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%e present a self-consistent calculation of the ground state of the metallic planar surface in which the
rete-lattice perturbation Sv(F) is treated variationally, with use of a single variational parameter, rather

than perturbatively. Our calculation, which reduces to the perturbation theory of Lang and Kohn in the limit

of weak Sv(F) and retains most of the simplicity and broad utility of their approach, shows that for many
metal surfaces Sv{r) is not a weak perturbation: The electron density profiles at real metal surfaces are
oAen unlike those of the jellium model and in fact show a strong dependence on the choice of exposed
crystallographic face. This face dependence, which is rather simply related to the average value (Sv )„of
the discrete-lattice perturbation over the volume of the semi-infinite crystal may have important consequences
in the calculation of many surface-related properties, including chemisorption, to which our method is easily

appliclble. %e calculate the face-dependent surface energies, density profiles, and work functions of nine
simple metals. Calculated surface energies, including the correction to the local-density approximation for
exchange and correlation given by the method of wave-vector analysis, are in good agreement with measured
surface tensions for those seven of the nine metals in which the ionic pseudopotential gives a good account of
the bulk binding energy. Problems st)Ill to be considered include improvements in the pseudopotential, lattice
relaxation at the surface, and variation of the electron density over planes parallel to the surface.

1. INTRODUCTION

~e present a, cariatio»ut se1f-co»sistent treat-
ment of the ground state of the metal surface,
with numerical results for the face-dependent
electron density profiles, surface energies, and
work functions of nine simple metals. A pre-
liminary report of our work, with surface ener-
gies for the most densely packed faces of the cubic
metals, has already appeared. ' Our method,
which is a direct generalization of the Lang-Kohn
tperturbational self-consistent method, ' combines
the computational simplicity (e.g., electron den-
sity variation only in the direction normal to the
surface) and broad utility of the latter with fea-
tures that might otherwise be found only in com-
plicated three-dimensional self-consistent cal-
culations. Our results show that (i) the surface
energies for some metal surfaces are significantly
lower than the values predicted by the perturba-
tional self-consistent method, and (ii) the electron
density profiles for most metal surfaces are signi-
ficantly different from the semi-infinite jelliurh-
model profiles used in the perturbational self-con-
sistent method, and in fact depend strongly on the
exposed crystallographic face. Point (ii) may have
important consequences in calculations of surface-
related properties such as chemisorption and
adhesion, to which our method is easily applicable;
in fact our method has already been applied to the
calculation of vacancy-formation energies' and of
the equilibrium position and binding energy of hy-

drogen chemisorbed on the (111)face of AI.' The
work function calculations we shall present here
are only intended to show that the weak face de-
pendence' of the work function is compatible with,
and in fact requires, a strong face dependence of
the electron density profile; a more accurate cal-
culation of face-dependent work functions will be
given in a subsequent paper. '

We include the correction t.'o the local density
approximation for exchange and correlation given
by the method of wave-vector analysis. ' ' The
surface energies so calculated for the most densely
packed faces are in good agreement with measured
liquid-meta1 surface tensions for those metals (Al,
Pb, Mg, Na, K, Rb, and Cs} in which the pseudo-
potential also gives a good account of the bulk
binding energy, and in poor agreement for Li and
Zn in which the pseudopotential gives a poor des-
cription of the bulk (as discussed in Sec. II).

The advent of density functional theory' ' "per-
mitted the first realistic treatment of the jellium
model of the metal surface, in which the semi-in-
finite lattice of ions is replaced by a semi-infinite
uniform positive background. Results of this
work' "'" showed that (a} exchange and correla
tion, usually treated in the local density approxi-
mation" (LDA), have a major effect on the elec-
tron density profile, work function, and surface
energy, and (b) while the work functions of the
jellium model agree (within about 1$}0}with the
work functions of real metals, the jellium model
fails for the surface energies, even to the extent
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of giving the wrong or negative sign for the sur-
face energies of the metals of higher electron den-
sity like Al. This effort culminated in the classi-
cal work of Lang and Kohn, ' who gave a fully self-
consistent treatment of the jellium model within
the I DA. They then reintroduced 5o(r), the dif-
ference between the pseudopotentials of the semi-
infinite lattice of ions and the electrostatic po-
tential of the semi-infinite uniform positive back-
ground, as a first-order perturbation to the sur-
face energies' and work functions. ' Their results
for the surface energies of the most densely
packed faces and the face-dependent work func-
tions showed reasonable agreement with the ad-
mittedly inadequate experimental values, the
worst error being an overestimate of the surface
energy of Pb by a factor of about 2.

The Lang-Kohn approach has an appealing and
physically reasonable simplicity: aQ the complex-
ities of the bulk band structure, which are known
to have little effect on the bulk binding energy (see
Sec. II), are simply ignored, and all the inhomo-
geneity left in the problem is the essential one-
dimensional inhomogeneity of the surface itself.
The self-consistency problem is easily solved for
one-dimensional density variation (and the numer-
ical instabilities that formerly precluded a
straightforward iterative solution can now be elim-
inated by means of an integral equation for the
electostatic potential; see Appendix A). The one-
electron wave functions of the jellium model tend
in the interior of the metal to phase-shifted free-
electron waves, ' and these phase shifts, which
satisfy a charge-neutrality sum rule, "'"can be
used to express the surface kinetic energy, ' the
surface density of states, "and other one-electron
properties. " Because of its relative conceptual

and numerical simplicity, the Lang-Kohn-type ap-
proach has also been applied to other problems
such as surface spin susceptibility, ""vacancy
formation, adhesion, 2' 2 and chemisorption, 2 '

and may prove useful for still others such as sur-
face-plasmon dispersion. We have therefore
chosen to retain aQ of these simplifying features
in our variational self-consistent approach.

on the other hand, the Lang-Kohn treatment of
5o(r) as a weak first-order perturbation must be
regarded with skepticism for most metal surfaces.
As mentioned earlier, 5o(x) makes a very large
contribution to the surface energy, especially in
the denser metals like Al. A calculation by
Finnis" suggests that second-order corrections
can be very large in such metals.

Furthermore, (5o)„„, the average value of 5v(r}
over the volume of the semi-infinite crystal, is
often a large fraction of both the free-elec&on
Fermi energy and the one-electron potential bar-
rier of the jellium surface. (Values of this face-
dependent (5o)„are given in Table I). This large
message potential has no effect on the electron-
density variation in the bulk, and so first-order
perturbation theory in 5v(r) is appropriate for the bulk
binding energy. However, since 5v(r) vanishes out-
side the metal and has a large average value inside, it
is bound to have a significant effect on the electron-
density variation at the surface. These facts sug-
gested to us that 5v(r) should be treated varia-
tionally (or exactly) rather than perturbatively.
We formulated the variational self-consistent
method so that it wouM reduce exactly to the Lang-
Kohn perturbational self-consistent method in the
limit where 5v(r} becomes sufficiently weak. Our re-
sults show that for most surfaces 5e(r) is not weak
enoughto be treated as a first-order perturbation. We

TABLE I. Values of (6g,„, the average value of the discrete-lattice perturbation over the
volume of the semi-infinite crystal. The crystallographic faces for each metal, labeled by
their Miller indices, are arranged from the most to the least densely packed.

