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Minority-carrier injection into semiconductors
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On the basis of the linearized transport equations (small-signal theory} it is shown that minoritywarrier
injection into a trap-free lifetime semiconductor leads to a local-field maximum, and hence to a hitherto
unrecognized resistance increase, as long as the majority carriers have the greater mobility. This applies to
any value of the injection ratio y, where yo is the fraction of current carried by minority carriers in the
undisturbed bulk. The conventionally expected bulk resistance decrease makes itself felt only at relatively
high current densities. It is also shown that the ratio A„= ~~/vp (where ~o is the dielectric relaxation time,
and ro the carrier lifetime) governs the boundary between the relaxation and lifetime regimes only when the
injection ratio y is unity. For ~~/~p = 1 we then have h, N = 0, irrespective of X. However, when y ( 1,
there is no value of ro/v& which gives b N = 0 everywhere, hence no simple boundary between the two
conduction regimes. The equations developed are general, and can be applied to a variety of other transport
problems.

INTRODUCTION

In two previous papers, Popescu and Hensich"
analyzed the problem of minority-carrier in-
jection into lifetime and relaxation semiconductors,
with and without traps. As a first approximation,
a lifetime semiconductor is defined as one in
which 7~& Tp where ~~ is the dielectric relaxation
time of the materia1. and 7p the carrier lifetime.
In a relaxation semiconductor &~& ~p. The work in-
volved computer generated numerical solutions
of the standard transport equations which cannot
be explicitly solved in their full generality. All
solutions were based on the simpl. ifying assumption
of unit injection ratio (y= l), meaning that the en-
tire current at x=o is carried by minority car-
riers. In practice, the minority- carrier partici-
pation may be less, but the assumption of y= I
permitted an assessment of the maximum effect
which might be expected in various circumstances.
The calculations also assumed equal electron and
hole mobilities (p,„=p&), again for reasons of
simplicity, but with some loss of generality, The
numerical solutions showed (a) that there is indeed
a majority-carrier depletion in the injection re-
gion, as first pointed out by van Roosbroeck and
co-workers, '~ (b) that, contrary to previous pre-
dictions, such a majority-carrier depletion does
not lead to a resistance increase in the absence of
traps, ' and (c) that injection can lead to a resistance
increase when traps in sufficient concentration are
present, but for reasons which have nothing to do
with majority- caz rier depletion. Indeed, +hen
this phenomenon occurs, the majority-carrier
concentration is locally augmented compared with
the trap-free case, other things being equal. There
are circumstances, actually much more favor-

able in the lifetime than in the relaxation case, in
which this leads to a localized higher- than-equi-
librium concentration of majority carriers which in
turn creates an all important diffusion gradient in
the direction opposing the current. It is this dif-
fusion gradient which is responsible for the ef-
fective resistance increase.

It is the purpose of the present paper to show
that (i) the transport equations can be explicitly
solved when linearized within the framework of a
"small-signal theory"; (ii) that the solutions are
in agreement with the computer generated curves
not only within the strict limits of the small-signal
theory assumptions but in many cases over a
surp| isingly large range of circumstances out-
side it; (iii) that there are circumstances in which
a resistance increase is associated with minority-
carrier injection even in the absence of traps, pro-
vided one is dealing with the lifetime case. For
an n-type semiconductor, these circumstances
apply when p„& p&, where p.„and p~ are the
mobilities of majority and minority carriers, re-
spectively; and (iv) that no resistance increase canbe
expected from a trap-free relaxation case (always
associated with majority-carrier depletion) as
pointed out by Kiess and Rose, ' no matter what
the mobility ratio may be.

The linearization of the equations in the present
form and with appropriate boundary conditions can,
of course, be applied to other processes and pheno-
mena, but only injection is dealt with in this paper.
An application to Hall-effect analysis has also
been demonstrated. '

