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Electron-phonon e»ancement of thermoelectricity in metals
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The many-body effect of the electron-phonon interaction on the electron-diffusion thermopower is

calculated microscopically. It is found that the thermopower is enhanced not only by the mass enhancement

but also significantly by a new mechanism, arising from the electron-phonon modification of the quasiparticle

velocity. The result is justified, using a simple phenomenological treatment based on the Landau-Boltzmann

theory. The effect of the above result on some of the magnetic-thermoelectric phenomena is discussed

semiclassically.

I. INTRODUCTION

The interaction of electrons with the lattice vi-
bration is responsible for many interesting phe-
nomena in solids. For example, it enhances the
mass of the electron and, therefore, the electron-
ic-specific-heat capacity. The effect of the elec-
tron-phonon mass renormalization is known to be
absent from many of the dc transport coefficients
such as the dc electric conductivity" and the ther-
mal conductivity. ' Also, after the work of Prange
and Kadanoff, ' it has been believed that the above
effect does not appear in the thermoelectric effect.

Recently, Opsal, Thaler, and Bass' argued, us-
ing Mott's formula, ' that the impurity-dominated
electron-diffusion thermopower is enhanced by the
electron-phonon mass renormalization. ' They
could explain their data on aluminum with dilute
gallium impurities only by assuming the effect of
mass enhancement of 4$%. However, it is not
clear to what extent their semiclassical approach
treats the effect of the electron-phonon interac-
tion. It is felt that a definitive conclusion can be
drawn only from a first-principles calculation. In
view of these developments, it seems necessary to
resolve the situation by making a rigorous micro-
scopic analysis. A brief summary of a part of this
work has been published earlier. '

Thermoelectric power is the heat transported
per carrier per unit temperature. The contribution
to the heat current from electrons just below and
above the Fermi level tends to cancel out. As a
result, the thermopower depends sensitively on the
energy derivative of various quantities contributing
to the conductivity at the Fermi level. For this
reason, one has to consider all the higher-order
terms with sensitive dependence on energy in cal-
culating the thermoelectric power, unlike in cal-
culating the dc conductivity. As will become clear
later, this seems to have been the basic source of
difficulty and confusion in the previous theories.
We find that the thermopower is enhanced not only

by the mass enhancement' but also significantly by
a new mechanism, arising from the electron-pho-
non modification of the quasiparticle velocity.

In Sec. II we present a simple phenomenological
treatment of the thermoelectri. c power based on the
Landau-Boltzmann theory. In Sec. III, a micro-
scopic justification for the result obtained in Sec.
II is given. We discuss the effect of the electron-
phonon interaction on magneto-thermoelectricity
semiclassically in Sec. IV. Concluding remarks
are given in Sec. V.

II. PHENOMENOLOGICAL THEORY

In this section we give a semiclassical analysis
of the thermopower. In the presence of an applied
electric field S and a uniform temperature gradi-
ent VT, the electric and thermal currents J and U

are given by'

3=LzzS+LzrVT, U=LrzS+LrrVT . (2 1)

The various tensor transport coefficients in (2.1)
can be expressed in terms of the perturbed elec-
tron distribution function'

fk=fok+(-f0T, )[e& AT,
—&s». Pg] (2.2)

where f, „ is the equilibrium distribution function
(i.e., Fermi function) for a quasiparticle of mo-
mentum k and energy E „and e (negative) is the
electronic charge. The prime denotes a derivative
with respect to the argument, and k~ is Boltz-
mann's constant. The quasiparticle energy E l, i.s
given by the Brillouin-Wigner perturbation equa-
tion

&I =&T+Mk+T) (2.2)

where zk is the bare electronic energy and Mk(z}
is the real part of the electronic self-energy, aris-
ing mainly from a virtual one-phonon process, in
which a phonon is emitted and then absorbed.