Metal

Al fcc

Pb fcc

Zn hcp

Mg hcp

Li bcc

(100)
(110)

(111)
(100)
{110)

(0001)

(0001)

(110)
(100)
(111)

(6Q,„(eV)

—1.7
0.2
3.0

—3.9
-1.9

1.2
—0.7
—0.2

-0.8
0.2
0.9

Metal

Na bcc

K bcc

Rb bcc

Cs bcc

Face

(110)
(100)
(111)

(110)
(100)
(111)

(110)
(100)
{111)

(110)
100)

(111)

(6@„(eV)

0.0
0.9
1.5
0.1
0.8
1.3
0.6
1.3
1.7
0.7
1.3
1.8
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have found that the difference of our density profiles
from those of the jellium model correlates strongly
with the signand size of (5v),„, which is also an im-
portant ingredient of our expression for the work
function.

Of course a complete description of the ground
state of the metal surface requires the full solu-
tion of a three-dimensional self-consistent prob-
lem —the best-founded result of the variational
self-consistent Inethod is an upper bound on the
surface energy, given the correct energy function-
al. To date such three-dimensional treatments
exist for only a few of the simple metals and for
selected faces: Al(111},""Al(110),"Al(100),""
Li(100}"'",Na(100),""and Cs(100)." These
calculations employ diverse treatments of the ionic
pseudopotential and the exchange-correlation po-
tential, and achieve varying degrees of self-con-
sistency. In many of them the primary interest
has been in selected surface and bulk states; in
only a few of them is the electron-density pro-
file displayed, 2 ' ' 3' ~ and surprisingly the sur-
face energy is not determined in any of them.

Aside from these calculations, most recent
theoretical work on the surface ground state in-
volves a closer look at the jellium model: One
line of investigation has been the introduction of
corrections to the I DA by means of the density
gradient expansion "or wave-vector analysis. ' '
Another line has been the design of rather accurate
variational or model-potential methods" "which
bypass the need for numerical iteration.

The first step toward a variational treatment of
real metal surfaces was apparently taken by
Paasch and HietschoM, "'"who used a direct
parametrization of the electron-density profile.
Their conclusions about the strong face de-
pendence of the profile are in qualitative agree-
ment with ours. (While Lang and Kohn have al-
ready given a systematic study of the face de-
pendence of the work function, ' their perturbative

approach conceals the face-dependence of the
profile}. The work of Paasch and Hietschold also
suggests that lattice relaxation at the surface, not
considered here except in Appendix E, may be
important for some metal surfaces, although some
of their approx'. mations appear too severe to be
quantitatively reliable.

II. ENERGY FUNCTIONAL

The ground-state energy of a system of electrons
interacting with static ions via a local pseudopoten-
tial can be written as a functional"" of the elec-
tron number density n(r}

E [n] = T, [n] + E„[n]+— d r d r 'e2 , n(r)n(r')

+ dr so r- nr +-
r f lr

(2.1)

The first three terms of (2.1) are the noninteract-
ing kinetic energy, exchange-correlation energy,
and Hartree electrostatic energy respectively, as
defined in density functional theory. "'" The ionic
pseudopotential has a long-range attractive part
and a short-range repulsive part M)~

(2.2)

[n(r) is strictly the pseudo electron density, but
we do not bother to retain this cumbersome termi-
nology. ] The last term in (2.1) is the Coulomb in-
teraction between the ions distributed over sites
T, and the prime means that the I' = T term is
omitted from the sum.

For large systems, where the individual Coulomb
terms of (2.1) are badly behaved, it is convenient
to add and subtract a fictitious neutralizing positive
background n, (r) (defined later as that of the jel-
lium model) to Eq. (2.1), with the result

(2.3)

where '

and

([ ] ) ~yd, n(r')-n, (r')
r —r' (2.4)

The auxiliary one-electron wave functions P; of
density functional theory, "which are used to con-
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TABLE D. Calculated bulk binding energy & and the exchange-correlation (&„~), 6rst-order
pseudopotential (~@), andband-structure {&b,) contributions to it. The kinetic energy {&,
= 3 &+(n)) and Madelung (&~) contributions are not sholem. The alkali metals have been treated

5
here as bcc and the others as fcc. &'"& is the measured binding energy (from Ref. 41). The
first-order [g~s},„, Eq. (4.10)l and band-structure (pb„see Appendix C) bNI'k contributions
to the chemical potential are also shown.

Al
Pb
Zn
Mg
Ll
Na
K
Rb
Cs

(n)

—712
-6.6
-6.6
-5.9
-4.9
-4.1
-3.5
-3.3
-3.1

4.2

4.2
1.3
1.8
1.5
1.9
2.0

~bs

-0.0
—0.5
-0.3
-Q.1
-0.0
-0.1
-0.1
-0.3
-0.4

{eV)

-18.9
-24.0
-12.6
—12.1
-8.2
-6.6
—5.7
-5.2
-4.9

-18.8
-24.3
-14.3
-12.1
-7.0
-6.3
-5.3
-5.0
—4.7

-2.4
-4.7
-0.2
-0.7
~ ly2
-0.3
—Q.1

0.4
0.5

&bs

—0.0
-0.2
-0.2
-0.1
-0.0
—0.1
-0.1
-0.3
-0.4

struct n(I') and T, [n], satisfy the self-consistent
Schrddinger equation:

( v '+ p„([n];r)

0(fnl;R ~ Sv(r)) 0(r) e,.it{r=), , (2.6)

where ii„([n];r) =6E„/6 (rn) is the exchange-cor-
relation potentiaL Equation (2.6) is a consequence
of the variational principle, "which says that E[n]
is minimal for the true electron density with re-
spect to all variations of n(r) at fixed N= f 1 rn(r}.

The exchange and correlation energy E„[n] is
not known exactly, and must in practice be re-
placed by some approximation, e.g. , the local
density approximation" (LDA), for which the rigor-
ous proof of the minimal property of E[n] is lost.
However, the LDA is known'" to give an excellent
approximation to n(r} and a good approximation to
E[n], which can be systematically improved by
e.g. , the method of wave-vector analysis. ' '

Before applying (2.8}to the metal surface prob-
lem, we review its application to bulk metals.
With the choice n, (r}=n, where n is the bulk
average of n(r), the large-parentheses term of
(2.2) becomes simply the Madelung energy ¹„of
a neutralized lattice (see Appendix B). The bulk
binding energy per electron e =E[n]/IV then be-
comes:

suits for 9 simple metals obtained from the Ash-
croft pseudopotential, 4' for which mz(r) cancels
-ze /r exactly within a distance r, from the nucleus

u„(r) = e(r, -r}. (2.6)

TABLE GI. Input parameters for the bulk and surface
calculations of this paper {from Refs. 2 and 41). is the
valence, r~ the bulk density parameter {T«, = n ), and

r, the pseudopotential core radius. For r, in a.u. , the
Wigner parametrization (Ref. 43) of &„, is

—12.46 11.97 eV
~, + 7.8 electron

(a.u.)
Metal 'c

Here, as in our surface calculations, we have used
the same input parameters(for the n, z, r, , and
Wigner" parametrization of e„, see Table III) as
those of Lang and Kohn. '

Examination of Table H leads to several con-
clusions that we will rely on in our treatment of
the surface:

