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A new model of conduction mechanism in discontinuous metal films which gives the temperature
dependence of conductivity over a very large temperature interval, from —250 to 450°C, and explains the
origin of the conductivity fluctuations responsible for the current noise in these films is presented. It is
shown that the conductivity change with temperature is due to a shift of the position of the Fermi level at the
surface of the insulator. This changes the height of the potential barrier which must be overcome by
tunneling of the conduction electrons. Such a shift, required at each temperature to ensure electron thermal
equilibrium, is generated by a partial depletion of surface donor states located on the insulator surface
between metal islands. It is further shown that the fluctuation of the surface charge created by the
ionization of the surface states modulates the height of the tunneling barrier giving rise to a corresponding
modulation of the electrical conductivity originating the current noise typical of discontinuous films. In
paper II the results of the theory are compared with experiments.

I. INTRODUCTION

The mechanism of electrical conduction in dis-
continuous metal films has been the object of sev-
eral papers.'™® The authors were faced with the
problem of explaining such features as anomalously
large resistivity, a negative thermal coefficient of
resistivity, and the presence of a current noise,
which is absent in bulk metals. Only in the case of
an extremely high current density has a small cur-
rent noise having 1/f spectrum been detected
on very thin continuous metal films.?* This noise
has, however, an origin completely different from
the one observed in discontinuous films, which
form the object of the present paper.

While the problem of the anomalous conductivity
behavior on discontinuous metal films has been ex-
plained in different ways by many authors,'™* only
very few papers are dealing with current noise,
even though this is a very important aspect of the
electrical conduction mechanism in such films.
Most of these last papers are experimental
only,’s™® showing that the power spectrum of the
noise is 1/f type.

To our knowledge only the authors of two pa-
pers'® 2 propose a theoretical explanation of this
noise, on the basis of the trapped assisted tun-
neling mechanism of conduction.”

However, while the shape of the power spectrum
of the noise can be explained by such a theory, by
assuming a suitable distribution of trapping times,
the intensity of the noise from this model turns out
to be many orders of magnitude lower than has
been observed. Actually, none of the published
theories on electrical conductivity explains the ob-
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served intensity of the noise (see Appendix in pa-
per II).

In the present paper a new model of conduction
mechanism is proposed which provides the correct
order of magnitude for the noise. It also gives a
new interpretation of the negative temperature co-
efficient of resistivity in these films, without as-
suming that the electrical conduction is a thermally
activated process.

This theory assumes that the main conduction
mechanism is a direct-tunneling process of elec-
trons between metal islands within the insulator
through a potential barrier which changes with the
temperature. An experimental support of the as-
sumption of direct tunneling derives from the fact
that the electrical conductivity of the film drops
rapidly from about infinity to a very low value dur-
ing the film evaporation when a critical thickness
of the film is reached, as in a percolation process.

The reason that the potential barrier is temper-
ature sensitive will be fully described and quanti-
tatively checked in the text. Very briefly, it can
be anticipated that this dependence arises from the
possibility that electrons bound either to surface
states or to donor centers located within the insu-
lator in the gap between metal islands will tunnel
in metal states, giving rise to a double-layer
charge at the interface between metal islands and
substrate.

The corresponding potential drop shifts the pos-
ition of the Fermi level with respect to the bottom
of the conduction band of the insulator and changes
the height of the tunneling barrier.

At the highest temperatures the contribution of
thermally injected charges on the conduction band
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of the insulator will be also taken into account in
the computation of the Fermi level position, as
well as the contribution of the thermionic current
to the total current of the film.

In this model the noise arises from the statistical
fluctuations of the number of ionized donors which
give rise to a corresponding fluctuation in the con-
ductivity of the film through a modulation mechan-
ism of the potential barrier. This indirect effect
of barrier modulation on conduction carriers is
much more effective in producing conductivity fluc-
tuation than with previous model and gives the cor-
rect order of magnitude for the current noise.

In the following, a detailed calculation of the cur-
rent noise intensity and power spectrum versus
temperature on the basis of the above model will
be given. In paper II, which reports many experi-
mental results on the conductivity and on noise of
discontinuous gold films evaporated on different
substrates, a comparison between theory and ex-
periments is also given.