One then obtains, s' using (2.2),
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Lzz = &(&) ~

dz — ' (z —u) o (z}af.(z)
e az

v „,dc(z)
3e dz

with the conductivity tensor given by

(2.4)

(2.5)

3e ~ ez

where the bare conductivity is given by

g(0) — e
12m 5

dS v k7'g
(0)

(2.11), inserted in (2.10) and (2.9), leads to'o

(2.12)

(2.13}

e dS
o(z) = s v* fk ~4m@, g v

In (2.6) the integration is over the qua, siparticle
energy surface z =E k and over the bands. The
quasiparticle velocity v& is given by

(2.6)

(2 8)

the thermoelectric power is given by

1T2
tL il. )„=

~
O —T(

"') (2.9)

In (2.8} H is a static magnetic field, which is zero
in this section. The temperature gradient is as-
sumed to be in the x direction. Making a relaxa-
tion time approximation, one sets P =v%7), ob-
taining

v% = (I/h)V«E«. (2.7)
k

Hereafter, we assume a cubic symmetry for con-
venience. Using, then, the Onsager relation (dag-
ger means the transpose)

Lz r(H) = Lrz( H-)/T, -

Here X [—= -M-'k (p)] is assumed to be isotropic, and
use is made of the relationship v-„7 "«=vg7) (7f is
the bare relaxation time). The latter relationship
follows from the fact that the dc conductivity given
in (2.1) is unaffected [i.e., o„(p)= oi',i(p)] by the
renormalization. " Note that only unrenormalized
quantities enter (2.13). The nutshell of the argu-
ment leading to (2.12} is that (a) the energy de-
rivative in (2.9) with respect to the quasiparticle
energy can be replaced by a/az = a/aE-„= (1+A)(a/
aek) and (b) the renormalized conductivity o„„ in
(2.9) equals the bare conductivity oioJ given in
(2.13).

To obtain the remaining contribution to the thermo-
power, we insert the second term of (2.11)in (2.10)
and(2. 9). Using" Mk'„(p}-c,/vip, =0, onefinds

2 2

6, =- kzzT [o,"„'(u)] '

x dS . (2.14
[v k (I/g)VkM k(&)17«(&)

Jl =6~ v)

2

12m h
k

(2.10)

The quasiparticle velocity is obtained from (2.3)
and (2.7),

vk 1 1
k 1 -M-„' (E-„) 1 —M-'„(E-„) I'

(2.11)

where vg =—(I/k)V«ek. The quantity M-„(z} varies
extremely slowly with respect to k, and the second
term is negligibly small. Namely, noting that
(I/g) V-„M„(z)- (M k/E k)v k, the second term of
(2.11) is of order (Mk/Ek(- Iz&ov/g e,/vr smalle-r
than the first term near the Fermi level. Here
8~, c„and v~ are the Debye temperature, sound,
and Fermi velocities, respectively. However, the
second term of (2.11) varies much more rapidly
[i.e., -M k(z) - 1] with energy than the first term
Namely, the former varies significantly over the
phonon energy scale, whereas the latter only over
the electronic energy (Eg) scale. For this reason,
both terms in (2.11) give important contributions
to (a/aEg)vk and, therefore, to the thermoelectric
power.

As shown by Opsal et al. ,
' the first term of

Defining

&
= k/2p. . (2.16)

Comparing (2.15},(2.16) with (2.12) and using

8 0 1—Inc„"„&(z)
Bz

it is seen that 8, constitutes a significant fraction
of the thermoelectric power (8 =6,+6,).

III. MICROSCOPIC THEORY

In this section we give a microscopic justifica-
tion for the result obtained in Sec. II. The analy-
sis in the previous section has been quite general
except for the relaxation time approximation in-
troduced for simplicity. In this section, however,

Mk (z)
tv~ eu„

and assuming $ to be isotropic, one obtains from
(2.14)

(2.15)

To make an order of magnitude estimate, one
finds, using effective mass and Debye approxima-
tions, "
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we will specifically study, for simplicity, a sys-
tem of Bloch electrons interacting with the lattice
and a low concentration of static impurity centers
at low temperatures (T «e~). One can easily gen-
eralize the result to other regimes of temperature.
For the electron-phonon system we use the Frolich
Hamiltonian. The transport properties of this sys-
tem have been studied extensively by Holstein, ' and
the present treatment is based on his formalism.
We carry out the analysis to higher order than that
found in the latter work for the reason discussed
in Sec. I. In this theory, the smallness parameter
of the perturbation expansion is the ratio of the
phonon energy to the Fermi energy, or equivalently
that of the sound velocity e, to the Fermi velocity
v„. An additional smallness parameter in the
present theory is the concentration of the impurit-
ies.