(i) The band-structure contribution to the bulk

binding energy is a small fraction of the total, and

is typically less than half an e7; this supports our
picture of the bulk as a region of essentially uni-
form electron density. (ii) Except for Li and Zn,
where the pseudopotential is apparently in error,

e =&, (n)+e„(n) ru„+e„+„+,e (2.7)

where e, and e„are the kinetic and exchange-
correlation contributions for an assumed unzform
electron density n(r) =n, and all the nonuniformity
of the real n(r) is contained in the band-structure
contribution eb, (see Appendix C). Expressions for
the individual terms in (2. I) have been given by
Ashcroft and Langreth4'; in Table H we present re-

Al
Pb
Zn
Mg
Ll
Na
K
Rb
Cs

2.07
2.30
2.30
2.65
3.28
3.99
4.96
5.23
5.63

1.12
1.12
1.27
1.39
1.06
1.67
2.14
2.61
2.93
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the theoretical binding energies agree with the
experimental ones within about 0.4 eV. The first-
order pseudopotential contribution to ~

R„=— d rso„r =2me~ny~ (2 8)

III. SURFACE ENERGY: VARIATIONAL FORMULATION

We turn now from the infinite metal to the semi-
infinite one filling the half space x&0, for which it
is convenient to take

is substantial. We conclude that R„ is given rather
accurately (within about 0.4 eV) by the Ashcroft
potential for all the simple metals except Li and
Zn. This has an important bearing on the physical
reality of our surface results —it means that the
error in our parameter (5v),„ is probably less than
0.4 eV for all the metals except Li and Zn. We
thought it important to check this point explicitly,
since the Ashcroft r, was fitted to experiment at
or near the first nonzero reciprocal lattice vector
0, while w„ is inherently a part of the 6 = 0 Four-
ier coefficient of the potential.

In fairness, we ought to point out that there is
still a problem with the Ashcroft potential: Ash-
croft and Langreth" found that the energy func-
tional (2.3) using the Ashcroft potential did not
minimize at exactly the observed equilibrium bulk
density n for most of the bulk metals (Al is a
notable exception). In order to make it do so, and
so calculate the compressibility, they treated the
G =0 Fourier coefficient of se„as an adjustable
parameter. This procedure, besides being inap-
plicable to the surface problem, tends to some-
what worsen the binding energies for most of the
metals. Perhaps the real problem with the Ash-
croft potential is that when the a Priori nonlocal
pseudopotential is approximated by a local pseudo-
potential, the parameter (s) of the local pseudo-
potential should depend somewhat on the bulk
density H." Since the Ashcroft parameter r, was
fitted to experiment at the observed equilibrium
bulk density H, the Ashcroft potential should be
more suitable for calculating properties at the ob-
served equilibrium n (such as the bulk binding en-
ergy and the surface energy) than for calculating
properties related to changes in n. At any rate
we provisionally accept the unmodified Ashcroft
pseudopotential (2.8) as a suitable one for treating
the metal surface, in order to make a meaningful
comparison of our results with those of Lang and
Kohn. ' ' Note however that because of the prob-
lem described above, this pseudopotential probably
should not be used to calculate relaxation of the
positions of the first lattice planes at the surface
(except for Al —see Appendix E).

TABLE IV. The distance between lattice planes d, as
a fraction of rp, the radius of the Wigner-Seitz spher-
icalized cell (747' p=z/n). (Zn, c/a= 1.861; Mg, c/a
=1.625 (Ref. 54).

fcc
d

Xp bcc fp

(111)
(100)
(110)

1.4774
1.2794
0.9047

(110)
(100)
(111)

1.4361
1.0155
0.5863

hcp

{0001)

d

fp

1.4774[(c /a ) /1.6330]

TABLE V. Work function ~" (Eq. 4.7) and its com-
ponents for the jellium model trav(r)=0] of the metal
surface. The Fermi level phase shift yj" (kz) is also
shown for this model.

Metal D"
(eV)

ez(g) P„(~) W"
'Y"'(~z) —

4 &

Al 6.24 11.69 -9.32 3.88
Pb 4.77 9.47 —8.50 3.80
Zn 4.77 9.47 —8.50 3.80
Mg 3.29 7.13 —7.51 3.67
Li 1.81 4.66 —6.25 3.40
Na 0.96 3.15 —5.29 3.10
K 0.36 2.04 -4.41 2.73
Rb 0.26 1.83 —4.22 2.65
Cs 0.14 1.58 —3.97 2.53

0.90
0.81
0.81
0.71
0.58
0.48
0.41
0.37
0.34

The surface energy is of course the piece of (2.3)
that is proportional to the surface area. With the
choice (3.1), the jellium model is described by
just the first three terms of (2.3). Lang and Kohn'
solved this model exactly (within the LDA) for N(x),
and then used &his n(x) to evaluate the fourth term
in (2.3)—i.e., they treated 5v(r) as a first-order
perturbation. (The distance along the x-direction
between lattice planes is given in Table IV.) Re-
sults of the Lang-Kohnperturbational-self-con-
sistent approach are shown in Tables V and VI.

We now appeal to the variational principle as dis-
cussed in Sec. II, i.e.,

(3.2)

where the variation of n(r) is taken at fixed elec-
tron number N= Jd rn(r). We obtain the surface
energy by minimizing E[n], Eq. (2.3), over a class
of one-dimensional density profiles n(x) which,
like the jellium model profile, tend to n as x tends
to -~. Unless 5v(r) is truly weak, it should be
possible to find members of this class which give
significantly lower energies than does the jellium-
model profile. Since the bulk density n is held

n, (r) =ne(-x) . (3.1)
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TABLE VI. Face-dependent surface energies calculated by the Pertuxbational self-eon-
sistenI; method in the local density approximation {LDA).

Metal

Al fcc

Pb fcc

Face

(111)
{100)
(110)

(111)
(100)
(110)

~ LOA

(ergs/cm2)

730
1485
3230

1140
2280
4940

Metal

Na bcc

K bcc

Face

(110)
(1«)
(111)

(110)
(100)
(111)

0 LDA

{ergs/cm )

229
262
351

139
159
20V

Zn hcp (0001)

Li bcc (110)
(100)
(111)

Mg hcp (0001)

375
503
685

Rb bcc (110)
(100)
(111)

(110)
(100)
(111)

122
115
149

103
92

116

fized at the experimental value during the variation,
it is only necessary to minimize the surface en-
ergy 0, which can be written in the LDA as

the semi-infinite crystal

1
(5v),„=- dx 5v(x) svjt —ve'nv d'

cf
(3.6)

o""[n] =o, [n] +o,",'"[n] +o„[n]+on, [n] +(r„+op,

(3.3)

where these six terms correspond in order to the
surface pieces of the six terms in (2.3). The last
two terms in (3.3) arise in the classical cleavage
step described by Lang and Kohn, in which the
crystal is cleaved sharply along a plane with the
electron density inside each semi-infinite crystal
held fixed at its bulk value (which is taken here to
be the constant n), and the first four terms in (3;3)
arise in the subsequent relaxation of the electron
density profile.

