$LuGd:$ A positive —exchange-constant Kondo system

R. W. Cochrane, J. O. Ström-Olsen, and Gwyn Williams* Physics Department, McGill University, Montreal, Quebec, Canada H3A 2T8

S. C. Ho

Physics Department, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (Received 19 May 1977)

We report transport and magnetic measurements in dilute alloys of $LuGd$ which provide the first unambiguous observation of a ferromagnetic coupling between conduction electrons and isolated local moments.

Antiferromagnetic exchange coupling between localized magnetic moments and conduction electrons is well established in a wide variety of dilute magnetic alloys, principally from the Kondo effect in which the resistivity at low temperatures shows a minimum, and a variation below the minimum of the form $-\ln T$, the sign being directly controlled by the sign of the exchange constant J . By contrast, transport data have not yet provided any such clear observation of ferromagnetic coupling in such systems, which is surprising since there is no ^a priori reason why Jshould not be positive. In the few well-defined local-moment systems in which there are indications of positive exchange, the evidence is clouded by impurity-impurity interactions, superconductivity, or Matthiessen's-rule breakdown.¹

In this paper we wish to report the first unambiguous observation of a positive $\ln T$ variation of the resistivity which scales with the concentration of magnetic impurity in a series of alloys of Lu containing up to 1.4-at. % Gd.

The alloys were made by Rare Earth Products (UK) by arc melting sublimed grades (99.99% purity) of both metals. Resistivity samples of approximate dimensions $3 \times 0.05 \times 0.05$ cm were cut by diamond saw from the as-cast buttons, etched and then annealed for 6 h at 650 °C under a pressure of 10^{-6} Torr. Resistivity ratios $[\rho(T) - \rho(4.2)]/\rho(4.2)$ were measured to better than 1 part in $10⁵$ using an ac technique. 2 Absolute resistivities were then determined after measuring $\rho(4.2)$ with a conventional four terminal dc method, with a shape uncertainty of $\pm 1\%$. Temperature was found from ⁴He vapor pressure.

The incremental resistivity

 $\Delta \rho(T) = \rho_{\text{alloy}}(T) - \rho_{\text{Lu}}(T)$ between 1.07 and 4.2 °K is illustrated in Fig. ¹ for all the alloys. For samples with less than 1-at.% Gd, the variation of $\Delta \rho(T)$ is strictly logarithmic, i.e.,

FIG. 1. Incremental resistivity $\Delta \rho(T) = \rho_{\text{alloy}}(T) - \rho_{\text{Lu}}(T)$. as a function of $log_{10}T$ for all the alloys studied.

17 2S4

$$
\Delta \rho(T) = A + D \ln T \quad , \tag{1}
$$

where D , and hence the appropriate exchange constant J, is positive.

To ensure that the above behavior is characteristic of single Gd ions we have measured the low-field $\left\langle \leq 5 \right\rangle$ kOe) magnetic susceptibility of these same samples between 1.3 and 80 K using a vibrating-sample magnetometer. 3 The excess Gd susceptibility of all samples with less than 1 -at.% Gd obeys a Curie-Weiss law with a Curie temperature of 0.0 ± 0.5 K. This simple behavior is shown in Fig. 2 and has been used to determine the Gd concentration, using $g = 2$ and $S=\frac{7}{2}$.

In Fig. 3 we combine the magnetic and transport data, showing that the resistivity behavior¹ is indeed a single impurity effect, since A and D vary linearly with concentration.

FIG. 2. Inverse incremental susceptibility per at.% Gd plotted against the absolute temperature for the same alloys shown in Fig. 1.

FIG. 3. Resistivity coefficients A and D , determined from Fig. 1 plotted as a function of the Gd concentration X .