The Hamiltonian is then given by

If=gzks)Q'g+Qg(d~ b b +(o)

q - q q
k q

+ gV g,-cg(b +b ~)
(o) t

Xq

+ exp i k-k' ~ R~ Upk~ ak, 3.1
k'k f=&

where ak, ak are Fermion creation and destruc-
tion operators, and b (b~) c-reates (destroys) a
phonon of "momentum" q and bare frequency u
The first two terms in (3.1) describe independent
Bloch electron motion and harmonic lattice vibra-
tion. The third term describes the bare electron-
phonon interaction, assumed to depend only on the
momentum transfer"

Vk&= C~q~ [a/23uif&-, ]'~', (3.2)

where C is the phenomenological Sommerfeld-Wil-
son interaction constant, X the number of atoms
in the sample, and M the atomic mass. The last
term of (3.1) represents elastic scattering by im-
purity centers (assumed to be substitutional) at
R&. The quantities N and Uk k are the number of
impurities and the Fourier transform of the im-
purity potential, respectively. Other notations are
defined in Sec. II.

According to the linear-response theory, the
thermopower is given by"

8 = « ~K» /sT &«~&&, (3.3)

where

8

FIz(I(u„) = (J (u)K& exp(k&u, u) du,
0

(3.5)

(3.6)v k&ak~k
k

and K/e is the heat current operator defined in
terms of the energy current operator Q by

1=z Qsk's% UCx(z% —i')bi'. T+ ("k'*+UT*)
kk'

(p)
x Y P (b +b )6,q q -q k', k+q (3 7)

where 6k g is the Kronecker delta. The second
term in (3.7) represents an additional heat current
due to the electron-phonon interaction. The energy
current operator Q is derived in the Appendix.

The correlation function in (3.4) is conveniently
evaluated in terms of the upper charge-current
vertex correction (to be defined as EF-vertex part
following Holstein's work'), which consists of lad'-

ders of the irreducible scattering part. The latter
contains a single impurity line, a phonon line, and
their higher-order corrections such as virtual re-
coil by impurities discussed by Nielsen and Tay-
lor" and the electron-phonon vertex correction to
the impurity scattering discussed by Hasegawa. "
Although the phonon ladders do not contribute to
the scattering at low temperatures, they give a
significant contribution to the thermopower through
higher-order corrections of the FI"-vertex part
[cf. (3.13)]. The lower heat current vertex contains
not only the first term of (3.V) but also terms aris-
ing from the electron-phonon interaction, namely,
the second member of (3.I). The latter is illus-
trated in Fig. 1. Here the curvy, solid, and in-
coming wiggly lines represent, respectively, pho-
non propagators, full electron propagators, and
the external line.

The full electron propagator is given, in the
complex z plane, by'"

Sz (z) = 1/[z - z k
-Gk (z)], (3.8)

where ~(z) is the electronic self-energy part.

where the angular brackets denote the grand canon-
ical thermodynamic average, 8~, =2wrikzT (r is
an integer), and P '=kzT The operator J(u) is
in the imaginary time Heisenberg representation.
In (3.3), Z is the charge current operator

The correlation function is given by

(3.4)
FIG. 1. Effective elec-

tronic heat current vertex
arising from the electron-
phonon interaction,



2548 S. K. LYO

The phonon contribution to Gg(z) is given, to the
lowest order, by

G», ~ ~ l&ql'fthm(&X)&«. «.OG«z Zi ~ Z —E«i 2 ii(d
«'q

Here V-, ar, fi i(x) are renormalized electron-
phonon interaction, renormalized phonon frequen-
cy, ' Fermi function, and f 'i(x) =1 —ft ~(x). One
defines, slightly below the real axis,