Lang and Kohn' have already given expressions
for the functional dependence of the first four
terms in (3.3) on the profile n(x), and for the pro-
file-independent classical cleavage energy v&. We
only write down two of these terms which are of
pa, rticular interest here: the exchange-correla-
tion contribution in the LDA

0.5— I

a} )05

0

—0.5

—I.O—

0.5—

t0
Ct.
xu
CJ

O

x

-0.5

/
c ""'"""+ I.o
/

Pb f(;c {III]g
E (n

-05

(see Table I), where d is the distance between
neighboring lattice planes parallel to the surface
(see Table IV). In the absence of lattice relaxation
(not considered here —but see Appendix E), the
first lattice plane is at x = --,'d. o„ in Eq. (3.3}is
a profile-independent term in the surface energy,

of"[n] = dx[n(x)e„, (n(x)) —ne„, (n)e(-x)] (3.4) -I.o— —I.O

and the pseudopotential contribution

v [n]n= dx 5v(x) [n(x) —ne(-x)],
ea Oo

(3 5)

I

-l.5— r
I

x [units ot 2ttik&]

I

0.5

where 5v(x) is the average of 5v(r) over a plane at
x parallel to the surface. [5v(x) is displayed for
Pb(111}and Cs(110} in Figs. 1 and 2 of this paper,
and for K(110}in Fig. 6 of Ref. 2. The explicit ex-
pression for 5v(x) is given in Ref. 2 and also in
our Appendix D.] A quantity of particular interest
is the average value of 5v(r) over the volume of

FIG. 1. Elements of the perturbational self-consistent
{a) and variational self-consistent (b) schemes for the
(111) face of fcc Pb. Dotted curve: electron density
n (x) ~ Dashed curve: self-consistent one-electron poten-
tial which generates n {x). Solid curve: planar average
of the residual perturbation, which is % (x) in case (a)
and R {x)—(6v) „& (-x+Xg in case {b). fVariatkonal
form (3.10). %e have chosen p(fn]; +~) =0.]
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I.O I

p )
—0.5

0

/
——Fermi level —5 —--

ct.l

Qt /
/

(:s bcc (IIO)

b)

-I.O— -0.5

u- -2.0 o

C

—0.5I.O Ic
I

0

—I.O—

——-- --Fermi level

-2.0—

/

/ ""..
/

I/

"- -I.O

I

-0,5
I

0
tt [units af ztt/kF]

0.5

FIG. 2. Elements of the perturbational self-consistent
(a) and variational self-consistent (b) schemes for the
(110) face of bcc Cs. {See caption of Fig. 1).

c„=-tre'n 'd (r, ——,'d)'8 (r, ——,'d ) (3.7)

S~
V ' + It,„(n(x))

~ t tf i;*) v(*)) t t )=,A( ) (3.8)

which arises only in the case r, &-,'d (see Appendix
D); this case did not arise for the most densely
packed faces considered by Lang and Kohn. '

Now it is only necessary to select the exact class
of profiles n(x) over which c[n] is to be minimized.
One approach which has been applied both to jel-
lium" and to real metals, ""is to parametrize
n(x) directly. This approach, which has the ad-
vantage of simplicity, also has several major dis-
advantages —T, [n] cannot be evaluated exactly, no
information is gained about the one-electron wave
functions, and the approach is not readily applic-
able to other problems such as chemisorption.
Another approach, which we take here, is to
parametrize the effective potential' "'"that ap-
pears in the SchrMinger equation (2.6) and gener-
ates the variational wave functions from which
n(x} and T, [n] can be constructed. In a yurely-
variational one-dimensional approach, the entire
effective potential would be replaced by a para-
metrized function of x. But in the vacational
self consisfent app-roach of this payer, only 5v(r)
is replaced by a parametrized function V(x), i.e.,
the variational wave functions are generated from
the self-consistent solution of the equation

V(x) =Ce(-x) . (3.9)

When the variational parameter C is set to zero
we recover the jellium model. Positive C pushes
electrons out into the vacuum region, yieMing a
density profile that is more spread out and has a
larger surface dipole moment than that of jellium,
while negative C has the opposite effect. The
"best" value C minimizes the surface energy c~"
[n]. Since 5v(x} depends on the crystallographic
cleavage plane, so necessarily does C .

We emphasize again that C is only a variational
parameter that generates a class of density pro-
files. The energy functional that we minimize is
the exact one (2.3}(within the LDA and the local
pseudopotential approximation), which contains no
explicit reference to C. Moreover by varying C
we are varying only the surface piece of (2.3),
since the bulk piece will be the same for all C.
The exact real metal problem is formall'y re-
covered by introducing 5v(r) —V(x) as a perturba-
tion in (3.8); this perturbation hopefully has only
a minimal effect on the density profile when V(x)
= C.e(-x).

We have found the not-unexpected result that C
tends to mimic (5v).„(compare C from Table VII
with (5v}., from Table I). In light of this we also
tried a second variational form

V(x) =(5v),.e(-x+X) (3.10)

Since a one-dimensional self-consistent problem
must now be solved for each choice of V(x), it is
desirable that V(x) should contain only one varia-
tional parameter. In addition we impose several
physically motivated restrictions on V(x): (a)
V(x) must tend to a constant potential as x- —~
to insure that the bulk density is uniform; with this
condition satisfied, (3.8) can be solved in the same
way that Lang and Kohn' solved the jellium model
[V(x) = 0] problem (see also Appendix A). (b) V(x)
should tend to 0 as x-+~ since 5v(r} also vanishes
in this limit. (c) In order to allow for a clean
separation of the total energy of the system into
bulk and surface parts, V(x) should not contain
any structural information about 5v(r), since in
the bulk metal the electron-density is taken to be
uniform. (d) For some choice of variational
parameter, V(x} should be constant or zero in the
region where the electron density is nonzero —thus
the variational self-consistent approach is able to
give an exact description of the jellium model of
the surface, and does so in the appropriate limit
5v(r) —0.

Our original' choice for V(x) was a step potential
with the step at the nominal jellium edge:

which describes the jellium surface in the presence
of a fictitious external potential V(x).

in which the position X of the potential step is
varied; typically the minimizing value X was
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TABLE VH. Results of vcriutional self-consistent calculations using the form (3.9). C~ is
the minimizing value of the variational parameter, D, the electronic relaxation dipole bar-
rior, +' the variational work function, p(&~) the Fermi-level phase shift, and 0~~" the LDA
surface energy.

Metal

Al fcc

Pb fcc

Zn hcp

Mg hcp

Li bcc

Na bcc

K bcc

Rb bcc

Cs bcc

Face

(111)
(100)
(110)

(111)
(100)
(110)

(0001)

(0001)

(110)
(1QO)

(110)
(100)
(111)

(110)
(1QO)

(111)

(110)
(100)
(111)

(110)
(100)
(111)

-1.9
1.0
3,7

-6.3
-2.6

1.9
-0.4

0.4
-1.1

0.3
1.0
0.3
1.1
1.5
0.4
1.1
1.4
1.1
1.6
1.8
1.3
1.5
1.7

D~

(eV)

4.7
7.2
9.8

0.8
2.9
6.5

4.5
3.7
1.1
2.0
2.6

1.2
1.8
2.1

0.7
1.2
1.4
1.1
1.5
1.7
1.1
1.3
1.5

4.0
4 7
4.5
3.7
3.8
4 4

4.2
4.2
3.5
3.4
3.2
3.3
3.0
2.7
2.9
2.7
2.5

2.9
2.6
2.3

2.8
2.3
2.2

y(k~) ——n'1

0.8
1.0
1.2
0.4
0.6
1.0
0.8
0.8
0.5
0.6
0.7

0.5
0.6
0.7
0.4
0.6
0.6

0.6
0.7
0.7
0.6
0.6
0.7

0 LDA

(erg/cm2)

643
1460
2870

550
2155
4860

478

331
501
670

223
245
321

135
147
187

110
91

118

85
68
89

TABLE VIE. Results of vuriAionul self-consistent calculations using the form (3.10) (see
caption of Table VG). X~ is the minimizing value of the variational parameter.

