cannot,
of course, be controlled independently, but for
present purposes, it is assumed that the two para-
meters can be arbitrarily adjusted. In small-
signal theory, the diffusion-length lifetime 7,
is taken as constant, ' i.e. , independent of excita-
tion level. It will be shown on the basis of Shock-
ley-Read recombination mechanism' (again for
n-type material) that inasmuch as the traps cap-
ture additional majority carriers, they diminish
the above field maximum; inasmuch as they cap-
ture minority carriers, they increase it. This is
in accordance with the expectations from the sign

of the corresponding space charges. For traps
of sufficient density and appropriate level, the
resistance increase can be very much higher than
in the corresponding Lifetime case without traps.
Popescu and Henisch' showed that minority-car-
rier trapping is capable of driving what would
otherwise be a relaxation-controlled system into
the lifetime regime, and thereby produce the re-
sistance increase. They did so (again on the as-
sumption of independently controlled parameters)
for unit injection ratio and 5(= p„/p~) = 1 only. The
present paper is not limited to these conditions.

TRANSPORT EQUATIONS

For the small-signal theory, the transport equa-
tions applicable to this case are the same as Eqs.
(13)-(17), of the previous paper, ' except for the
modification arising from the presence of traps.
In principle, traps modify the system in two ways:
(a) by modifying the recombination term, and (b)
by modifying Poisson's equation. Within the limit-
ations of a "small-signal theory, " (a) is of no sig-
nificance, because as long as the Shockley-Read
parameters T„, and 7'~, and n, and pg are them-
selv'es constant, we have

&np + &Pn &nP + &Pn

r„,(p, +p, )+ r~, (n, + n, ) (nr, . p, )+

where 70 is the "diffusion-length lifetime" defined
by van Roosbroeck. ' On the other hand, (b) is
always important, as will be shown below. It is
here assumed, as in Shockley-Read theory, that
the recombination center has only two occupation
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X~=n~+N~~, (2)

states, differing by one electronic charge (single,
monovalent trapping level). For an n-type mater-
ial in equilibrium, the traps will have a certain
occupancy, at the expense of the donors, so that

1 de
1+P, ' dX

d~rQf dE 1~,+~ —
1 P (4NP, + 4P)A„=O,+ e

(10)

where N~ is the concentration of donors (assumed
to be completely ionized throughout), and N, , is
the concentration of negatively charged traps. In
the steady state, we have equality between the net
rates of electron and hole capture (dN, /df = 0).
Using the same normalization procedures as
Popescu and Henisch' this yields

1+P,T
n, '1+N, +r(P, +P,)'

For nonequilibrium, we have

N+Pp
0N+N~+ r(P+P, ) '

d'4P dE
P (4NP, +4P)A~~0,'dX 1+P, (12}

P =Pn, n =An,

hP=P -P, ,
and

4N=N -N~=N —1,

L, = [~kT/q'( .np+. )]~",
effective Debye length

where the normalizations are'

x=XLdd, E„~,=E(kT/qLD), j =Zp~kT(n, + jp, )/L~,

where M, =N, /n„ the normalized trap density
and r=r~/v~, . Also, in normalized Shockley-
Read terms,

P N N=PQ-, =P, . (5)
Ap= 5A„,

~an= ~/q &44 ~

(15)

(14}
T T

r,(1+P,) v~, [(1+N }+r(P, +P,)]

dE 1
(4P —4N+ ~,) .dX 1+P, (6)

The space charge arising from nonequilibrium
occupation of the recombination centers is given
by 4/0=M, -M.

Accordingly, Poisson's equation becomes
+e and P =P, at X= '0,

do(d(0) doo(0))
1+P, dX dl

(16)

For the present case, the boundary conditions are

Using the small-signal approximation (4P &P, and
4N&N, ) this becomes, via Eqs. (8)-(5) above,

0do(0) dOP (0) dodd(0)
)dX dX dX (18)

a@,=c AP -PhÃ,

c( = [Mar/(1+ N, )]/ [1+N, + 7(Pd+Pi)],

p=[Mg~/(P, +P~)]/[1+N, +v(Pd+P~)] 0

and the remaining transport equations are

(8)

at the injecting boundary (X= 0).