(3.9)

G«(z —zO) = M «(z) + il' «(z) . (3.10)

For the real part M «(z), only the phonon contribu-
tion [i.e., the real part of G«(z —iO)] is important
because of its rapid variation in energy at the Fer-
mi level. Namely, the quantity M «(p} is of order

unity. At the Fermi level, the phonon contribution
to the imaginary part I' „(z) is negligibly small at
low temperature, and I'g(z) becomes linear in im-
purity concentration. With an increasing value of
(z —p(, I' «(z) increases rapidly and saturates
near (z —p ~

- Kur~, leading to the rapid variation of
Mg(z) in z. As is well known, the above proper-
ties are due to the fact that a particle (hole} with a
large excitation energy decays rapidly to the Fex'-
mi level by emitting phonons of large energy, be-
cause the phonon density of states is large. How-
ever, a particle with a smaller excitation energy
decays slowly, because it can emit only small en-
ergy phonons which are scarce.

The correlation function is then given by"

g 2

(zkgl+ 10) = — . 1/ «g2xz
k

dz [e«+ M «(z) + rn «(z ) —p]

x &2r «(z)~(-f&-&'(z)) 4 «(z)S«(z —fo)S«(z+ f0)

+At;(z — f,Oz+Ku —iO) ft i(z+4u)S«(z —Of)S(«z +h&u —fO)

-A- («zf+O, z I+a& f+O)fi (~z) S«(z +f0) S«( z+R&o+ j 0) ]. (3.11)

The quantity Q«(z) is the distribution function [cf. (2.3)] and is related to the EF-vertex part A-„by' Q«(z)
=hA„(z —iO, z+iO)/21'„(z). According to Holstein, ' the latter satisfies the Boltzmann equation. One then
finds

P«(z) = v« 'r «(z)

where the transport relaxation time is given by

2m%
&«(z) '= Q ~

T««l'(I -cosa««}~(z -&«™r(z))S

(3.12a)

(3.12b)

(3.13)

7-„-„being the transition amplitude for scattering from k to k'. The approximations leading to (3.12b) will
be given shortly [cf. (3.16)]. Also, one finds (q=al)"

z —x + h(g + ig0

Finally, the quantity m-«(z} in (3.11) is given by

-1 1
m«(z)=v«* v«*~Vq)'f"'(z«. )~I -«,-q&

8 —6k& + SQJ
Tc'q

(3.14)

I' indicating the principal part. 'Ihe quantity
m„(z) also varies rapidly in energy [i.e., m«(P)'- 1] at the Fermi level. Both m „(z) and Mg(z)
are of order of the phonon energy. The quantity
M-„(z)+m-«(z) in (3.11) arises from the processes
illustrated in Fig. 1, and accounts for additional
electronic energy current due to the electron-pho-
non interaction. As is discussed in Sec. I, it leads
to an important contribution because of its sensi-
tive dependence on energy. Also, the last two
terms in the curly brackets of (3.11) give an im-
portant contribution, unlike in charge conduction
problem where terms of this type are insignifi-

cant. '
The distribution function qhk is inversely pro-

portional to the concentration (c). Therefore, the
first term in the curly brackets of (3.11) is linear
in u and c '. For other terms we retain contri-
butions linear in &u and c in view of (3.4). We set
&=0 for the last two terms in the curly brackets
of (3.11) except for the EE-vertex parts A-„, be-
cause the second term of (3.13) is already linear
in these quantities. The first term of (3.13) leads
to a higher-order (in c) contribution and will be
dropped hereafter. In evaluating (3.11), it is con-
venient to introduce an identity
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B 1
X + ~ ~ ~

Bfk z —fk + z'g0
(3.16)

8«( z + iz],0)S«( z + I(() + i& z0)