Metal

Al fcc

Pb fcc

Li bcc

Na bcc

K bcc

Rb bcc

Cs bcc

Face

(111)
(100)
(110)

(111)
(100)
(110}

(110)

(110}
(100)
(111)

(110)

(110)

(110)
(111)

0.0
0.5
0.1

0.3
0.1
0.2

0.2

0.5
0.1
0.0

0.4

0.3

0.3
0.0

4.8

9.1

0,9
3.1
5.9

1.0
1.7
2.1

0.5

0.8

0.8
1.5

(eV)

4.1
3,9
3.8
3.9
4 Q

3.8
3.6
3,1
2.9
2.8
2.7
2.6
2.5
2.2

y(jg~)
i

0.8
0.9
1.1
0.5
0.7
0.9
0.5
0.5
0.6
0.7
0.4
0.5
0.5
0.7

0 LDA

(erg/cm2)

643
1465
2870

365
2150
4865

228
245
321

138

108

85
89
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TABLE 1X. The surface energy & and the exchange-correlation {0~= &„~
"+ 40~) and

pseudopotential {0'p3) contributions to it for the most densely packed faces of nine simple
metals. For each metal surface the first horizontal line gives the Pertu~bctional Sggf-
consistent value and the second one gives the ~~mational seEf-consistent value. {Here
the variational principle has been invoked to choose between the forms {3.9) and {3.10):
The values shown correspond in each case to the lower value of 0 L~~ obtained from the
two forms. ) For a more complete breakdown of the surface energy of Pb and Cs into in-
dividual components, see Ref. 1.

Metal Face
0 LDA &(Txc

{erg/cm2)
0'p 3

Al fcc

Pb fee

Zn hcp

Li bcc

K bce

Rb bce

Cs bce

{0001)

{0001)

{»0)

{110'

{110)

{110)

2870
2545

1965
1305

1965
1900

1175
1230

540
450

263
280

116
133

94
122

71
100

155
150

112
91

112
112

37

20
20

10
11

1050
900

935
-280

568
561

290
285

110
80

23
19

20
1

594
590

620
619

149
148

130
117

109
93

found somewhere between the nominal jellium
edge x =0 and the first lattice plane x =--,'d (see
Table VIII and Pigs. 1 and 2). In fact for all the
surfaces except Pb(111), good results can be ob-
tained with X=0—physical insight alone almost
allows us to dispense with the minimization pro-
cedure. The variational forms (3.9) and (3.10)
usually gave closely similar results; we report
the results of both forms to point out the power
and also the limitations of the variational method.

We close this section by commenting on cor-
rections to the local density approximation for ex-
change and correlation. We write

o[n] =o""[n]+no„,[n], (3.11)

where ha„ is the required correction, as given by
the method of wave-vector analysis. ' ' (We do not
use the gradient expansion of E„[n], which ap-
pears to be poorly convergent for physical density
profiles. ') While Ac„[n] depends strongly on the
bulk density n, it is rather insensitive' (see Table
IX) to the density profile. This means that the
LDA gives a good density profile, and that ao„[n]
need not be included in the minimization of o[nl-
we simply minimize o"o"[n] and then add on

Ac„[n] evaiuated4' for the minimizing density pro-
file.

+y([n]; r)+au(r) .
5n(r) 5n(r}

(4.2)

(4.1) is clearly a functional of n(r), and if we re-
place the true n(r) by our variational n(x} we find

4-4([n];a=- ), (4 3)

"-—[n[~ (n)+c (n)]]
5n r BS

= ~~ (n) + p„(n}, (4 4)

where c~(n) =I'k~'/2m and n =@~/3s' (Bulk band-.
structure contributions to p. , which are not in-

lV. WORK FUNCTION AND DENSITY PROFILE

Lang and Kohn' have shown that the exact work
function corresponding to the energy functional
(2.1) is (in our notation")

(4.1)

where the chemical potential p. is the volume av-
erage over the semi-infinite crystal of
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eluded in our variational scheme, are shown to be
small in Table II}. The variational work junction"
is therefore

W=D. —[e,(n) + V.„,(n) + (5v)„,
where

(4.5)

dx x [n(z) —ne (-x)] (4.6)

is the electronic-relaxation surface dipole barrier.
Of course for the jellium model (5v(r) =0), E(Is.
(4.1) and (4.5) both give the exact result

W"' =De" —[&r(n)+ u..(n}]) (4 t)

where D,"' is (4.6) evaluated for the jellium-model
profile (see Table V}.

For real metals (4.5) is an approximation, and
the error in this approximation should reflect the
error in the variational density profile, since
W [n] is not minimal with respect to variations of
n(r). Variationally derived values of D, and W for
real metals are presented in Tables VD and VGI.
The variational form (3.10) has an extra element
of self-consistency not found in (3.9}: for (3.10}the
exact work function for tbe model problem (3.8)
[jellium surface plus external V(x}] is the same as
the variational work function (4.5).

Note that while 8, is purely a surface contribu-
tion to S"and e~+ p.„, is purely a bulk contribution,
(5v),„contains both bulk and surface contributions,
which can be separated in the following way: Di-
vide the bulk metal into neutral Wigner-Seitz cells
drawn around each ion. For one such cell, let
5vws(r) be the sum of the pseudopotential from the
ion in this cell and the electrostatic potential of
the uniform electronic density contained within it,
with the convention that the 5vws(r) from this cell
vanishes far outside it. Then write

&5v)- =(5v s)- —D.)

n2 r
y(kr) -4 (4.13}

(see Tables V, VII, and VIII). Both D, and y(kr)
increase as the surface electron density profile
becomes more spread out at fixed bulk density n.

The variational density profile is

n(x) = —, dk (ksr - k )[Ps (x)]s, (4.14)

where due to the conditions imposed on the model
potential V(x)

D,& is the contribution to the surface dipole barri~
that arises from the distortion of the Wigner-
Seitz cells which occurs in the classical cleavage
of Sec. III (see Appendix B), and D, is the contri-
bution that arises from the subsequent relaxation
of the electron density. The variational work func-
tion (4.5) becomes

W = (D, +D)}—[cr (n) + p,„(n}+(5vws), „], (4.12)

where the first bracket is the surface contribution
and the second is the bulk contribution, i.e. , the
chemical potential measured from the electro-
static potential at the edge of the sphericalized
Wigner-Seitz cell, the electron density being taken
as uniform and equal to H. The "surface dipole
barrier" defined by Heine and Hodges" corre-
sponds to our D, +D,~ while that defined by Lang
and Kohn" corresponds to our D, —(5v)a. =D, +Da
—(5v ),„. Note that in the atomic vacancy problem,
the parameter that measures the deviation from
the jellium model should be {5vws},„and not (5v)».

By (4.6), the electronic relaxation dipole barrier
D, is a convenient measure of the spread of the
electron density profile at the surface. Another
convenient measure of this spread is the Fermi-
level phase shift y(kr). Kenner and Allen" have
shown that the surface contribution to the elec-
tronic density of states at the Fermi level is

where (5vws), „ is the bulk contribution to (5vg„and
-D„ is the surface contribution. If theWigner-
Seitz cell is now approximated by a signer-Seitz
sphere of radius r, (where xvr ', =z/n), we find

(j)„(x)- s in[kgb -y(k)]

as x- —~. Conservation of electron number

(4.15)

ze'
()r„,( )=( — ~ „( ) S

—), e(r, —r),
dz [n(z) —ne (-z)1 = 0 (4.16)

implies the Sugiyama-Langreth phase-shift sum
~le14, 15

3ze
(5vws)- = wa 0fp

(4.10) Ay
=mdk k y(k) =- .