CARRIER AND FIELD PROFILES; EXPLICIT SOLUTIONS

By manipulations very similar to those used in
the previous paper, the solutioris of the above
equations can be shown to be as follows:

[y(b+P, ) P,](1+a -A„) -~&2 (1+p)(1-y)+ b[y(1+ o) -A„]
b(q -8)

" exp -8' 'X— exp(-q' '

J [y(b+P, ) -P,](1+p(-A, ) ~,g, P,[(1 p)+(1 -y)+ b[y(1+ (z) -A„]j
b(q —8) Xlm exp(-q'~' 0 (20

where

and

b+ P, 1+ 5"~P~

1+P, " 1+P,

1+P+ P,(1+ c'.)
1+P~ (21)

These equations may be compared with Eqs. (33)
and (84) in the previous paper.
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It will be seen that (apart from the coefficient)
the first exponential terms, exp(-XM8), arising
from the diffusion of carriers, are the same, but
the second, exp(-X~@), arising from space-
charge considerations are modified by the pres-
ence of traps.

It can be shown that the constant in this exponent

can be written [using Eqs. (5) and (8}]as

g= 1+M@,/(I+P, }(I+N,)', (22)

and is thus independent of 7', and dependent only
on the static characteristics of the recombination
center.

In the same way we obtain

E = '
l I+, ([y(b+P.) P-,][5(1+~) —(I+ P)] exp(-8"'X}

5 1+P, q-8

—(P,+ 5)/(I+ P)(I -y)+ b[y(1+ a) -A„]}exp(-g' ~'X) ) l.
]

(23)

(8q)'~'(1+P, }[(1+p)(1 —y)+ b[y(l+ &) —A„]].
[y(b+P, ) -P,][5(I+~}—(1+P}]A„

(24}
It can be shown that for y& y, = P/(5+ P,), (where

y, is the injection ratio in the unperturbed bulk)
this equation has a solution for

5& (1+P)/(I+ n),
and

A„([y[b(1+u) —(1+P)]+ (1+P))/5 .

(25)

This may be simply compared with the trap-free
case by putting n ~ P = 0, (M, = 0). Depending on
the position and density of the traps, o. and P

vary, which means that X and E vary. Compar-
ed with the trap-free case (and other things being
equal) E may thus be increased or decreased by
the presence of traps.

Again the traps influence only the second term.
hQ, is given by Eq. (7).

Inspection of Eq. (23) shows that there is, as in
the trap-free case, a value of X, namely, X, for
which the field has a maximum value E, implying
a resistance increase:

exp[(rP" -8"')X ]

h, p
0N E

compensated intrinsic germanium, before and
after the introduction of traps.

Figures 1-7 represent a series of results all
for compensated intrinsic material (P, =N, = 1),
and unit injection ratio (y=1), as well as b=10,
J= 10 '. The intrinsic case is interesting, because
it extends the range of validity of the small-signal
approximation without affecting the principal
characteristics of the analysis in any way. The
assumption y= 1 represents the maximum effects
obtainable for minority-carrier injection. In par-
ticular cases y may be less than unity; this re-
duces the departures from equilibrium but, like-
wise, does not alter the situation in any fundamen-
tal way. The values of 8, M„&, N, are varied;
in all these cases. P, =1/N, [Eq. (5)].

For comparison, Fig. 1 represents M, = 0, the
trap-free case, for which conditions (25) are ful-
filled thus leading to a field maximum.

Figure 2 refers to a case in which the recombin-
ation centers are in the middle of the band gap:
N, =P, + 1 (we assume here, for simplicity that
the densities of states in the conduction and valence
band are equal, N„=N, ). Moreover 7 = 1 means

CARRIER AND FIELD PROFILES; TYPICAL SITUATIONS Ol Ioxlo

For the sake of comparison, concentration and
field contours were calculated for the semicon-
ductor parameter used by Popescu and Henisch, '
Fig. 2(a). This was possible, because that case,
though computed by means of the full equations
falls into the range of the "small-signal" approxi-
mation. The agreement with the solutions here
derived from the linearized equations is excellent.
The plotted solutions which follow refer to two
groups of problems. Group A deals with a hypo-
thetical (compensated) intrinsic semiconductor
with varying trap parameters; group 8 deals with

0.08

0.06

0.04

IO 3020

Flo. 1. Concentration and field contours for an intrins-
ic semiconductor characterized by unit injection ratio,
no traps. Lifetime regime; 6 =10 2.
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FIG. 4. Concentration and field contours for the
semiconductor of Fig. 1, with recombination centers
helot the midgap. Lifetime regime; 8 =10 2.