II. THEORETICAL MODEL

First, the electrical conductivity and the current
noise are computed for two neighbor islands only;
hence, the discussion can be extended to the entire
metal film.

As pointed out in the Introduction the conduction
process is assumed to be generated by four differ-
ent types of mechanisms: (a) a direct tunneling of
electrons between metal islands, which should be
responsible for the main conductivity process at
low temperature; (b) a thermionic current, which
contributes to the conduction process at the highest
temperatures; (c) a tunneling of electrons from

metal insulater
v.b.

(a)

F.L.

surface states of the insulator to the metal islands,
which is necessary to obtain thermal equilibrium
of the electrons at the metal insulator interface;
(d) a thermal injection of electrons from the metal
to the conduction band of the insulator, which con-
tributes to the balance of the displaced charge and
becomes important at the highest temperatures.

Both the direct tunneling and the thermionic ef-
fect take place between metal islands within the in-
sulator and are limited to a very thin layer of the
insulator itself (20 A) below the surface. The con-
ductance between two metal islands can thus be
easily calculated at each temperature value T once
the potential barrier ¢ 4(T) (see Fig. 1) is found.

The only important assumption of this theory con-
cerns the existence of donor-like levels located at
the surface of the insulator, of the type found in
chalcogenide glasses.?»?® In the present case these
donor centers are probably due to broken bonds at
the surface of the insulator, but they could also be
related to impurity ions present on the substrate
or diffused at the surface during substrate prep-
aration. As will be seen in the following, the
surface density of these states, which correctly
accounts for the experimental results, is roughly
equal to 10" states/cm?, corresponding to assum-
ing that all the molecules of a monolayer at the
surface of the insulator become donor centers.

In the following, for the sake of simplicity, itisas-
sumed that these surface states form a single high-
ly degenerate level ¢, below the conduction band,
as shown in Fig. 1.

The facts that in reality the surface levels may
form a bundle or that other impurity levels havinga
much lower degeneracy are present will hardly
affect the conclusions. Therefore, the behavior

__ vacuum level = =
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FIG. 1. Energy diagrams
c.b. for the metal-island to
q,B‘IF‘ substrate contact: (a) be-
P4 fore contact is made; (b)
after contact is made.
%
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versus temperature of the barrier height ¢ 4(7) is
computed first. Then, through this function, the
surface conductance and the conductivity noise
spectrum of the film will be calculated.

A. Barrier height versus temperature

The barrier height, ¢ z(T), in thermal equili-

brium is computed by using the model shown in Fig.

1 and by taking into account that the electrons can
easily tunnel from the donor states located at the
surface of the insulator to the metal islands and
vice versa. In the calculation, the effect of the
charge thermally injected from the metal into the
insulator conduction band will also be taken into
account.

The tunneling space-charge potential, which is
much less dependent on temperature than the ther-
mionic-charge potential, will be considered as a
constant and incorporated in the x,. Let y be the
positive surface density charge due to the ion-
ization of donor states which are below the Fermi
level, of the amount ¢, as shown in Fig. 1(b).

Further, let p be the thermionic volume charge
density injected from the metal into the substrate
conduction band. Under conditions of thermal equi-
librium, the average potential barrier in the insu-
lator between metal islands® can be written

¢B(T)=xm_xa+E1+E2’ (1)

where x,, and x, are the electron work functions for
the metal and the insulator, respectively, and E,
and E, are the average potential-energy drops for
one electron which moves from the metal islands
into the gap due to surface charge density ¥ and to
the volume charge density p, respectively. These
last quantities are functions of temperature and of
¢ 5(T), so that Eq. (1) should be interpreted as an
implicit equation for ¢ 4(T). The surface charge
density v can be easily calculated at each temper-
ature once the surface states density & for the in-
sulator in known.

The ionization probability of a donor center P,
can be written, according to the Fermi-Dirac sta-
tistics;

1
Py=1- e PR DTET 1 @)
where ¢ ,(T) is the quantity shown in Fig. 1(b), % is
the Boltzmann constant, and T is the absolute tem-
perature. Thus the surface charge density y, due
to the donor states ionization, is simply given by

y:eéP‘=eée“‘r‘ﬂ/“’:e&e'["l'“’a‘”]/", (3)

e being the electron charge, and having taken into
account that in the present case the value of the
exponential is at any temperature < 1.