S„(z +i z],Q} -S«(z + |I(v+iz] Oz)

ii(() —Gg (z + lz(() + zz]zO) + G«(z + zz],0}

Using this expression in (3.11), it is clear that one
has to perform a summation of the type Z«Q«S«.
When Q« is a slowly varying function of k (i.e.,
stI]g/se„ - tI]«/e«), one can expand'z'

1
S«( z+ (]z((z+i z0]) = . —[S(d -G«(z+ k(v+iziO)]

z -ck+ig0

which, combined with (3.15), yields

S«(z —zO) S] (z + z0) —)[6(z —e «
—M$ (z))/r-«(z),

(3.17a)

limS«(z+ i](]0)S«(z+ Ku+iz]0)
4)~ o

S«(z+ iz]0) 6 1
I —G«( z + z'g0} se «z —e «+ zTJ0

(3.18a)

where

Using (3.4), (3.11), (3.13), and (3.1V), one finds

((Zlc&) = I+ 11,

and

)=e'pe„, j a*i* —e+me(*)][-f'-'( )](e(*)e(*—.-e -Me(*))
k

(3.18b)

)I=e'I ~ef ee
~ oo

kzq

dx [-f' ](z)]k«(z)6(z -e« -M«(z))f' ](x)(e« —&)6X,«..
1 1 B 1 B 1x

l V~ l' P —,6(x —e «}—6(z -x + S&u-) —,P
z -x+ A&- 8 Bk„' k sk,' x —e«

After a lengthy algebra, which involves integrations by parts in k,', one reduces (3.18c) to

((=e*g j d*[ f' '(*)]('t(*-)e(e —ei-eee( ))

1
-v»zzz «(z)+ (z —~) g g+ v«'xli'ql 6«', «eq f' '

(&X )P
Z -Ckza k(Oqk'q

(3.18c}

—[f[ ( e)~«-f (z+k(v-)]P'
z -ek +S(g

(3.19}

and

II' = ', (z)ekzT}'g -v-«„zzz-„(iz)g«(]z)6(iz —e«) .

(3.20b)

Inserting (3.12) in (3.20), and using (3.3), the
thermopomer is given by

S =S,+S2,

where

(3.2la}

8, =
i» g v«, [I-M«(i )]

3&xx

x [7«(z)6(z -e«)], „
(o)

Bz
(3.21b)

It is seen that terms proportional to nq;(z) in
(3.18b) and (3.19) cancel each other. Defining the
rest of the terms as I' and II', respectively,

I' = ', (z(ekzT}' —— v«„(I)«(z)6(z -e« -M «(z))
Bz

k
4 p

(3.20a)

I

and

gg~jp g
8z = —

(()) Q vti, zzz g(zz) z Y(]z)6(]z —e«) . (3.21c)
0'xx

(o)
The "bare" relaxation time T „(z) is obtained from
(3.12b) by dropping the self-energy correction
[e.g. , Mg(z)]. Note that 7 '(]z}= T «(]z) and z t;(]z)
= [1 —M«(p}]z «(]z). 'Ihe bare conductivity is given

r Qo' k

by a well known expression"

~k.~k ~ ~ P-~-(o)

It is seen that (3.21b) constitutes the enhancement
of the thermoelectric power through the mass en-
hancement factor 1-M «(]z} discussed in Sec. L
The quantity in (3.2lc) represents new effects dis-
cussed earlier in Sec. II.

The expression in (3.21c) can be identified with
that given in (2.14) in the following way. Starting
from an expression [cf. (3.9)]
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we find

z -~Te + ~k-%'

-vgmg(z) .

—V» 1lf «(z) = — f" (e g ) —V «
1 I

(3.22)

(3.23)

Here L, ,= ', (v-kz/e)' is the I orentz number and the
prime on the conductivity tensors means the de-
rivative with respect to the Fermi energy. In (4.1)
we have set J =0, because the electric current
does not Qow in the thermoelectric power mea-
surement.

