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Our objective in this paper is to provide a simple, conceptual, framework for describing the metal-
nonmetal (MNM) transition in systems that can be viewed in terms of a lattice of impurity states embedded
in a host matrix. From an extensive analysis of experimental data, we find that a particular (scaled) form of
the Mott criterion, n !’a }; = 0.264-0.05, is applicable over a range of approximately 10'° in critical
densities (n.) and approximately 600 A in Bohr radii (ay). Here ay is defined as an appropriate radius
associated with a realistic wave function for the localized state in the low-electron-density regime. The
systems of interest range from tight-binding (Frenkel) metal-atom states in the rare-gas solids to shallow
(Wannier-like) states in the group-IVa semiconductors and indium antimonide. The possible origins of this
apparent universality have been formulated from a consideration of Berggren’s interpretation of the Hubbard
model for the transition, as applied to condensed systems. In essence, it appears that the role of the host
matrix in the phenomenon of MNM transition is important primarily in the sense that it determines the form
of the radial distribution of the (localized) impurity state. We suggest that once these matrix-induced
modifications to the (gas-phase) donor state are taken into account, the ensuing transition to the metallic
state (at finite impurity concentrations) reduces to a one-electron problem in a suitably renormalized

concentration grid.

INTRODUCTION

The phenomenon of the metallic condensation of
a lattice of impurity centers in a host material
has received a great deal of attention during the
last three decades.'"'* It was Mott,® in particular
reference to the metal-nonmetal (MNM) transition
in the group-IV semiconductors, who first derived
a simple criterion relating the first Bohr radius
(ay) of an isolated (insulating) center to the critical
density of centers (r,) at the transition

nt%ay=K, (1)
where
K_n?
an = Nor @

and K, is the static (low-frequency) dielectric
constant of the host material, m* is the effective
mass of an electron in the host conduction band,
and K is a constant, typically’ of the order 0.25.

Two aspects of this original formulation, per-
haps not generally appreciated, merit attention:

(i) the model supposes that the electron-positive-
jon interaction in the low-electron-density regime
is screened by the static dielectric constant of the
host material. The resulting one-electron wave
functions are then constructed entirely from ac-
cesible (unoccupied) orbitals of the host matrix.'>'®
As such the approach should be rigorously appli-
cable only to matrix-bound ground states whose
eigenfunctions [¢(T)] and eigenvalues (E) are truly
Wannier-like, being totally independent of the
peculiarities of the donor atom,'’

P(F) = (1a})™/? exp(-r/ay), (3)

—e'‘m* -e?

E= 2K§Jz’2 ) 2K qay

(4)

(ii) As a natural consequence of (i), n, is ex-
pected to be independent of the nature of the donor
atom for any particular host matrix.

Even in the case of the large-radius, Wannier -
like, impurity states in the group-IV materials,
these criteria are not rigorously upheld. Matrix-
bound (localized) states display a slight donor
dependence in both optical and magnetic proper-
ties,’®™" and chemical shifts in », are well char-
acterized in both silicon and germanium.!3 18
However, it is well established'® *® that a criterion
of the form given by Eq. (1) can be applied with
considerable success to these materials, provided
slight corrections to the donor eigenfunctions and
eigenvalues are carried out. For example, if the
isotropic Bohr radius is calculated from the ex-
perimental ionization energy (E,,,,) of the localized
state, via /2K E,, ., rather than from the di-
electric properties of the host material [Egs. (2)
and (4)]. In this manner, it is possible both to
“fine-tune” the Bohr radius to a slightly more
realistic value than that given by Eq. (2), and to
introduce the required donor dependence into ay
and hence ..

Since Mott’s original work,*® our experimental
spectrum of matrix-bound systems exhibiting a
MNM transition has increased considerably and
critical concentrations now span almost ten orders
of magnitude, ranging from approximately 10?2
em™ for alkali-rare-gas atom films?*-?2 to ap-

2575



2576

PETER PHILLIP EDWARDS AND MICHELL J. SIENKO

TABLE I. Critical densities and Bohr radii for systems exhibiting a metal-nonmetal transi-