~F 0
(4.17)

(see Table II}

(4.11}

The Budd-Vannimenus theorem" is easily general-
ized to the problem (3.8), where V(x}=Ce(-@+X)
(see Appendix F), with the result
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V. DISCUSSION OF RESULTS AND CONCLUSIONS

Lang and Kohn' have suggested that the measured
liquid metal surface tension extrapolated to zero
absolute temperature for a given metal should be
comparable to the surface energies calculated for
the solid fcc (111)and bcc (110) faces. In Table X
we make this comparison for the LDA and total
surface energies calculated by the perturbational
and variational self-consistent methods. The var-
iational self-consistent values for a =o" "+Do„,
are in good agreememf. with experiment for all the
metals except Li and Zn —for which the pseudo-
potential was shown to be inadequate for the bulk

binding energy in Sec. II.
The perturbational self-consistent LDA values

TABLE X. Comparison of calculated surface energies
with measured liquid metal surface tensions o'"& (from
Ref. 2). The surface energy is &= OLD" +&&„~. For each
metal the first horizontal line gives the Perte bational
self-consistent value and the second one gives the ea~-
iational self-consistent value (with the choice between
forms (3.9) and (3.10) corresponding to the lower value
of &" "). In each case two calculated values are given
in the form a-b: a is for an fcc (111) face and b for a
bcc (110) face.

Metal

~LDA

(erg/cm2)

&exp

Al

Pb

K

730-915
643-870

1140-1400
365-820

341-410
304-338

544-612
542-595

353-375
330-358

223-229
223-227

136-139
135-137

122-122
110-108

104-103
88-85

885-1070
795-1020

1255-1510
456-910

453-522
419-453

616-684
614-667

390-412
364-392

146-149
146-148

130-130
119-117

110-109
96-93

1000

620

300

720

480

230

150

120

90

y(r. n); 0) —y(tnt; --)

=I —[e, (n) +e„(n)] +C (4.18)
n(X)

n n

satisfied when a self-consistent solution is
achieved.

shown in Table X are almost the same as those
found by Lang and Kohl', ' and would be exactly the
same except for two approximations used by them
but not by us —they did their calculations only at
half-integer values of r, =z ' 'r, and interpolated"
between these values, and they ignored the small
difference in 5v(x) between fcc (111)and bcc (110).
It is clear from Tables IX and X that for some
metal surfaces (see Al, Pb, and Cs) the varia-
tional self-consistent surface energies (either in
the LDA or not} are significantly lower than the
perturbational self-consistent values —for Pb fcc
(111), there is a. striking reduction of oLo" from
1255 to 365 erg/cm'. Generally speaking, the per-
turbational self-consistent approach is only ac-
curate when (5v)„ is small compared to ez(n} and

to the one-electron potential barrier of the jellium
surface.

While the correction ~o„ to the LDA is only
about 5 to 10% of oP" (see Table IX), it is often
a larger (up to 35/& —see Table X) contribution to
the total e. Since Acr„, is positive, it tends to
somewhat offset the lowering of the surface energy
that was achieved variationally, so that the results
of the Lang-Kohn perturbational calculation in the
LDA are (partly because of this accident) rather
close to our variational non-LDA results, with the
single exception of Pb.

We have not evaluated Acr„ for any faces other
than the most densely packed ones. However since
Ao„depends mainly on the bulk density n and is
otherwise insensitive to the density profile, it can
easily be estimated for the other faces from Table
Ix.

Surface energies calculated for the (111), (100),
and (110}faces of the cubic metals and for the
(0001) faces of the hexagonal metals are shown in
Tables VII and VIII. The surface energies ob-
tained by the different variational forms (3.9) and
(3.10) are quite close for all the cases we have ex-
amined, with the single exception of Pb(111) where
(3.10) is somewhat superior. Note the strong face
dependence of the calculated surface energy for Al
and Pb. While Al and Pb satisfy the claim of Lang
and Kohn (based on their perturbational self-con-
sistent calculations} that the most densely packed
face has the lowest energy, this claim is not sat-
isfied for some of the alkali metals.

The variational work functions (Tables VII and
VIII) obtained from the different variational forms
(3.9) and (3.10) differ by as much as 0.7 eV—in-
dicating a certain level of error in the variational
density profiles of one or both forms (although the
density profiles obtained from the two forms ap-
pear to the eye to be closely similar). A compari-
son of our computed work functions with experi-
ment would therefore be a little premature. A
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1.0

O

0.5

(.0
iC

0

f

0.5

C

I I I I
f

I 'I I I
i

-0.5 0
x I units of 2r/kF]

-0.5 0
x [units of 2IF/kF]

I

0.5

FIG. 3. Face-dependent plectron density profile@ for
the surface of fcc Al )variational form (3.10)). The pro-
file for the (100) face is very close to the jellium-model
profile.

FIG. 5. Face-dependent electron density profiles for
the surface of bce Na )variational form (3.10)). The pro-
file for the {110)face is very close to the jellium-model
profile. The (100) profile, not shown here, is close to
the (111)profile.

better calculation of face-deyegglegf work functions
will be presented in a subsequeut payer. '

Nevertheless the variational vox'k functions argue
strongly that our variational @pnsity profiles are
much more realistic titan those of the jeliium modeL
Consider, for example, Al. If thedensityprofileat
the surface of Al were that of the jellium model, we
could replace the elect onic re»~tioo dipole bar-
rier D, by its jellium value Dp ~ 6,2 eV in the varia-
tional work function (4.5}. Then the var iational work
function would be 5.5 eV for the (111)face and 0.9 eV
for the (110)face of AL This absurd result contra-
dicts both experience and theory, ' which agree that
the work function should not vary from one face to
another by more than z few tenths of an eV, and
shows clearly that the density profiles at the sur-
faces of simple metals (at least in the absence of
relaxation of the positions of the first lattice
planes) are not jelliumlike and must in fact be
strongly face dependent.

The strong face dependence of the variational
density profile is shown in Figs. 3-6. It is also
reflected in the face-dependence of D, shown in
Tables VII and VIIL Note that for a given metal

the most densely packed face always has the tight-
est density profile with the smallest D, and the
largest Friedel oscillatiogs —while the converse
holds for the least densely packed face, for which
the density profile is most spread out. All of
these results could have been anticipated on the
basis of the face dependence of (5ff)ss shown in
Table I (and the change in (5y)„ from one face to
another is iadependent of the uncertain repulsive
part sos of the pseudopotential). While our varia-
tional values of D, differ by as much as 5 eV
from one face to another, our variational work
functions [especially those obtained from the vari-
ational form (3.10)] differ from one face to another

by only a few tenths of an eV, in qualitative agree-
ment with theory' and experience. In fact we have
shown that the principal effect of the discrete lat-
tice perturbation 5tf(r) on the electron density pro-
file at the surface is to change D, [Efl. (4.&)] in
such a way that the variational work function (4.5)
remains close to that of jellium. The principal
mechanism for this effect is simply that 5v(r} has
a nonzero average value (5v),„ inside the metal and
vanishes outside it.

j.o
]c
0

t

Q5

I I I I
i

I I t f I

i.0

[c
0
t/t

5 Q5

C

I
I I I I I

CC

0 0.5
s [units of 2s/kF] -0.5

I I

0 0.5
x Iunits of 2&/kFj

FIG. 4. Face-dependent electron de@pity profiles for
the surface of fcc Pb [variILtional form (3.10)j. The pro-
file for the (110) face is closest to the jellium-model
profile.