FIG. 2. Concentration and field contours for the semi-
conductor of Fig. 1, with recombination centers in the
middle of the band gap. Lifetime regime; 8=10 2.

that the capture cross sections for electrons and
holes are the same (as long as the two types of
carriers have the same thermal velocity, r = r„ /
r~

- o&/o„). While the material is in thermal
equilibrium, local neutrality is achieved by com-
pensation, which in this special case of Fig. 2,
implies XD= &X,. The donors play no other role.
Figure 2 shows that the field maximum is slightly
increased for M0=10, as compared with MD=0 of
Fig. 1. This field increase is related to the posi-
tive space charge in traps, which attracts an
additional concentration of free electrons into the
trapping region.

Figures 3 and 4 show the same situation, but
for different positions of the recombination level,
relative to the Fermi level, which remains in mid

gap. In Fig. 3 the recombination levels are above
the Fermi level and therefore mostly empty in
equilibrium; in Fig. 4 they are mostly full. In
the former case the centers preferentially capture
electrons in the latter holes. As one could, ac-
cordingly, expect, the fieM maximum is reduced

in Fig. 3 (hQ, &0), and appreciably augmented in
Fig. 4 (hQ, & 0), compared with the results in Fig.
2 With inc reas ing values of Mo E also inc reas-
es, and moves towards smaller values of X. For
Mo= 100 and the same parameters as in Fig. 4 we
have E /E ~ V.

Figure 5 refers to the same hypothetical ma-
terial, but in a relaxation case, characterized by
8 = 10',A„= 18.2. With these parameters, the
conditions for a field maximum [relations (25)]
are not satisfied. Accordingly Fig. 5 shows no
E, but demonstrates majority-carrier depletion,
as in the trap-free case. However, the depletion
is much smaller than in the trap-free case, be-
cause most of the positive space charge now re-
sides in the traps. If the traps were above the
middle of the bands (in the presence of an appro-
priate number of donors, smaller than in the pre-
vious case) the same concentration would lead to
a larger depletion of majority carriers. Calcula-
tions show that 4Q, would remain positive as dis-
tinct from the lifetime case, for which it can be
negative (Fig. 3) or positive (Fig. 4).

Figure 6 shovis an interesting case in which, by
a suitable choice of parameters, a material which
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FIG. 3. Concentration and field contours for the semi-
conductor of Fig. 1, with recombination centers above
the midgap. Lifetime regime; 6 =10 2.

htIO-'

hN

FIG. 5. Concentration and field contours for the semi-
conductor of Fig. 1 with recombination centers below the
m idga. Relaxation regime; g =102.
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centers are mostly hole acceptors. Space-charge
neutrality is almost complete everywhere (AP
+ CQ, = aN), but there are residual departures
from neutrality, too small to be visible on the

figure, and those are responsible for the field
contour. The normalized current density J = 10 '
corresponds to a current j= 2.4 mAcm '.

Figure 9 corresponds to the case of germanium
originally n type and bombarded by neutrons, as
described by Curtis, ' until N, = 2ND so as to main-
tain the intrinsic character of the semiconductor.
The centers so created are 0.32 eV above the top
of the valence band, ' at 7= 300 K:

g 6)(10 ~ cm 0 —2x10

This makes v - 300, much higher than in the pre-
vious case. The same calculation as before leads
to: v, —v„-20x 10 ' sec and thus 6=3.7x10 '.

ft0

As Fig. 9 shows, the field maximum is again en-
hanced by approximately the same ratio as in the
previous case.

DISCUSSION AND SUMMARY

(i} Concentration and field contours. Refer-
ence to Eqs. (7), (19), (20), and (23) shows
that the first exponential term is dominant in a
pronounced lifetime semiconductor (A„,S « I),
and the second in a pronounced relaxation semi-
conductor (A„,8» 1}. Only the second exponent
is affected by traps (although both coefficients are
trap dependent). This difference affects the shape
of the concentration contours for large values of
X bordering the equilibrium region. Other things
being equal, and within the framework of the pre-
sent small-signal theory (only), this means that
the nonequilibrium effects decay more quickly in
relaxation than in lifetime semiconductors as X
increases. This different behavior is easily seen
by comparing Figs. 5 and 6 with Figs. 1-4. This
is so because in the pronounced relaxation case
and for sufficiently high values of X the second
exponential term dominates and the exponent fac-
tor [[I+P+P, (I+ a)]/(I+P, )] ~' is always greater
than one. The conditions near the boundary be-
tween the lifetime and relaxation regimes are
discussed in (iii) below.