tion.
Critical Isotropic Bohr
System density (cm=) radius, aj (A) Obtained from
Xe:Hg (4—4.5) x 10222 1.3 Excitonic spectra?
Ar:Cu (2.2-2.6) x 1022° 0.9 Pseudopotential theory as applied to
the isolated donor (Ref. 24)
WO;3:Na (4£0.5) x 1022 ° 1.3 See footnote d
Ar:Na 3.7x 10%1° 2.08 Pseudopotential theory (Ref. 31)
MeA:Li (1.8+0.3) x 1021f 2.88 Obtained by fitting optical (1s— 2p)
transition of the isolated center to
a polaron model (Ref. 52)
WSe,:Ta 6.6 x 10208 3.440.9 Optical spectra:
(i) taken directly from Ref. 53
(ii) utilizing data from Ref. 54, and
and incorporating central-cell
corrections for excitonic spectra
(Ref. 55)
GaAs:Mn  (2.1+0.4)x 101" 10.1 Quantum-defect approach for deep
and intermediate impurity states
(Ref. 56)
GaP:Zn (1.7+0.5)x 101" 10.8 Experimental ionization energy in
the low-concentration limit (Ref. 57)
HMPA:Li 3+1)x 108! 14.1+1.2 Kohn-Luttinger effective-mass
theory (Ref. 32)
Si:P (3.5+0.4) x 1018" 15.2+1.7 For both Si and Ge, ajj obtained from
Si:As (6.4 +0.5) x 1018 } 14.1+1.9 } two approaches:
Si:Sb (3.0£0.2) x 1018% 16.6£1.3 (i) the Coulomb result
(ii) quantum-defect approach
Details given in Refs. 18 and 32
cds:cl (0.5-1.6) x 1018* 26.7 Experimental ionization energy in
CdS:In (2.240.2) x 101°™ 31.6 the low-concentration limit
(details given in Ref. 48)
Ge:P 2.5 x1017" 38.7+1.2
Ge:As 3.5x 107" } 37.0 il.S} See details for doped Si systems
Ge:Sh 0.95x 107" 45.5+1.0
InSb (0.7-1.25) x 10¢° 640 Reference 60

2References 22 and 51.
PN. E. Cusack, private communication to K.-F. Berggren, cited in Ref. 24.
¢B. R. Weinberger and D. F. Holcomb (private communication).

d\M. J. Sienko and T. B. N. Truong, J. Am. Chem. Soc. 83, 3939 (1961).
®Reference 20. -
! Reference 61, methylamine (MeA).
€References 53 and 62.
hReference 56.

{ Reference 57.
iReference 58, hexamethylphosphoramide (HMPA).
kReference 18.
lReference 59.
MReference 63.
“Reference 19.

°Reference 23 and references therein.

proximately 10'® ¢m™ for indium antimonide.??
(Table I contains data collected from a wide range
of experimental systems.)

At first sight the documented MNM transitions
occurring in the low- and intermediate -dielectric
materials would be expected to present consider -
able difficulties in an application of the Mott cri-

terion.

24,

* For the rdre-gas systems in particu-

lar, both magnetic resonance®®?” and optical prop-
erties®®? of the isolated impurity center are gen-
erally consistent with the picture of a small-
radius (Frenkel) ground state,?® a situation far re-
moved from the lattice of Wannier-like states en-
visaged in Mott’s original formulation.>%? How-
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ever, Berggren and Lindell** were able to predict
a realistic transition concentration for the argon-
sodium system on the basis of a scaled (variation-
al) form of the Mott criterion

nt/%a%~K (5)

in which e} replaces ay [Eq. (2)] and now repre-
sents an appropriate radius (~2 A for Ar:Na) as-
sociated with a realistic wave function [not neces-
sarily of the type given by Eq. (3)] for the local-
ized state.

We point out that Eq. (5) is just the adaptation
of the Mott criterion discussed earlier in regard
to the transition in the doped group-IV semicon-
ductors.

The success of this particularly simple criterion
in these two extreme situations led us to enquire
whether its applicability extends to the wide range
of systems which exhibit a MNM transition, as one
of us has recently suggested.®®

APPARENT UNIVERSALITY OF A SCALED (VARIATIONAL)
FORM OF THE MOTT CRITERION

In Table I we have assembled experimental val -
ues of transition concentrations and Bohr radii for
matrix-bound systems which undergo a MNM
transition. Bohr radii (af) were typically obtained
from experimental parameters which character-
ize the localized state; details are given in Table
I. If a relation of the type (5) is indeed generally
applicable,* we would expect a plot of 3logn,(x)
versus logaX(y) to yield a straight line of slope
-1, and intercept K’ (=logK). We show a plot in
Fig. 1, comprising data from systems in which

the n, and af are known from experimental studies.

The resulting linear correlation, described by the
relation

n./3a%=0.26 £+0.05, (6)

extends over a range of approximately 10*° in
critical concentration and approximately 600 Ain
Bohr radii.

We suggest that this scaled form of the Mott
criterion can be used as a simple but accurate
guide in predicting the onset of a MNM transition
in a condensed medium.