The thermionic injected charge p can also be cal-

culated as a function of ¢ z(7) and T through the ex-
pression®®:

p =2e(m*kT/2ni?)%/ 20 BTV/RT, 4)

where m* is the effective electron mass at the bot-
tom of the conduction band of the insulator, and #
is the reduced Planck constant.

Since electron tunneling between islands takes
place in a volume a few atomic layers below the
surface, to calculate E, it can be assumed that the
surface charge density y is actually distributed in
the gap between islands in a volume which extends
below the surface for a depth roughly equal to the
gap between metal islands (typically 20 A). Simple
electrostatic considerations yield

eyd e25e"lv1"vg(TI/RT g

Bz Toeer =" 12¢,e* - ®

and

g - _epd® _ ed? <m*kT)slze-wB(r)/u’ 6)

27 12€,e¥  bBeger \ 2177
where d is the spacing between metal islands, ¢,
is the vacuum permittivity, and €¥ is the effective

dielectric constant of the substrate.
Equation (1) gives

- e’d m*eT\*/? _, (T)/ kT
9 5(1)=Xp= X+ 12¢,€7 [Zd( 2172 > es

_de'[“’l'“’a(”]/""] . (7

In this equation €} is an effective dielectric con-
stant which is proportional to the actual one for
each type of substrate, the reduction coefficient 8
taking into account the fact that the active trapped
charge is only a few atomic layers apart from the
metal islands. Therefore, we set

€*=8¢,, (8)

where 3 has been estimated in the practical case to
be approximately 3.

B. Electrical conductance versus temperature

The electrical conductance G through the gap be-
tween two metal islands, assuming that the car-
riers move below the surface of the substrate in a
layer having a depth approximately equal to the is-
land separation, d(*15-25 A), can be written

G=G,+G,, 9)

where G, and G, are, respectively, the conductance
due to the tunneling and the thermionic currents.

These terms can be easily calculated once ¢ 4(7T)
has been found at each temperature T through Eq.
(7). If 1 is the length of the gap between the two is-
lands?® to a good approximation it follows, from
well-known equations,?’»?® that
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G, =1(2m)2(e/h)2@Y *(T).
x exp{ - [47(2m)*/2/R)do}/ *(T)}. (10)

On the other hand, the thermionic component G,,
assuming that in this case also the active length of
the gap between metal islands is I and that the ther-
mionic current flows in a layer of depth d, is given
by the Richardson-Dushman equation,

G, =dl(4rmxek?/h®) T2 5T/ T, (11)

In both cases the image-charge effect on the po-
tential barrier has been neglected. The thermionic
component G, become comparable with G, at the
highest temperature (above 500°K) only. A full dis-
cussion is given in paper II. However, it may
be anticipated that an accurate comparison of this
theory with the experimental results obtained at
very high temperature (up to 725°K) shows that G,
should be much smaller than that given by Eq. (11).
The reason may be that this equation is true if the
mean free path of an electron in the conduction
band of the insulator is larger than the gap between
metal islands, which probably is not the case near
surface of the substrate.

C. Electrical noise

As anticipated in the Introduction, the current
noise in the present model is generated by the ther-
modynamical fluctuations of ¢ z(T) due to the fluc-
tuation of the number » of ionized donor states in
the active area between metal islands. This num-
ber fluctuates in time around the mean value 7 (T)
given at each temperature by

ﬁ(T):lee"“x'“a‘T”’”. (12)

The effect of the fluctuation of the thermionically
injected charge on the barrier ¢ 4(7)—which could
have some influence at the highest temperatures,
where it becomes comparable with the charge due
to ionized donors—will be neglected in the noise
calculation because the involved time constant (re-
laxation time) is much too short to give an appreci-
able contribution to the noise in the relevant spec-
tral bandwidth. Actually, the spectral density of
the noise generated by the fluctuation of such a
space charge is very low because it extends up to
very high frequencies, while the contribution due
to the charge of ionized donor centers is mainly
limited to a low-frequency band, owing to the fact
that such a trapped charge communicates with the
metal islands mainly through a tunneling process.

In order to develop a quantitative theory of the
current noise, ¢ z(T) must be considered as a func-
tion of the actual value %(T) of ionized donors. [In
Eq. (7) ¢ 5(T) is expressed in term of #(T).]