Although contact resistances as such are not
encompassed by the present (or previous) cal-
cu1.ations, the results are believed to be of con-
siderable importance in the interpretation of vo.-
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17 MINORITY-CARRIER IN JECTION INTO SEMICONDUCTORS 2641

tage- current characteristics.
Early calculations on the effect of injected minor-

ity carriers were carried out under a number of
simplifying assumptions, which permitted the
transport equations to be explicitly solved. Only
recently has it been appreciated how much the
solutions depended on those very assumptions, and
that substantially different conclusions result when
such assumptions are not made. Bardeen and
Brattain' and Banbury, ' for instance, assumed that
the majority-carrier current and recombination
can be neglected. In such circumstances, the in-
jected minority carriers could do no other than to
diminish the effective local resistivity everywhere.
This expectation came to be regarded as a uni-
versal standard feature of aQ such systems. Even
during subsequent work' " it ha.s been customary to
assume local neutrality, on the ground that 4P, the
departure from hole equilibrium, and W, the
departure from electron equilibrium, are bound to
be nearly equal. They are indeed, but the neglect
of the small difference between them suppresses
all consideration of field curvature and thus, in-
directly, the suppression of some features arising
from diffusion. It will be shown that the full equa-
tions, even in linearized form, yield local resis-
tance decreases and increases, depending on dis-
tance from the injecting boundary. Within the lim-
itations of the linearized theory (only), all these
changes are independent of current density. Traps
constitute yet another modifying factor, '" but are
not considered in this paper. On the other hand,
whereas previous calculations were limited to an
injection ratio of unity (for an assessment of the
maximum effect), the present work is not resticted
to this case.

LINEARIZED THEORY; GENERAL RELATIONSHIPS

Two equations for current, two continuity re-
lationships, and Poisson s equation (together with
J=J„+J~), as always, control the conduction
mechanism and field distribution. For bimolecular
recombination (trap-free case), the one-dimen-
sional equations are

nP- n, P, d(nE) p,„kT d'n

7'o(n +p ) " dx q dx

np-n, p, d(pE) ~pkT d'p
v', (n, +p, ) "~ dx q dx'

n, and p, being the equilibrium concentrations of
electrons and holes, respectively. The carrier
lifetime &0 is assumed to be independent of in-
jection level.

For computation purposes, it is convenient to
normalize the equations by putting

N= n/n„P= P/n.

E=E, )/(kT/qLv), X=X/Lv,
J'= j/[yqkT(n, +p, )/L ], V= v/(kT/q),

hN=N -N =N —1, bP= P —P

where 5= y,„/p, and

Lv = [okT/q'(p, + n, )]'I',
this being the effective Debye length. The equations
then become

(8)

~ + — " (SNAP+ nP+ P, nN) = 0,
d'N d(NE)

dX 1+p,

(nNnP+ nP+ P,d N) = 0,
d'P d(PE)
dX dx 1+p

(10)

dE 1 (SP —SX),+ g

with

A„=
qp„~,(n, +p, )

A» =bA„=
qu, ~,(n, +p, )

The parameter A„(called A in the papers by
Popescu and Henisch) is approximately equal to
the ratio of the dielectric relaxation time to the
carrier lifetime.

As long as consideration is limited to the regime
of small currents, the transport equations can be
linearized by assuming hX«1 and hP«P, neglec-
tingthecrossproductsE(dN/dx) and E(dP/dx) which
are of second order. The equations then reduce to

dE q—= —(p —n+n —p )dx
1 d~P

(14)
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d'bN dE A„+ — " (nNP~+ hP) = 0,dX 1+P, (15)

d'aP dE A, (nNP, +nP)=0, (16}
+ e

location is defined as X= 0. For different current
levels this reference point need not be the same,
but differences will be small. E(0)= 0 leads at
once to

(rbP —PN) .dE 1
dX 1+P,

(17) (24)

Equations (15) with (17) and (16) with (17) give

d'~X 1+P,A„A„-1
dx2 1+P 1+P

+nN ' ' ~ —nP ' ' =0 (19}

These two differential equations can be readily
solved in the general form

B Cn,V = ——exp(X) ——exp(-X)
e P,

+ R(l -A„) exp(Xv 8)+ S(l -A„) exp(-XM8},

(b) The injection ratio is defined as the fraction
of the total current carried by minority carriers.
Accordingly, the value y, of this ratio in the un-
disturbed bulk is

P
b+P, (25)

ddP
(3 (dbP (3) 3

debt
(3)} (26)

At the injecting boundary (X= 0) we have y a vari-
able parameter between yo and unity. Under the
above zero-field condition, we have

(20)

nP = Bexp(X) + C exp(-X)

+ R(l -A~) exp(Xv 8) + S(l -A&) exp(-X@8),

(21)

(c) N(~) = N, ,

(d) P(")= P, .

Conditions (c) and (d) together imply

E( )=Z(1+P, )/(b+P, ).