Quantitative analysis of $\Delta \rho(T)$ starts with the usual expression⁵ derived from taking the Coulomb and exchange scattering to third order

$$
\Delta \rho(T) = \alpha x \left\{ V^2 + J^2 S(S+1) \right.\n\times [1 + (3JZ/E_F) \ln T] \right\},
$$
\n(2)

where $\alpha = 3\pi m \Omega/2\hbar e^2 E_F$. Ω is the atomic volume, Z is the number of valence electrons per atom, V is the direct Coulomb interaction, and the remaining parameters assume their usual meaning. Using $Z = 2⁶$ a density of states at the Fermi level of 4.6 states/eV atom⁷ and the free-electron mass, the measured values of A and D yield $J = 0.057$ eV, $V = 0.56$ eV . The value of J is in excellent agreement with the values deduced by Baberschke and Nagel⁸ from EPR measurements and, furthermore, the comparatively small value of V is reassuring since one would expect Gd to act as a nearly isoelectronic impurity in Lu.

A positive value for J is exactly what we would expect for Gd. Theoretically one finds two contributions to J : a direct atomic ferromagnetic term J_a , and an antiferromagnetic admixture term controlled by some matrix element V_m . Thus we write⁹

$$
J = J_a - |V_m|^2 / \Delta E \quad , \tag{3}
$$

where ΔE is, in essence, the energy required to add or remove an electron from the magnetic ion. Now the $4f⁷$ configuration of Gd is known to be extremely stable, so that ΔE is large. Thus J_a dominates and J is positive. By contrast, the stability of $3d$ magnetic ions is much weaker, so that the admixture term may dominate, as it apparently usually does.

Finally, it should be noted that the sign of J and the smallness of V have important consequences for magnetoresistance. With positive J, a field changes the second and third-order terms [the terms in J^2 and J^3 , respectively, in Eq. (2)] in opposite directions. Thus the magnetoresistance should be much weaker than when J is negative. We have in fact measured the magnetoresistance and its magnitude is indeed under-

- On leave from Physics Dept. , Univ. of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2.
- 'S. Das and A. Gerritsen, J. Phys. Chem Solids 27, 1167 (1966); T. Sugarawa, J. Phys. Soc. Jpn, 20, 2252 {1965).

²W. B. Muir and J. Ström-Olsen, J. Phys. E 9, 163 (1976).

- ³R. W. Cochrane, M. Plischke, and J. O. Ström-Olsen, Phys. Rev. B 9, 3013 (1974).
- The samples containing 1.40-at.% Gd shows signs of interaction effects both in resistivity and susceptibility, as may be seen in Figs. 1 and 2. The resistivity $\Delta \rho(T)$ is well fitted by the expression $\Delta \rho = A + D \ln(T^2 + \Delta^2)^{1/2}$ with Δ , a measure of the interaction strength, being 0.⁸ 'K. The latter is comparable with the Curie temperature $\theta = 1 \pm 1$ °K, deduced from susceptibility.
- 5J. Kondo, Prog. Theor. Phys 32, 37 (1964); K. Yoshida, Phys. Rev. 107, 396 (1957).

standable only if we take J positive. Full details of this will appear later.

In conclusion transport and magnetic measurements in LuGd have given the first clear example of a positive Kondo effect of single impurity origin. In addition, the close agreement between these results and EPR measurements establish the first unambiguous instance of local-moment conduction-electron scattering with a positive exchange coupling.

- We assume that the two 6s electrons dominate the conductivity.
- 7 K. A. Gschneidner, Solid State Phys. 16, 275 (1964).
- $8K$. Baberschke and J. Nagel, Phys. Rev. B 13, 2793 (1976). EPR measurements give two estimates for J, which may be different since J is wave-vector (q) dependent. The g shift gives J at $q = 0$, while the linewidth gives $J(q)$ averaged over the Fermi surface. Strictly speaking it is this last which should be comparable with our J . Baberschke and Nagel in fact give almost identical values from both: 0.055 eV from g shift and 0.047 eV from linewidth.
- ⁹J. R. Schrieffer and P. A. Wolff, Phys. Rev. 194, 491 (1966); L. L. Hirst, AIP Conf. Proc. 24, 11 (1975). Equation (3) is taken from Hirst's paper since we believe that the configuration-based approach is applicable to Gd.