The power spectrum ¢ ,(w) of the conductance
fluctuation between two metal islands can be ex-

pressed in terms of the fluctuation power spectrum
¢,(w) of the number of ionized donors % in the gap
between the two islands.

Since the barrier ¢ ;(T) depends on n and the
fluctuation 67 of ionized donors with respect to the
average value is small, it follows that, to the first
order in &n, the conductance G(n) can be written

G(n)=G (i +6%) =G (@) + G'(@)on, (13)

where G'(77) is the derivative of G(r) with respect
to n and the term G’(%)5n represents the conduc-
tivity fluctuation AG.

The power spectrum of AG can thus become

¢G(w) = [G'(ﬁ) ]2¢"((.0), (14)
with
n(T) =7(T) + bn =dlde™ 0170 5 T V/AT 4 5y, (15)

Equation (7) yields

@ p(T,n) =@ 5(T, 7+ 06n)
exd

12¢,¢}

m*RT\%'2 _, (ry/er rT(T)+6n]
X[2d<2ﬂh'§> es -Ta 1

=Xm—Xst

(16)
Thus, to the first order in dn,
dG d¢, dG e
dpg, dn ~ dog 12€,*l

g2 [ Aq(2m)l/? .
= 242;%*1 ( ( h) d-@3’?) Gy, 17)
r

where (G)=G(7). Finally,

_eert  (4m(2m)Y/? AN
Pelw) = 576(36:217< R d-¢3 )

G'(w) =

X G*(#) (), (18)

where the conductivity term due to thermionic cur-
rent has been neglected for the reason pointed out
above.

For comparison with the experimental results,
it is more convenient to introduce the power spec-
trum

- %c_
lp((.d) - (G>2

e‘oy 4m(2m)*/? A
- 576<§f*212< (h) d-¢3?) ¢,w), (19)
r

which refers to the relative conductance fluctuation
AG /(G).

Hence the power spectrum ¢ ,(w) shall be com-
puted. Letusfirstassumethatthe ionizationproces-
ses of donors centers are statistically independent
events. Indicating with an asterisk the quantities
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FIG. 2. Occupation function f;(¢) vs time of the ith
donor center: t,,, donor center occupied; f;.q, donor
center ionized.

which refer to this approximation, it can be written

P (w) = E‘:S‘(w) =6diS,(w) , (20)

where S,(w) is the power spectrum of the occupation
function f,(¢) of the ith donor center, defined as that
function of time, which is 1 if the donor center is
occupied by an electron and zero if the center is
jonized (see Fig. 2).

In the same equation, S,(w) is an average spec-
trum obtained by an averaging equation over the in-
dex 7. It should be noted that S;(w) strongly de-
pends on the location of the donor center in the gap
as shown below. In order to calculate S,(w) let o,
and 7; be the variables representing the average
occupation time and the average ionization time
for ith donor center, respectively.

In terms of these variables the power spectrum
is given by the Machlup expression®

1 3(7) 7}

Silw) = T 1+8(T) TPw?+1’ (21)
where

G(T) = T(/o" (22)
and

1
r
7‘_——-——1+8(T) . (23)

From Eq. (21) it is seen that the power spectrum
S;(w) has the appearance of a Lorentzian noise with
a time constant given by Eq. (23). To evaluate the
spectrum S,(w) it is necessary to estimate the form
of the distribution function of 7} and to average with
respect to that function. The quantity 9(T) is act-
ually a function of the temperature only and does
not depend on the index i.

Using Eq. (2), which gives the ionization prob-
ability of a donor center, the occupation probability
is easily obtained, namely,
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1
LY T
o4+ Ty e 191 vp(MITRT ] (24)

From Eq. (21) it is seen that, at each temper-
ature, the distribution function of 7} is proportional
to the distribution function f of the ionization times
T,;. To evaluate the distribution function it is nec-
essary to estimate the average ionization time of
a donor center having a distance x; from the near-
est metal island. Taking into account that only
those processes where an electron is exchanged
between metal islands and donor centers must be
considered, and that this requires a tunneling pro-
cess through a barrier width x; and height ¢,, we
can write, to a good approximation,

T‘me[Z(zmw1)1/2/h]x; . (25)

The effect of direct transitions from donor cen-
ters to the conduction band of the insulator, which
can be active at the highest temperatures, will
change the distribution function for the ionization
times, a fact which has an experimental support,
and will be discussed later.