For simplicity we assume a single relaxation
time v„ for distribution functions f«and P« in
(2.2). This assumption is valid, for example, for
elastic scattering. Using the I andau-Boltzmann
equation, ' one then finds p» = -(E «

—g)Q«/IFeT and
F«vg', obtalnmg

For z = p, the first term of the above expression
vanishes on integrating by parts, yielding

I,»=I.,Ta (il). (4 3)

(1/I) ~M «(p, }= -vgnc'g(p), (3.24)
A. Adiabatic effect

and, thexefore,

g2$2 T e2
g B—...I (*.')

[vg ~ (1/I) Vt'I «(il)]l „-(y)
P =pm

This expression is identical to that of (2.14). Note
that in the above calculation [namely, in deriving
(3.23) from (3.22)], we have assumed that the elec-
tron-phonon coupling strength depends only on the
momentum transfer in according with the approxi-
mation of the present section. However, the ex-
pression given in (2.14) is general and free of this
assumption. This means that the latter will follow
from a general expression of the energy current
operator given in the Appendix [i.e., (A5)j. This
point is under investigation.

IV. MAGNETO-THERMOELECTRIC POWER

In this section we examine the effect of the elec-
tron-phonon interaction on magneto-thermoelectric
power semiclassically. For this purpose we intro-
duce a static external magnetic field H along the
x direction to the problem studied in Sec. II. Using
Onsager's relation (2.8) and assuming a cubic sym-
metry (with H along a symmetry axis), one finds
from (2.1), (2.4), and (2.5),

BT i BT
"ax ""ey

(4.1a)

BTJ„=cr,„8,+0'»8„—eI OT e~ + cr,', =-0,~ ax "ey
(4.1b)

U„=eIOT (o„'„8„+e„',8„)+I» +I rrr ~ m 8T y3

8$ Bp

(4.2)

If the sample surfaces are in contact with the
vacuum in the y direction, the heat current U„
vanishes in (4.2). Defining S(H) =—8,/(sT/ttz) and
the Nernst-Ettingshausen coefficient S„F-=8,/(sT/
sz), one obtains from (4.1) to (4.3), for a large
magnetic field (i.e., &u,7»1, &u, is the cyclotron
resonance),

S NF(H) = eI, T *" —„ Inc,„(H) (4.4a)

and

b,S =S(H) -S(H-=O)

=eLO'Z 2 —in@,„H

rrr[rr, „tH)rr,.(H= 0)]) (4.4b)

In (4.4a) the conductivity tensors in the parentheses
have been replaced by their bare values. The re-
sult in (4.4b) has been derived by Averback and
Wagner' in a slightly different form. The major
difficulty in calculating the thermoelectric coef-
ficients is that they usually contain contributions
arising from the energy derivative of the relaxa-
tion time. It will become clear shot. tly that the
latter contribution is absent in (4.4a), because
o,„(H) is independent of the relaxation time. Also,
it is only weakly present in (4.4b), because the re-
laxation times in the second term of (4.4b} tend to
cancel out. '

For uncompensated metals without open orbits
perpendicular to the magnetic fie1.d, one has22

o,„(z)=ec[n, (z) -n„(z)]/H where c, n, (z), and
n«(z) are the speed of light, the number of elec-
trons, and holes contained within the energy sur-
face EI, =z, respectively. It is interesting to note
that the quasiparticle velocity given in (2.11) does
not appear in the off-diagonal tensor a,„. There-
fore, there is no contribution of the type of (2.14)
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arising from the electron-phonon modification of
the quasiparticle velocity. Using the argument
presented in the paragraph following (2.11), the
high-field Nernst-Ettingshausen coefficient given
in (4.4a) is simply enhanced by the mass renor-
malization factor 1+3. [cf. (2.12)] alone. This en-
hancement has apparently been seen in recent ex-
periments by Fletcher" and by Thaler, Fletcher,
and Bass" in molybdenum and aluminum, respec-
tively.