(27)

(28)

where

1+P,
@ Af

b+P b

kT(n, +P, )i(.„i],p
q(P„n, + p, P,}

(23)

Under these conditions, the integration constants
can be evaluated as follows:

B=R=O, (30)

S= J[y(b+P, ) —P, ]/b(8 b(1 —8), (31)

C = JP, [(1—A&) —y(1 —b) ]/b (1 —8) . (32)

In this form they can be substituted into Eqs. (20)
and (21) to give nN(x) and nP(x),

the ambipolar diffusion constant. B, C. R, and
S are constants of integration which remain. to
be fixed by reference to the boundary conditions.

FIELD MAXIMUM AND RESISTANCE INCREASE; THEORY

For the case here under consideration, minor-
ity-carrier injection through a boundary at X=0,
the boundary conditions arise as follows.

(a) For a minority-carrier injecting contact,
there is always a location, immediately at the
end of the contact barrier, at which E= 0. This

(1 -A„)[yb —P, (1 -y)] ~)
b(1 —8)

-(t(-3) bte-d. )]dept-*)), (33)

J 1 —8P)[y b —P, (1 -y)]
b(1 —8)

~ P, [(t—3) b(e A )] ex~p( —x-) )„. (34)

The field contour is obtained by adding Eqs. (13)
and (14). In the present terms, this yields

E= ' 1+ ((b —l}[yb —P, (1 -y)] exp(-X)t 8 ) —[(1—y) + b(y -A„)](5+P ) exp(-X)j+ e e

(Contrary to appearance, there is no discontinuity for 8= 1, as can be shown by a limited series ex-
pansion of the exponential terms. )

Corresponding values of V(X) are obtained by integration, taking V=O at X=O, and the cumula-
tive resistance Rx of the system between X= 0 and X is given by
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((b -1)[yb-P(1-y)]/~f3 ] [1-exp(-X~ft)] —[(1-y)+b(y -A„)](b+P,)[1—exp(-X)] )
b(1-8)(1+P )X

(36}

where 8, (0 -X) is the resistance of the same
length of material in the state of Ohmic conduction
(zero injection, y=y, }.

Reference to Eq. (35} shows that E has a max-
imum at X=X: the crossover point between
the sN and nP contours (nP=nK}, we have

(b+P, )[(1-y)+b(y-A„)]
Me(b -1)[yb -P,)(1 -y)]

(37a)

It can be shown that for y&y, this equation has a
solution only for

and

A„& [1+y(b —1)) /b.

In the case dealt with by Popescu and Henisch, '
b = 1 and y= 1, there is no solution for a finite
value of X, which explains why no field maximum
was found, and hence no resistance increase, for
the trap-free case. However, a resistance in-
crease is here predicted in the low current range
for all values of y between yo and unity, as long
as the inequalities (37b) are satisfied.

FIELD MAXIMUM AND RESISTANCE INCREASE; RESULTS

Case y = 1,b = 1;A„& 1 )hfetime regime]

Figure 1 shows the results in terms of hN,
b, P, and E as functions of X. Because the normal-
izations are here different, the parameters used
correspond exactly to those used in the computed
curves, Fig. 3, of Popescu and Henisch' (PH);
J=0.0311 in the present terms corresponds to the
value J= 10 with Popescu and Henisch normalima-
tion for J. To facilitate the comparison, Fig. 1
(only) is plotted with an abscissa of X' =X(Ln/I ~)
=XV 8, where X' refers to the PH normalization
and X to that used in the present paper. Even
though d P for small values of X is much greater
than P, = 0.01 (upper limit for the small signal
theory) the results of the linearized model are in
remarkable agreement with those obtained by the
use of the full equations. As Iong as 4P & P, and
4N& N, =1, the agreement bebveen the two models
extends in fact over a great variety of operational
conditions including those in the relaxation regime.
No field maximum and resistance increase is found
in this case. The usefulness of the linearized
model is confirmed by the high level of agree-

ment with computer solutions derived from the
complete equations.

Cases y variable;b & 1;A„&f1+y(b-1)]/b

Figure 3 shows the resistance increase between
the injecting boundary and X=X, in correspondence
with Eq. (36}, for the same numerical values.
It will be seen that this increase is predicted for
any injection ratio y&y, .

Case of y = 1, for intrinsic germanium

Figure 4 deals with the same situation but with
parameters corresponding to those of intrinsic
germanium. The resistance of the simple is
again increased as a result of minority-carrier in-
jection. For example, in the case discussed, the

Q, P
hN
O. l

0.08
99

—0.04

0.06

0.04 —0.02

I I

4 5 6
x' = x/A x'

FIG. 1. Concentration and field contours for a ease
characterized by unit injection ratio (y=1), unit mobil-
ity ratio@=1), and A„=8&1 gifetinM regime).