From Eqgs. (23) and (25), assuming a uniform
distribution for the x; variables, the distribution
function p(7}) for the 7}’s is easily found:

’ =1
pry=[m(H)] " %, (26)
m i
where 7; and T, are the largest and the smallest
values of 7/, respectively.

The distribution given by Eq. (26) is equal to that
used by McWhorter3®3! to explain 1/f noise in
semiconductors. In that case such a distribution
was generated by tunneling of carriers to trapping
states located on the surface oxide layer.

The power spectrum ¢{*(w) defined in Eq. (20)
can thus be found through an averaging operation
over Eq. (21) by using the distribution given by Eq.
(26), namely,

s s ()]

X [tan™ (wT}) - tan™(wT’)]. (27)

The spectrum ¢{*(w) is thus of the 1/f type® in
a frequency range which covers the interval from
1/7! to 1/74.

It follows from Eq. (19) that

eoa(T)éd  3(T)

O w) =

576meZe}x’l 1+9(7T)
1/2 2 ’ -1
[ s (28]
Tm
X -‘1-0— [tan™(wT}) - tan™ (wT2)]. (28)

Equation (28) represents the power spectrum of the
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relative conductance fluctuation between two is-
lands with the basic assumption that the ionization
processes of different donor centers are indepen-
dent events.

Actually it must be considered that a fluctuation
of the number of ionized centers changes the height
of the potential barrier ¢ z(T), which in turn has
a feedback effect on the fluctuation itself, giving
rise to a smoothing effect on the noise. This effect
is similar to the one produced by space charge on
the shot noise in a nonsaturated vacuum diode,*
which gives rise to a noise intensity reduction by
a factor I" without practically affecting the spectral
density distribution. An approximate expression of
the power spectrum for the relative conductance
fluctuation which takes into account the feedback
effect described above can thus be written

P(w)=Ty*P(w). (29)

In the present case the smoothing factor I' can be
calculated by making use of the Nyquist theorem,
which allows one to evaluate the thermal equili-
brium fluctuation of the potential barrier ¢ z(7).
Actually it must be considered that in the present
model the ionization of donor centers is a thermal
equilibrium process which is not influenced by the
current flowing in the film.

Integrating Eq. (28) with respect to w, and taking
into account that 7, is many orders of magnitude
larger than 7, we get as a good approximation,

a6 -
o J_ vwo
e*o(T)8d  (T)
~ 7 576eke*l 1+9(T)
X [.lll(g.hwillid_ (p'Bllz(T)] ’ . (30)

This equation should be compared with the one
obtained by using Nyquist’s theorem. In the Appen-
dix the generalized form of Nyquist’s theorem is
developed, suitable for application to physical sys-
tems where energy fluctuations are associated with
entropy fluctuations. Application to the present
case yields

© 2 ,*1 4 2
[ ¢(w)dw=%({-(2m)”2d—¢;”2> . @D
-0 o~r

From Egs. (30) and (31), the following expression
for the smoothing factor I' is obtained:

_ 12T €€} 1+9(T)
e? od (T)

(32)

The value of this factor can be easily calculated
at any temperature whenever the values of 6, d,
and ¢ (T) are known. With the values given below
for these quantities in the case of gold film on sap-

phire having a room-temperature surface resis-
tivity of about 50 kQO the value I'~ 0.24 is ob-
tained. It should be noted that the temperature de-
pendence of I is very small, because 9(T) (which
is always smaller than 1) is approximately a linear
function of temperature.

Equation (29), taking into account Eqs. (28) and
(32) yields

kT (T) [4m(2m)*/? - 2
Y(w) = 4822551)[ m( rz) d _ (pr/z(T):\

x [m(-:-%}] .l—i— [tan™ (wT)) - tan™ (w72)] .

(33)
Equations (31) and (33) give, respectively, the
total noise spectrum and the power spectrum for
the relative conductance fluctuation between two
metal islands separated by a gap of width d and
length I. The extension of this formula to the
whole film is made in the Sec. II.