(ii) SPace charge and neutra-lity considerations
The simplest neutrality assumption is hP —~
= 0 and its lack of justification was already discus-
sed for the case without traps. ' In the presence
of traps, the neutrality assumption takes the form
given by Eq. (7): 4P(1+ a)= an(1+P). If this as-
sumption were used as an a priori postulate, it
would eliminate dE/dX in Eqs. (11) and (12). How-
ever, since this is obviously wrong, conventional

practice ha, s been to allow the dE/dX terms to
stand in these equations. If this were done here,
and dE/dX eliminated between Eqs. (11}and (12),
one would obtain a solution in the form

nd'-n. N-exp( O-' 'X)=exp[-x/(D, r )' ']

D, = [hT(n, +p, )p„p~/q(p~, + uub, )] being the ambi-
polar diffusion constant which is equivalent to
eliminating the second exponential term in Eqs.
(19) and (20). No resistance increase would then
be expected, nor any majority-carrier depletion.
For sufficiently high values of X, the neutrality
assumption is indeed almost satisfied (e.g. , see
Figs. 8 and 9) but the residual departures from
neutrality, small as they are, lead to the field
contour as calculated. All this shows that the
neutrality assumptions, no matter how mathemat-
ically attractive they may appear, are highly mis-
leading in the case with traps, as also in the case
without.

(iii) Boundaries between oPerating regt'mes Op-.
erating regimes under minority-carrier injection
(nP& 0) can be defined in different ways: (a) on
the basis of whether 4N is positive or negative,
(b) whether there is or is not a field maximum
B, or (c) whether the total resistance of the sys-
tem has increased or decreased. Moreover, any
of the three criteria could be applied to the trap-
free case, or to the multitude of possible cases
with traps. Classification (a) has been the basis
of the distinction between a lifetime regime (Ml'
& 0) and a relaxation regime (AN& 0), whether
traps are present or not." However, there is
no simple and necessary connection between this
criterion and the remaining two. Thus, for in-
stance, even in a perfectly well-defined lifetime
regime, there may be no field maximum (and thus
no resistance increase), because the mobility
ratio may not be sufficiently high [see Eq. (25)].
Criteria (b) and (c), though not identical, are
more closely related to one another than either are
to (a). This will be clear by reference to Fig. 10.
Without a field maximum there is, of course, no

possibility of a resistance increase, but even with
a field maximum the resistance increase is not
inevitable. It appears only if area A is larger
than area B on the diagram.

The classification of effects on the basis of
criterion (a) is possible only when the sign of AN

is independent of X, but previous results' have
shown that sign changes can occur, and these blur
the boundary between the lifetime and relaxation
regimes. It is nevertheless possible to define sit-
uations in which AN is zero irrespective of X, but
only as y=1.' In the presence of traps and y=1,
the conditions AN=0 everywhere is satisfied again
as long as A„= 1+ a [relations (25)], where ct de-
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Ern ~
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(i+P, )J
b+PB

FIG. 10. Field contours when relations (25) are satis-
fied.

pends on the nature and concentration of the traps.
Within the framework of a "small-signal theory, "

the present work extends previously available re-
sults. As predicted by van Roosbroeck, majority-
carrier depletion (4N & 0) is expected for very low

lifetime material (relaxation regime), but as
stated by Kiess and Rose, ' Stgckmann" and by
Popescu and Henisch, 4'" this cannot lead to an
increase of total resistance. Hybrid cases are
possible, in which a relaxation semiconductor
is driven into the lifetime regime (bK&0) through
minority-carrier trapping near the injecting
boundary, This leads to a majority-carrier con-
centration gradient opposed to the current, and
thus to a field maximum. 'The present equations
show, that this maximum must be expected, not
only under the restrictive conditions previously
imposed' but in a variety of other circumstances,

depending on injecting ratio, mobility ratio, dif-
fusion-length lifetime, dielectric relaxation time,
and trap characteristics. When areas A&B in
Fig. 10, the presence of a maximum field also
ensures a total resistance increase; otherwise
it does not. A field maximum is therefore a nec-
essary but not sufhcient criterion for such a re-
sistance increase. Though the present results are
obviously limited to low currents, they are free
from the restrictive assumptions usually made,
e.g. , zero recombination, "'""unit mobility
ratio, """'"unit injection ratio, ""sero trap-
ping, ""conductivity-locked" mode of tran@mrt
(o„/o~ = constant, ""negligible diffnldon in the
high-field region, ' etc. It shouM be remembered,
however, that they refer to semi-in6nite systems,
and neglect contributions to the resistILnce which
may arise from the contact itself. Experimental
observations by Ilegems and Queisser" showed
a resistance increase, and cooed be due to a re-
laxation case brought into the lifetime regime by
injection. Experimental work on e priori life-
time cases is still in progress at University Park,
Pa. and Montpellier, France.
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