It is not immediately apparent why such a simple
criterion should be so successful in this respect.
In Mott’s original model,*’ a MNM transition oc-
curs when a dielectrically screened Coulomb po-
tential starts to give rise to bound states. Such a
potential is appropriate only for systems in which
there exists extensive overlap between the donor
wave function and the electronic wave function of
the surrounding matrix.!” In addition, more re-
cent work has shown that the calculated value of
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FIG. 1. Metal-nonmetal transition in condensed media.
A plot of loga$; vs 1logn, (symbols defined in the text).
The points represent experimental systems in which
both aﬁ and n, are known (Table I). Typical error esti-
mates in n, and a}; are shown (solid error bars) for the
representative systems InSb and Si:As, respectively.
A complete breakdown of error estimates (where avail-
able) in both n, and a j; for all the experimental systems
is contained in Fig. 2 and Table I. The vertical, broken-
line, error bars represent the limits né/”a}"l: 0.23 and
0.29.

the constant in Eq. (1) is subject to the vagaries
of choice®® of the electronic wave function, as well
as being sensitive to both the form of the itinerant-
electron screening and nature of the host conduc-
tion band.33-3¢

Rather, we regard Eq. (6) as being representa-
tive of a realistic experimental correlation be-
tween critical concentrations and Bohr radii for
matrix-bound systems in general. Accepting this,
the Mott formulation [embodied in (1)] then repre-
sents a realistic model for only a certain class of
these systems, namely, the high-dielectric materi-
als. In an attempt to probe the origins of the ap-
parent universality of Eq. (6), and to gain some
insight into the role by a host matrix in a MNM
transition, we have reexamined Berggren’s formu-
lation® of the Hubbard tight-binding model for the
transition.

HUBBARD TIGHT-BINDING MODEL AS APPLIED TO
METAL-NONMETAL TRANSITIONS IN CONDENSED MEDIA

Numerious interpretations of the Hubbard tight-
binding Hamiltonian® now exist,'®3"*° and it is
generally recognized'® %3738 that this formulation
describes a transition from an insulating to a
metallic state when the condition
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w/U~1 (7)

is satisfied. Here W is the unperturbed bandwidth
of an array of one-electron states and U is the
intradonor Coulomb repulsion energy character-
istic of electron correlation effects between a
pair of electrons on the same donor.

Despite the fact that data are now available for
a wide range of systems exhibiting a MNM transi-
tion (Table I), the Hubbard model has been applied
divectly to only a few systems.3>4%5° This can
probably be attributed to the complexities general-
ly associated with transforming the tight-binding
Hamiltonian into a working prescription for calcu-
lating transition densities. In this section, we
demonstrate that a simple formulation of the Hub-
bard model is capable of predicting realistic criti-
cal densities for the onset of the MNM transition.
The fundamental tenet underlying this approach is
that the intradonor Coulomb repulsion U is the
primary driving force in the transition from
metallic to insulating states.

The original formulation of the model is that
due to Berggren,* who studied the MNM transi-
tion in shallow donor states of germanium and
silicon in terms of Hubbard’s tight-binding model.
In these particular systems, the ground-state
wave function for the Wannier-like state is con-
structed from Bloch waves derived from the con-
duction band of the host material.!® !¢ At this point
we introduce our basic assumption: Namely, for
materials in which the host conduction band is
anisotropic, we may replace the ellipsoidal wave
function by a spherical isotropic charge distribu-
tion. Obviously, this requirement is necessary
only for large-radius states in which admixture
of matrix orbitals into the donor ground-state
wave function is appreciable. It is just these sys-
tems in which the assumption is generally ac-
cepted.'® For tightly bound (Frenkel) impurity
states, matrix orbital involvement in the ground-
state wave function is negligible, and this assump-
tion need not be invoked. In these cases, we re-
quire only that the isolated center be character-
ized by an isotropic Bohr radius.

For the isotropic-conduction-band case, the
ground -state wave function has the form!5 ¢

N
P eu=2_ o, F,;({)e,[), (8)
i=1

where N is the number of conduction band minima
in k space, @; are numerical coefficients of the
appropriate linear combinations of F,;(T)¢,(F),
¢,(F) is the Bloch wave at the jth minima and F,(¥)
represents the simple hydrogenic envelope func-
tion [cf. Eq. (3)]

F,(F) = (na}®)/* exp(-v/a}) 9)

with af a realistic (isotropic) Bohr radius for the
ground state. An important point to note is that
although the electron described by Eq. (8) moves
locally as if it were in a Bloch state, ¢,(F), over
large distances (for example, distances of the
order of several lattice sites) it is dominated by
the hydrogenic function F,(F) which is charac-
terized by a radius a}."