FIG. 6. Face-dependent electron density profiles for
the surface of bcc Cs [variational form (3.10)J. The
jellium-model profile is also shown.



SURFACES OF REAL METALS BY THE VARIATIONAL. . . 2607

In conclusion, we have presented a variational
self-consistent generalization of the Lang-Kohn
perturbational self-consistent approach to the
metal surface, which retains most of the simpli-
city and utility of the latter. We have used this
variational approach to calculate face-dependent
surface energies, work functions and electron den-
sity profiles for nine simple metals. Calculated
surface energies, including the correction to the
local density approximation for exchange and cor-
relation, are in satisfactory agreement with extra-
polations to T =0 of measured surface tensions.
Our results show that, while for many purposes
the electron density can be regarded as uniform in
the bulk, the surfaces of simple metals are rather
unlike the surface of jellium —in particular the
electron density profiles display a strong but easily
understood and easily calculated face dependence.

Problems still to be explored include improve-
ments in the pseudopotential, relaxation of the
first lattice planes, and variation of the electron
density over planes parallel to the surface; the
latter two effects should only further reduce the
calculated surface energies, and may reduce the
strong anisotropy of the surface energy calculated
here for Al and Pb. In Appendix E we argue that
the electron density profile at the surface is
strongly coupled (via (5s)„)to the relaxation of the
first lattice plane. However the lattice relaxation
we calculate there for the (111)face of fcc Al is
negligible, so that our results for the electron
density profile, work function, and energy of this
surface remain essentially unchanged.
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APPENDIX A: SELF-CONSISTENCY PROCEDURE

The electrostatic potential (2.4) for one-dimen-
sional density variation satisfies Poisson's equa-
tion

82
, = —4xe'[n(x) —n, (x)], (A1)

which has the solution
x I

y(x) = y(x, ) — dx' dx" 4se'[n(x") —n, (x")].
r0 ~ 00

(A2)

But (A2) involves a double integration, and more

importantly it causes instabilities in the iterative
solution of the surface problem (3.8}due to the
long-range of the Coulomb interaction: The Lang-
Kohn' method requires matching at some xp«0 of
numerically integrated wave functions to bulk
wave functions of the form (4.15), and so the re-
gion x&x, is not exactly charge neutral. After
finding that straightforward iteration wns un-
stable, Lang and Kohn devised a rather compli-
cated method of solution which is described in
their Appendix B.

An easier and more elegant method for solving
(A1) has been given by Manninen, Nieminen,
HautojKrvi, and Arponen. " However their solu-
tion is only valid in an infinite space -~ &x&+~.
Our numerical integration is always done in a
finite space x, &x&x„and so we present here the
needed generalization to this finite space. (We
take x, =-3.25(2w/ke) and x, =1.5&(2v/kz); x, is
far enough inside the surface that the O(x ') terms
in the potential (see Appendix A of Ref. 2) may be
neglected, and x, is far enough outside the surface
that P(x) is essentially constant for all x&x,.}

One can show by direct differentiation (see also
Ref. 22) that Poisson's equation (Al) is satisfied
for x, &x&x, if Q(x) satisfies the integral equation

XI
dx'(4xe' [n(x') —n, (x')]

~K 2y(xa)j e-x Ix-x' I

+ ~ [0(x,) —0'(x,)/K]e

+ l [e(x,)+0'(x, )/K]e "*' *', (A3)

where Q'(x) =dP/dx and K is an arbitrary constant.
Aside from the boundary terms, this is just the
equation of Manninen et al. '0

Our procedure is to take K =kz and solve (A3) by
iterating it to self-consistency along with (3.8), im-
posing the appropriate boundary conditions [in our
case P'(x, }=0 and P(x, ) =fixed constant] before
each iteration by adjusting the coefficients of the
boundary terms e ~*& * and e * *0. (Note that
for K» k~ the convergence of the iteration is too
slow, while for K «k~ the instabilities associated
with the long range of the Coulomb interaction re-
appear. ) This procedure converges fastest when
we have a reasonable first guess, within a few
tenths of an eV, at the final value of D, = P(~)
—P(—~) or equivalently of the variational work
function W.

'

The iterative procedure is straight-
forward —typically involving less than 50% feed-
back into the effective potential of (3.8}and full
feedback into (A3), and converging to good simul-
taneous self-consistency of both equations after
about 30 iterations, with all quantities well con-
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verged and Eq. (4.17) and (4.18) well satisfied.
The initial effective potential is a square barrier4'
with the barrier height adjusted to minimize the
surface energy of the corresponding jellium, and
the initial (j)(x) is also a square barrier.

where 5 is a reciprocal-lattice vector and

4mge2
(G) f=»r»' ''

( )=—,c»»(G, ).

(C2)

APPENDIX 8: ELECTROSTATIC ENERGIES POR n(g) = )t (

It is well known" that most of the Madelung en-
ergy of the bulk solid is accounted for by the elec-
trostatic interactions uithin a neutral %igner-
Seitz sphere. Thus

e„=—qme'/r, , (»)
where r, is the radius of the Wigner-Seitz sphere
(m~r, =e/n), and q= 0.896 for fcc, bcc, and ideal
(c/a =1.633) hcp structures. "

(q depends only
weakly on c/a: q =0.893 for c/a =1.9)." Evalua-
tion of the electrostatic interaction within a single
sphericalized cell gives g = ~~.

During the process of classical cleavage des-
cribed in Sec. III, the signer-Seitz cells of the
surface atoms are distorted (surface-flattened).
It is reasonable to attribute nearly all of the clas-
sical cleavage energy

0'1 = Qze 6 (S2)

to the electrostatic interactions between these dis-
torted cells. Values of e for various faces and
crystal structures are given in Ref. 2 and Ref. 54.

Now it is impossible to tell the difference be-
tween an fcc(111)cleavage and an ideal hcp (0001)
cleavage by looking only at the first lattice planes
on either side of the cleavage; it is only by looking
at the next lattice plane on either side that one
can tell the difference. Thus, we expect that to a
good approximation

+ iieal hcp (OOQI} + fcc (111) ' (I)
I'his surmise turns out to be correct'4 to within
3'�.

The distortion of the signer-Seitz cells at the
surface is also responsible for D„, Eq. (4.11), the
classical cleavage contribution to the surface di-
pole barrier. D„ is the same for fcc (111)and
ideal hcp (0001) cleavages (see Table IV).

c(G) is the Lindhard dielectric function (we ne-
glect the exchange-correlation contribution to eb, ),
and IV/N„„=z. for a neutral system.