Case y = 1;b & 1;A„& (1 + y(b-1 )] /b = 1

Figure 2 shows that there is now a field maxi-
mum (corresponding to the crossover between
hP and hN, and this implies a total resistance in-
crease. It will be shown below that the convention-
al expectation of a resistance decrease is fulfilled
only for a higher range of currents. A qualitative
analysis made by Kiess and Rose' for the relaxa-
tion case leads to the conclusion that no resistance
increase can arise from majority-carrier de
pleNon. The present results do not, of course,
conflict with this result in any way. There is,
likewise, no resistance increase for the case
y= 1, A„& 1 when b& 1 (see discussion below).
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FIG. 6. Concentration and field contours for minority-
carrier injection under conditions which make b,N = 0.

Figure 6 shows ANand hP profiles for the same
materia1, as that considered in Figs. 2 and 3,
except that the lifetime is different. The value
A„=0.364 was chosen to correspond to 8= 2 by Eq.
(22). This value of a A„ is close to that given
by the boundary inequality (37b), namely, A„= 0.55.
On the normal scale, we see that dN ~s approxi-
mately zero everywhere, but contours drawn on
the expanded scale make it clear that there is in
fact a crossover for 4N from 4N& 0 to hN& 0, and

again a maximum field E . For A„&0.55, how-

ever, we have hP& 0 and hN& 0 for any value of X.

cP&N A~ + P,A„
dX' 1+P (38)

The solutions for AN= d P as functions of X in-
volve only terms containing exp(+MSX), or in
unnormalized form exp(a [x/(rQ, )'I']J. Compari-
son with Eqs. (20) and (21) shows that this leads
to the arbitrary elimination of the first two terms
in e'x. It will be clear that these two terms can
have a critical influence on the question whether
d P and 4N vary monotonously with X or not. In
the same way, they influence field profile. The
numerical results on Figs. 2-4 demonstrate
that this is a matter of importance; it is directly
responsible for the appearance of a maximum in
the field contour, and thus for the resistance in-

DISCUSSION

Equations (20} and (21) are general and can be
used in a variety of other contexts, e.g. , minority-
carrier extraction, accumulation, exclusion, '4

etc. , depending only on the boundary conditions.
Their form calls for further discussion.

The conventional procedure is to make the as-
sumption of neutrality (hN= hP) in Eqs. (15) and
(16) but not in Poisson's Eq, (1V).9'" By reference
to Eqs. (15) and (16) the consequences of this as-
sumption can be readily assessed. After elimina-
tion of &&/dX, the equations yield

Z~ kTg, (b -1) (40)

As is well known, in this region the excess con-

crease, It is, in all likelihood, because bN= LP
has been a superficially plausible and, in any
event, a very popular assumption, that these new
effects were missed by analysis in the past.

The physical interpretation of the resistance in-
crease as such is here very similar to that formu-
lated by Popescu and Henisch for the lifetime case
with traps. ' In that case, trapped minority car-
ries attract free majority carriers to the region in
the neighborhood of the injection boundary. They
do this under all conditions, but the degree of
charge compensation (the approach to neutrality)
will be greatest in lifetime semiconductors. In
such materials, charge compensation results in
a concentration gradient dN/dx & 0. Correspond-
ing to this gradient there is diffusion current, and
that flows in opposition to the injection current.
However, the calculations are made for a given
total current, which means that the presence of
the concentration gradient must be compensated by
an extra field. Only then can the current remain
unchanged. In the present (trap-free) lifetime
cases, majority carriers are likewise attracted
to the injection region by a positive space charge.
However, that charge owes its existance to a
different mechanism, namely, the high density
of free minority carriers that is needed to carry
the (total) current in the vicintiy of x = 0 when

p~& p„. Under such conditions, therefore, the
resistance increase due to minority-carrier in-
jection can occur wit;hout traps. Under all other
conditions; traps are needed.