III. EXTENSION OF THE THEORY TO THE ACTUAL FILM
STRUCTURE

Theoretical results relative to the conductivity
and noise worked out in the preceding sections re-
fer to only two metal islands. In order to define
quantities like the surface conductance G, and the
relative conductance spectrum ¥, (w) for the whole
film, some more information is needed about the
island structure of the film.

For what concerns G, the relation between this
quantity and G is simply

G,=G. (34)

The structure of the film, however, is involved
in the definition of the quantity Z, which has been
defined as the active gap length between contiguous
metal islands along the current lines. What really
matters here is the definition of a new quantity D,
which has the meaning of the average linear dimen-
sion of the metal islands for the particular film
considered.

As is seen from the electron microscope photo-
graphs shown in paper II, the actual structure of
the islands of gold films annealed at high temper-
ature (above 700°K) is very complicated.

In this case D should be chosen to characterize
the average linear dimension along the current di-
rection of the equipotential areas metallically con-
nected as schematically represented in Fig. 3. Ac-
cording to this scheme, even the gaps having a
width which is rather smaller than the average
should be considered as metallic connections be-
cause, owing to the strong nonlinear dependence of
the electrical conductance between metal islands
on the gap width, the potential drop in this case be-
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I

FIG. 3. Schematic representation of different
equipotential lines (a and b) in a discontinuous gold film
having a structure of the type shown in Fig. 1 of paper
II. The parameter D can be interpreted as the average
linear dimension of the metal islands.

comes negligible. The length / in this scheme re-
presents the average total length of all the active
gaps between two different contiguous equipotential
lines in a strip of width D along the current direc-
tion (shadowed area in Fig. 3). A final point con-
cerns the relation between relative conductance
noise spectrum §(w) relative to an island pair and
the spectrum ¥ ,(w) which refers to the whole film.

By representing the film as a network of resis-
tors, each having a conductance G, independently
fluctuating with a relative conductance fluctuation
spectrum P (w), for a film L wide and L’ long, the
following relation can be obtained:

Yp(w) = (DL /LR (). (85)

The coefficient D?L/L’®, which appears in this eq-
uation, has a very simple interpretation in the case
of a square film where L =L’., In this case it re-
presents the inverse of the total number of the me-
tal islands constituting the film.

Equations (29) and (31) will be used to compare
experimental and theoretical results. Owing to the
very rough approximation made in the definition of
the quantities 7 and D, it is obvious that in compar-
ing the theoretical results with the experimental
ones only the correct order of magnitude can be
hoped for as concerns the absolute values of the
conductivity and noise intensity. However, the the-
ory also gives the correct temperature dependence
of these quantities as well as the correct shape of
the noise power spectrum.

IV. DISCUSSION

The theoretical results are being discussed from
a rather general point of view giving the order of
magnitude of the parameters involved and the gen-
eral trend of the basic quantities like the barrier
height ¢ 5(T), the film surface conductance G (7T),
and the relative conductance noise power spectrum
¥p(w). With regard to ¢ 4(T), in practical cases a
good fit of the experimental results for gold on sil-
ica glass substrates is obtained by assuming in Eq.
() Xm= Xs=®1, 8= 10'° states/cm?, ¢,=0.25 eV,
d=26 A. The position x,, — x,=¢,, which corres-
ponds to assuming that the effective electron work
function for the substrate (that is, the work which
must be done to remove one electron from a donor
state into vacuum) is very nearly equal to x,, has
some independent experimental support™!®!” and
in any case is nct critical for ¢ 4(7T).

The density of surface states chosen above,
which corresponds to assuming that almost all the
molecules of a single monolayer on the free sur-
face of the substrate become donor centers, is
roughly equal to that found in semiconductors.3®
The value of ¢, was actually picked up by taking
the best fit for the experimental results, but it is
not far from the energy value of donor centers
found in chalcogenides glasses, which form a bun-
dle located from 0.2 to 0.5 eV below the conduction
band.®* Finally, the average width of the tunneling
barrier d is chosen in each case to yield the cor-
rect absolute value of the conductivity of the par-
ticular film, once the length / of the gap between
neighbor islands has been estimated.