The chemical potential (4.2) is

aE
az „. (C3)

where the derivative with respect to electron num-
ber N is taken for a fixed number Ã~„of ions at
fixed positions, and the band-structure contribu-
tion to p. is thus

I) b,
=

s (@&b») I))).

g =sr(n)+ I),„(n) +T() +(5v)„+P~ (C5)

of the one-electron Schrodinger equation (2.6) for
the semi-infinite rectal. Since p, also appears in
the exact work function (4.1), we have reach& by
an indirect route the conclusion that Koopmans'
theorem is exact for a macroscopic metal; this
conclusion can also be reached by more direct
arguments. ""

Values of ~b, and p.b, calculated with the Ashcroft
pseudopotential using only the first shell of non-
zero reciprocal lattice vectors are shown in Table
II. Vfhile it would not be consistent to include p.b,
in the variational work function (4.5), it is grati-
fying that p.b, is never bigger than a few tenths of
an eV.

APPENDIX D: THE CASE r, & & d

nm -Q N)(G) ~ 1 1+G/2kr
28' kre o „() e(G) G 1-G/2kr

(C4)

This is nothing else but the second-order correc-
tion" in ((t) +5v) to the highest occupied eigenvalue

APPENDIX C: BAND-STRUCTURE CONTRIBUTIONS
To THE sINnING ENERGY ANn CHEMICAL POTENTIAL

The band-structure contribution to the binding
energy, Eq. (2.7), is4'

, . (
"
) I ( )I' (

—()

Although Lang and Kohn' did not explicitly con-
sider the case where the Ashcroft core radius r,
is greater than the distance & d between the nom-
inal jeilium edge and the first lattice plane, the
expression. s in their Appendix D are readily
adapted to it. This case arises for the bcc (111)
faces of all the alkali metais a,nd for the bcc (100)
faces of Cs.

The planar average of 6v(r) is
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5v(x) = (5vr} = 5v, (x)+ 5v, (x),

where 5v, (x) is given in Ref. (2):

(Dl) where

u, (x) =2ve'dec(r, —Ix+ 2 d Ig(r —Ix+ & d I) (D5)

0; (0» x),
5v, (x) = (D2)

u, (x+ld), [-(l+ l)d» x»-ld],

u, (x) = 2ve'n-[x+ dg(-x —g d)]'. (D3)

where l = 0, 1,2, 3. . . labels the lattice planes and

For r, &&d,

0, (0» x)
5v, (x) =

u, (x+ld), [ (l+ l)d»x» ld] .
(D8)

Now

(),(*)=(Z „(( —) () = Z, (*~ td) (D4)
1 1~0

For r, & —,'d the terms in (D4) overlap. Thus for
—,
' d & r, & & d, which covers all the remaining cases
of interest here,

0, (r, ,'d)»x—)

5v, (x) = u, (x}+u,(x+d), [-d»x»r, ——,
' d)]

u (x+ld)+u [x+ (l —l)d] +u, [x+ (l+ 1)d], [-(1+1)d x -ld ],
(D7)

where l =1,2, 3, . . . .
The new term in the surface energy is

Oz= — dx co+ r-1 n

(D8)dx5v2xn;
0

the result of the integration for —', d& r, is (3.7).
For all the surfaces considered in this paper,
Ie„ I

~ 5O erg/cm'.

APPENDIX E: RELAXATION OF THE FIRST
LATTICE PLANE

Because of the problem with the pseudopotential
discussed in Sec. Q, we do not calculate here the
relaxation of the position of the first lattice plane
(except for Al). We give here mainly a qualita-
tive discussion of the probab?e effect of such re-
laxation on the electron density profile and work
function.

Consider a shift of the equilibrium position of
the first lattice plane from x=-& d to

x = (--,' + x)d .

This shift gives rise to an extra contribution

(El)

(E2)

to the classical cleavage dipole barrier D,q [see
Eq. (4.8)]. Consequently the volume average of the
discrete lattice perturbation 5v(r) becomes

(5v(&))„=u)„- e'n —v' d'(1 —24k.) .

Thus, an outward (A. & 0} shift of the first lattice
plane by even a few percent of the bulk interplanar
distance d can increase (5v) „by as much as
several eV. Our experience with (5v)„ for A. =O

suggests that such a shift will increase the elec-
tronic relaxation dipole barrier D„and hence the
spread of the electron density profile, in such a
way that the variational work function (4.5} re-
mains nearly constant. An inward shift of the first
lattice plane will have the opposite effects.

Al, is probably the only metal for which the Ash-
croft pseudopotential is good enough to calculate
lattice relaxation. Lang and Kohn' used the jellium
profile to calculate X=+ 0.005 for the (111)face
of Al, with a corresponding reduction of 2% in
e ". We have done a variational self-consistent
calculation using our variational form (3.10), with
the electron density profile at each X chosen to
minimize d~ ". We find X=+0.001 with a cor-
responding reduction of less than 0.2% in (r

Our small outward relaxation, of the first lattice
plane shifts (5v}„from 1.7 to -1.5 eel, with a
corresponding spreading of the electron density
profile —which is thus slightly more?ike jellium
than the (111)profile shown in Fig. 3. In fact our
calculated lattice relaxation is so small that it
agrees essentially with a recent ca?cu?ation by
Tejedor and Flores, "who found no lattice relaxa-
tion in Al(111).

Since Lang and Kohn' gave the classical cleavage
energy as a function of X only for fcc (111), we
cannot at present evaluate the lattice relaxation for
the other faces of Al. We regard this as an in-
teresting problem for future study.
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APPENDIX F: PROOF OF THE GENERALIZED
SUDD-VANNIMENUS THEOREM

&CC'= C+ M
an

(F8)

The proof of (4.18), which closely follows the
proof of the original (C = 0) Budd-Vannimenus
theorem, '0 will be outlined here. Consider a slab
of jellium of macroscopic thickness L and area
A, with periodic boundary conditions in the y and
z directions:

BXX' =X+ W
an

To first order in ~L

E[n,', V', n'] =E[n, , V, n'] —fdr bn, (x)P([n];x)

n, (x) = n9(-x)9(x+ L),
subject to an external potential

V(x) = C9(-x+X)9(x+L+ X),
where X is some microscopic distance. The
ground-state energy of this model system is

E[n„V,n] = T Jn] + E„[n]

+2 dr/ n;x nx —n, x

r V(x)n(x)

(F1)

(F2)

(F3)

+ drn(x)d V(x) .

Now use the minimal property of E to find

b,E = E[n,', V', n'] —E[n, , V, n]

dr bn, (x)Q([n];x)+ fdr n(x)nV(x)

= -nA dL Q([n]; 0)+nAdL Q([n]; —~ L)

+CA&Ln(X)+nALnn +o(bL/L).8C
8n

But we can also write

(F10)

(F11)

L'=L+ 4L,
n'=n(1 —nL/L) =n+ rh7,

n,'(x) =n'9( x+ dL)9(x+L) =n-, (x)+ (br, (x),

(F4)

(F6)

(F6)

V'(x) = C'9(-x+ X' + AL)9(x+ L + X') = V(x) + EV(x),

with @ given by (2.4). (Other model energy func-
tionals which generate (3.8} and resemble (2.3}
more closely can be written down; since they all
imply (4. 18), we consider only the simplest one
here. ) Now consider an infinitesimal stretching of
the whole system to new values.

dE=(ALn)nn (e,+e„+C)+o(dL/L).
en

(F13)

Equating (Fll) and (F13) gives the desired result

P([n]; 0) —Q([n]; ——,
' L) = n —(e,+ e„)+Cn(X)/n .

n

E[n, , V, n] =N[e, (n) + e„,(n)+ C] + 2Ao[n, , V, n],
(F12)

where N=ALn is the number of electrons. From
(F12),
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