Berggren® utilized an approach somewhat simi-
lar to Slater’s solution®! for the H(1ls) integrals in
the hydrogen molecule, and obtained expressions
for the hopping integral (7') and the intradonor
repulsion energy for a regular array of centers,

st -t )en()] . o

5/ ¢é
U_§<K ta;"f)’ (11)

and

(5l HE ) o

and R is the separation between donor states.*
T is related to the unperturbed bandwidth via

w=2z|T|, (13)

where z is the coordination number for a particu-
lar arrangement of centers.*

Calculated critical concentrations for the MNM
transition in the group-IV semiconductors were in
good agreement with the experimental values, pro-
vided af was obtained directly from the experi-
mental ionization energy of the isolated donor.*

We point out two features of this particular for-
mulation which are important in the present con-
text:

(i) Although the expressions for T and U were
derived* primarily for the large-radius Wannier-
like states, they follow from simple hydrogenic
arguments relating only to bandwidth and repulsion
energies for a lattice of s-like states. As such
the formulary® should be generally applicable to
all manner of matrix-bound states (from Frenkel-
to Wannier -like) whose ground-state wave func-
tions can be reasonably approximated by an effec-
tive, isotropic, Bohr radius.

(ii) For a given value of a¥, both W [Eq. (13)]
and U [Eq. (11)] are dependent upon the magnitude
of the host dielectric constant. However, the
Hubbard ratio (W/U), and therefore the transi-
tion concentration, is then insensitive to the par-
ticular value of the dielectric constant, except
insofar as the dielectric properties of the host
matevial affect, or determine, the grvound-state
wave function of the matrix-bound state.
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FIG. 2. Metal-nonmetal transition is condensed media.

The solid lines represent the predicted (universal) vari-
ation of n, with a}; based on the interpretation of the
Hubbard Hamiltonian outlined in the text. Curves are
presented for (matrix) conduction bands with 1, 4, and
6 equivalent minima is % space. The points, and as-
sociated error bands, are experimental values, and a
detailed breakdown of the data is contained in Table I.

Therefore, the phenomenon of the MNM transi-
tion at finite donor concentrations reduces to a
simple one-electron problem® of competing po-
tential - and kinetic-energy effects, but with the
concentration grid suitably displaced by an
amount dependent upon the dielectric properties
of the host.*

These arguments suggest a certain universality
in this particular formulation of the Hubbard mod-
el, and we would expect Egs. (10)-(13) to be di-
rectly applicable to all systems in which the MNM
transition is triggered primarily by electron-cor-
relation effects. Utilizing Hubbard’s estimate® *®
of 1.15 for the critical value of W/U at the MNM
transition, we have computed transition densities
as a function of a, the isotropic Bohr radius of
the isolated donor states. Since our approach im-
plies that the MNM transition in condensed media
can be viewed primarily as a simple overlap-cor-
relation problem, we require in af a realistic
(experimental) estimate of the Bohr radius (as in

17 UNIVERSALITY ASPECTS OF THE METAL-NONMETAL... 2579

the variational form of the Mott criterion, see
Table I).

In Fig. 2, we compare our numerical calcula-
tions with results for both donor and acceptor
states in various host matrices. We find good
agreement for systems differing widely in dielec-
tric properties and critical concentrations. Cal-
culated values of n}/%q} from this Hubbard tight-
binding approach are 0.20, 0.24, and 0.25 for
N=1, 4, and 6, respectively, which agree well
both with the universal relation n}/3a%=0.26 +0.05,
obtained from our analysis of experimental data,
and with earlier estimates by Berggren® for the
transition in the group-IV semiconductors.

SUMMARY

In this work we have analyzed experimental data
from a wide variety of systems which exhibit a
MNM transition. We have shown that the simple
criterion n}/3a%=0.26 +0.05 has almost universal
application. The possible origins of this univer-
sality have been formulated from an analysis of
the Hubbard model for the MNM transition as ap-
plied to condensed systems. In essence, we have
suggested that the role of the host matrix in the
phenomenon of the MNM transition is important
primarily in the sense that it serves to determine
the form of the radial distribution of the impurity
center in the low-electron-density regime. Once
these perturbations to the isolated (free) atom
eigenstates of the donor are taken into account,
the ensuing transition to the metallic state is
essentially invariant to the particular nature of the
host matrix; being primarily a one-electron prob-
lem in a suitably scaled concentration grid.

Obviously, our approach has completely neglect-
ed the role of unimodal disorder in the various
systems.?” The fundamental tenet underlying our
approach has been that electron-electron correla-
tion effects are primarily responsible for the
transition from metallic to insulating states in
systems devoid of possible large scale (bimodal)
inhomogeneities.* This viewpoint, shared by
several other authors,'* 374250 gppears to be
vindicated by the success of the simple Hubbard
formulation outlined here.
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