Also, it follows that the first term on the right
hand side of (4.4b) is enhanced by a factor 1+A..
For the second term, one writes"

1 cS ' dSK„''-(")=4 e a E~=p ~THk

(4.5)

B. Isothermal effect

where K, is the x component of the wave vector
measured from the centroid of the electron's orbit
and 7 & is a field dependent relaxation time. '4 The
only dependence on the quasiparticle velocity is
explicitly contained in the denominator in (4.5). In
a spherical model, the quasiparticle velocities in
(2.10) and (4.5) are factored out of the integral,
and contributions to AS arising from the energy
dependence of the quasiparticle velocity are can-
celled out in the second term of (4.4b). Again,
this means that there is no contribution arising
from the electron-phonon correction of the quasi-
particle velocity. One then concludes in a similar
way as before that AS is simply enhanced by a
factor 1+A.. However, for a general band struc-
ture, there is some contribution from the elec-
tron-phonon modification of the quasiparticle vel-
ocity. The observation of the enhancement of ~S
in aluminum has been reported by Opsal et al. '

other, as is clearly seen from the fact they appear
in (2.10) and (4.5) as a product .Other thermoelec-
tric coefficients contain these contributions and
will not be presented here.

V. CONCLUSION

The effect of the electron-phonon interaction on
the electron diffusion thermoelectric power in met-
als has been studied microscopically. It is demon-
strated that the semiclassical Mott's rule based on
Landau-Boltzmann theory leads to a correct (mi-
croscopic) result. It is found that the thermoelec-
tric power is enhanced not only by the mass en-
hancement factor 1+ A. but also by a new effect,
arising from the electron-phonon modification of
the quasiparticle velocity. Higher-order proces-
ses are shown to be important for the thermoelec-
tric phenomena unlike in dc conductivity, because
the thermoelectric power depends delicately on en-
ergy at the Fermi level. The effect of the elec-
tron-phonon interaction on some magneto-thermo-
electric coefficients has also been studied.
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APPENDIX

In this appendix we derive the electronic part of
the energy current operator Q. The energy cur-
rent Q is related to the energy density p, by the
continuity equation

If the temperature gradient in the y direction is
zero (i.e., BT/sy = 0), then one obtains from (4.1)

sp/st=-v Q,

where

(Al)

S (H) = —eL, T —ln[o„(H)'+ g,„(H)'] . (4.6)
p = ~ (/*HE+ c.c.),

In the absence of the magnetic field, the above re-
sult reduces to the adiabatic result (2.9). For a
strong magnetic field (i.e. , ur, v ~ »1), one has
o»/o„- I/H « I for uncompensated metals without
open orbits. " In this limit, (4.6) becomes

d
S(H) = eLDT —Ing„(H) .

Using the previous argument, S(H) is then simply
enhanced by a factor 1+%,. The contributions from
the derivative of the relaxation time and from
electron-phonon modification of the quasiparticle
velocity are absent. It is interesting to note that
these two contributions always accompany each

V ~ [g ~ V (Hg) —(Vg*)Hg] + c.c. ,
BP

Bt 4im (A2)

tn being the electronic mass. Comparing (A2) with
(Al) and introducing a field operator 4 and its
Hermitian conjugate 4', the energy current oper-
ator is given by

1 4 PH+d'r+ H.c. .
2m (A3)

Here P and H.c. mean momentum operator and
Hermitian conjugate, respectively. Separating H

the second term meaning complex conjugate. The
total wave function satisfies the Schrodinger equa-
tion fheg/sf =Hg. One then finds
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=H, +H', where Hq is the Bloch Hamiltonian: H&&(k) =ez~k), one has, "for q=k'-k,
(k'll/m jlk& =v-„5-„.-„+I/a(V-„, +V-„)V-„, -„(5-„+5';).

Inserting (A4) in (A3) and using second quantized operators, we obtain to the first order in electron-
phonon interaction

(A5)

V-k + V-k (0)
~T kat'ak(&, +~ q)5T k.„k ~ k k q -q k, k+q

k k'k q

+ Q " [I/)f(vk, +VI)VRk]aT(aT(&q+& q)5k, -„,q.

(o) (o)
When the electron-phonon interaction depends only on the momentum transfer (i.e. , Pz k

= Vk k), the last
term vanishes and (A5) reduces to Q defined in (3.7).
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