The resistance increases exemplified by the ex-
tent of the field "overshoot" data on Figs. 2 and 4
are substantial, and the question arises as to why

they have not been found and noted in the course of
experimentation. There are two likely explana-
tions:

(i) As shown above, the resistance increase is
expected only in the range of very low currents,
whereas practical measurements are usually
carried out at higher current densities for which
the conventional expectation of a resistance de-
crease is correct. This can be demonstrated in
a very simple way: we are dealing with the life-
time case (A„«1), far away from the injecting
contact in the region near the unperturbed bulk
where np =En and (dnn/dx =(dip/dx}. With nn
«n, , &P «p, the total conduction current J~ can
be written

Zc=qnn(x)(g„+ p,)&+q(n, p„+p, p, }&; (39)

the total diffusion current J~ can be written
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centration nn(x} varies as: hn ~ exp(-[x/
(r,D,)'I']], where D, is the ambipolar diffusion
length, Eq. (23), leading to (ddt/cfx) = —[Sn(x)/
(7'+, )'~'], and

ZD = kTp-~(b -1) nn(x)
113 (41)

It is easy to see that this diffusion current is op-
posite to the conduction current when b&1. The
"equivalent conductivity" of the sample will de-
crease due to the injected carriers (compared to
the conductivity of the unperturbed bulk) as long as
the conduction current due to d n is less than the
opposing diffusion current, i.e., by Egs. (39) and
(41):

qs.n(x)( p, „+)J.,)E,& kTp, (b —1)an(x)

3 —1 kT (p„n, + p, p, )
5+1 qr, (n, +p, )p,„p,

(42)

which define a critical field E, . In a practical
case, for intrinsic germanium (T= 300 K; p„
= 3600 cm'V ' sec ', p,&= 1800 cm'V ' sec ', n,
= P, = 2, 4 x 10"cm ', v', = 7 x 10 ' sec), the critical
field E,= 0.41 V cm '. For E„&E, one should ob-
seme the resistance increase as predicted by

probing along the sample; for E„&E„the conven-
tional resistance decrease. The quantitative re-
sults suggest that the changeover of conduction
patterns should be easily measurable. The overall
situation is thus as summarized by Fig. V.

(ii) When contact characteristics are measured,
the contact barrier is an integral part of the sys-

tem, whereas the present considerations apply
only to the bulk material beyond the barrier. The
effects here predicted are therefore likely to be
masked by the inherent superlinearity of the con-
tact barrier itself. As a result, this superlinear-
ity (measured between the injecting contact and a
potential probe at some point X}would be dimin-
ished, and it is a well-known fact that the forward
characteristics of rectifying junctions are always
more resistive than expectations based on contact
theories alone lead us to suppose. From the point
of view of rectifier design this is, of course, a
disadvantage, but it is already known that a high
dark resistance in the forward direction (high
empirical ideality factor) is actually helpful to
solar cell operation. " This follows from the fact
that the open circuit condition involves a situation
in which the (essentially) reverse current produced
by light is balanced by an equal forward current
produced by forward (self-) bias. Experiments on
systems which are specifically designed to dem-
onstrate the present effects remain to be per-
formed (see Appendix).
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APPENDIX: CONDITIONS FOR THE VERIFICATION
OF 'fHE RESISTANCE INCREASE

O

Intrinsic Ge offers the best opportunities, because
its room-temperature conductivity is still rela-
tively high, and because highly injecting contacts
can be achieved. There are two ways of calcula-
ting the hole injection ratio y: one on the basis
of diffusion theory, '"" and one on the basis of
thermionic emission (diode theory). " Of these, the
diffusion theory gives lower values, and thus leads
to conservation estimates of injection effect. From
the work of Yu and Snow, "modified for the semi-
infinite geometry here considered, one derives

Log V

FIG. 7. Departures from linearity as a result of
minority-carrier injection (schematic}. {a) Linear char-
acteristic for y =go. (b) Typicalbehavior calculated by
Popescu and Henisch (Ref. 1) for the trap-free relaxa-
tion case and b = 1. (c) Range of the present calculations
{b & 1); low-current regime. (d) Crossover point to the
high current regime.

qD~P, +J

for the injection ratio of a Schottky barrier, where
J, is the saturation current density. The barrier
height controls J„and for high barriers J, can be
very small compared with the diffusion term
qD~P, /f ~. For the parameters of near-intrinsic
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Ge, the equation yields y=0.3 to O. V for typical
barrier heights, which should be quite high enough
for the resistance increase to be comfortably
observed. Even more favorable estimates of y

can be derived from the work of Sze,"and Green
and Shewchun. " The fact that a great deal of hole
injection can be detected even in slightly extrinsic
(p- 10 Gcm) Ge has already been demonstrated. "

*On leave of absence from the Universite des Sciences
et Techniques du Languedoc C,E.E.S., 34060, Mont-
pellier, France.
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