It should be noted that a change of d of a few ang-
stroms changes the conductivity of an order of
magnitude without appreciably changing the be-
havior of ¢ 4(T), so that a wrong estimation of /
will simply yield slight variation of d. The be-
havior of ¢ B(T) versus temperature for the values
reported above is given in Fig. 4. In this figure,
the case of sapphire is also reported. In this case
the fit with the experimental results was found with
a sliglcltly different value of ¢,(0.2 eV) and of
d (16 A).

In each case, the effective dielectric constant €}
has been taken to be proportional to the true value
after applying a reduction coefficient 8 =3, to take
into account that the active trapped charge is only
a few atomic spacings apart from the metal is-
lands.

As is seen from Fig. 4, ¢ 4(T) decreases with
temperature, because of an increase of the charge
of ionized donor states. However, above a given
temperature the thermionic injected charge, re-
presented by the first term within the large
squared brackets in Eq. (7), begins to become im-



FIG. 4. Potential barrier
height ¢ 5(T) vs tempera-
ture from Eq. (7) with

Xm—Xs=@1s €7=F €.
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portant and the barrier behavior is inverted.

Such an inversion in the film resistivity at very
high temperatures has been actually observed in
experiments at temperatures above 500°C. Eq-
uation (10), taking into account the temperature de-
pendence of ¢ 4(T), gives a surface conductance
versus temperature which fits well the experi-
mental behavior in a very large temperature range
(from about 20°K up to T00°K), as seen in pa-
per II. The generally assumed exponential be-
havior, typical of an activated process, seems
thus an approximation valid in a reduced-temper-
ature range.

Another important point, which also has well es-
tablished experimental support, is the dependence
of the thermal coefficient of resistance on the con-
ductivity of the film, i.e., on the gap width d be-
tween metal islands. Equation (10), together with
Eq. (7), fits the experimental results very well, as
shown in Fig. 12 in paper II

Concerning the noise power spectrum given by
Eq. (28), the most important point to be discussed
is the lifetime-distribution function of the ionized
donor centers. As already pointed out, such a 1/7
distribution function has been obtained by neglec-
ting the electron transition from donors to the con-
duction band of the insulator. This approximation
is valid when the temperature is so low that the
probability of an electron being excited from a do-
nor center to the conduction band of the insulator
is much smaller than the tunneling probability from
the donor center to a metal island.

To a rough approximation, it can be assumed that

Eq. (31) stands for T<T*, where T* is given by the
relation

exp(~@,/kT*)~ exp{ - [2(2m¢,)*/?/K)d/2}, (36)
that is,

T*=Vo, i/k(2m)'/2d. (37)

With the values of ¢, and d given above, Eq. (37)
gives for sapphire T* =464 °K and for silica T*
=436 °K.

For temperature above T%, it is easily seen that
the longest ionization times, which refer to donor
centers farthest away from metal islands, are re-
duced and contribute only partially to the occu-
pation function of the center. This is because, to
the barrier height fluctuation, only the transitions
from donor centers to metal islands are active. On
the other hand, donor centers located very near
the metal islands, which supply the shortest ion-
ization times to the distribution function, are hard-
ly affected by thermal excitation.

Thus, the expected result is that the distribution
function decreases more rapidly than 1/7 and the
power spectrum .(w) becomes more “white” on
account of weakening in the low-frequencies range.
This is what actually happens in experiments, as
reported in paper II. No exception has been found
to this effect, which is one of the best reproducible
results observed in metal film at high temperature.
For the same reason the integral spectrum, given
by Eq. (28) for temperatures below T, drops when
temperature is well above T*. In the following pa-
per it will be shown that not only the shape of the
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power spectrum but also its absolute value agree
well with the experimental results.

APPENDIX

First, Nyquist’s theorem is derived in a rather
generalized form, which applies to systems in
which a fluctuation in the energy is associated with
a fluctuation in the entropy, as in the specific case
considered in the text.

Let us consider a physical system whose Hamil-
tonian H(V) depends explicitly on a quantity V(¢)
which is a function of time and can fluctuate for
thermodynamical reasons around its equilibrium
value V,. It is assumed that averaging over any
other possible variable deriving from other de-
grees of freedom of the system has already been
performed on H, which is thus reduced to a func-
tion of V only. Similarly let us define the entropy
of the system S(V) as

S(V)=-EkInP(V), (A1)

where P(V) is the number of states of the system
corresponding to the energy H(V) defined above. It
follows from statistical thermodynamics consid-
erations that the probability density ¢(V) of a de-
finite value V of the quantity V(¢) is given at a tem-
perature T by

q(V)=CP(v)e'll(V)/kT=Ce'F(V)/kT’ (AZ)

where C is a normalizing constant and F(V)=H(V)

— TS(V) is the free energy of the system, which is
also a function of V and has a minimum for V=V,
if during a fluctuation of V the temperature and the
volume of the system remain constant.

Expanding F(V) in power series of AV, where
AV=V(t) - V, represents a fluctuation of V(¢) with
respect to its mean value V, and is a small quan-
tity, the following relation is obtained:

F(V)=F(Vy)+3F"(V,)av2, (a3)

where the primes mean derivative with respect to
V and the terms in AV to a power higher than 2
have been dropped. The first derivative F’(V,) is
zero, owing to the equilibrium condition at V=V,
From Eqs. (A3) and (A2) it follows that

(V2)=kT/F"(V,), (A4)

which represents the generalized Nyquist theorem
for the fluctuation of V(¢).

To apply this expression to the specific case con-
sidered in the text about the fluctuation of the num-
ber of ionized donor centers in the insulator, con-
sider a slide of dielectric material contained in the
gap between metal islands as shown in Fig. 5. As
in the text, it is assumed that the electric charge
due to ionized donors is uniformly spread out with

insulator

- _ matal

FIG. 5. Schematic representation of the dielectric
between two metal islands showing the electric charge
due to donor centers ionization.

the dielectric, which is only a few atomic layers
thick, while an opposite charge is localized on the
metal at the interface with the dielectric.

Using the same notation as in the text, the free
energy part of the system depending on n, where
n is the number of ionized donors in the slide, can
be written

Fn)=H,(n)+H,n) - TS,(n), (A5)

where H,(n) represents the electrostatic energy as-
sociated with » ionized donors, H,(n) is the energy
change of n electrons which have left the donor
centers in the insulator to populate electronic lev-
els near the Fermi level in the metal, and S (r)
represents the configurational entropy of the sys-
tem, related to the degree of ionization of the do-
nor centers. The thermal part of the entropy does
not appear in Eq. (A5) because transitions from do-
nors to the insulator conduction band have been
considered negligible and furthermore in the me-
tal, for fermions, it is practically independent of
n. From simple electrostatics considerations and
from the energy plot of Fig. 5 we obtain

1 e*n?
Hl(n)=—2—4 PR (A6)
Hy(n) == n(X— Xs— P1) (a7
sc(n)=_kN<—A-’,11n-;‘7+-NA',—”1n Ng”)
o~ r A8)
knln (

where, in Eq. (A8), N is the total number of donor
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centers in the slide and account has been taken that
n<<N. Equation (A8) is a well-known expression
for the configurational entropy of a system of N-=n
electrons which can occupy N different states, all
having the same energy.

To apply Eq. (A4) it should be considered that the
fluctuation of » is around the value # given, as a
good approximation, by

ﬁ:Ne-‘”F(T)/"T, (AQ)
Substituting Eqs. (A6), (A7), and (A8) in Eq. (A5)

and taking the first derivative with respect to n,
one gets

32

1 .
F/@)= 33 <y 0de R DIRT ot X+ @1 — @ (D).
r

(A10)

Taking into account that ¢ .(T)=¢, — ¢ z(T), the
condition

F'(n)=0, (A11)

thus exactly corresponds to Eq. (7) of the text, if
the first term within large square brackets, which

takes into account electron transitions to the con-
duction band of insulator, is dropped. This is a
consequence of the fact that the thermal entropy
has not been considered in Eq. (A5), which is thus
correct if the temperature is not too high.

The second derivative of the free energy becomes

F"(p)=s o - o> = — | (A12)

The last step in Eq. (A12) has been made taking
into account that from Eqs. (A11), and (A12), with
the position ¢, - x,, + X,=0 made in the text, it
turns out

1 e @ p(T) kT

Beodl ~m C w (a13)
Finally, from Eq. (A4), we get

(An?)y=12¢4€ ’,"lkT/ez. (A14)

From Eq. (19) of the text, taking into account that

- 12¢,¢*
(An2)=f () dw = —-60—:2—'—152, (A15)

Eq. (31) is finally obtained.
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