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The effects of external fields on the diffusion of particles in crystals is discussed. Emphasis is put on the

anisotropy of drift difFusion due to elastic strain fields in cubic crystals. The continuum equation of difFusion

is derived microscopically from lattice theory. It is shown that in an elastic strain field the anisotropy of the

saddle-point configuration leads to an anisotropic diffusion, whereas the possible anisotropy of the

equilibrium configuration is unimportant. In an homogeneous strain field the diffusion is characterized by

three independent "elasto-difFusion constants, " the measurements of which yield direct information about the

symmetry and strength of the dipole tensor of the saddle-point configuration. Possible applications to other

problems are discussed briefly.

I. INTRODUCTION

In continuum theory of particle diffusion, the
current density j is proportional to the gradient
of the particle density p

f; (R) = —Q Ds Bs~ P(R, t} .

The connecting quantity D&„ the diffusion tensor,
is diagonal in cubic crystals, i.e., D„=D,5,&,
where D, is the diffusion constant. D, usually
obeys an Arrhenius law: D, =D'exp( EgkT}-with
the migration energy F, In the presence of ex-
ternal fields, like, stress fields or electric
fields, one obtains, in addition to the above dif-
fusion current, a drift current which is set pro-
portional to the gradient of the interaction energy
E(5) of the particle in the external field, so that
for cubic crystals

j & (R, t) = D,e„,p(R—, t ) -Dpp(R, t )s„,E(R) .(2).
Here D,P =D,/kT is the mobility of the particle.

In this continuum description of diffusion three
effects have been neglected. This can be shown by
a microscopic derivation of the continuum diffus-
ion starting from lattice diffusion which will be
given in Sec. II.

(i) The symmetry of the diffusion tensor is not
only determined by the symmetry of the host lat-
tice, but can be strongly affected by the symmetry
and the elementary-jump mechanism of the defect
itself. For instance, one can have one- or two-
dimensional diffusion processes which means an
extremely strong anisotropy of the diffusion.

(ii} For drift diffusion one has to distinguish be-
tween the interaction energies in the equilibrium
configuration E,(R} and in the saddle-point config-
uration E,(ii). A Priori it is not clear in which way
these two energies enter in Eq. (2). One is in-
clined to think that one has to identify E(R) in Eq.

(2) with the interaction in the equilibrium position,
which turns out to be the case. However, in addi-
tion the diffusion constant becomes H dependent,
namely, D(R) =D, exp(-p [E,(R) —E, (R)] I. This
has drastic consequences: in the stationary state
the current ] turns out to be independent of the in-
teraction E, (R), so that for E, = 0 the current is
the same as in an unperturbed crystal, however
large E, 1 This effect has already been pointed
out previously by other authors, e.g. , golfer and
Ashkin' And Schroeder and Dettmann. '

(iii) The external field effectively lowers the
cubic symmetry of the crystal so that one expects
the diffusion tensor to become anisotropic. This
is the topic of the present paper. %e will see that
it is the anisotropy of the saddle-point configura-
tion, e.g. , in an elastic stress field the anisotropy
of its dipole tensor, which determines the sym-
metry of the diffusion tensor. The simplest case
is the diffusion in a homogeneously deformed cub-
ic crystal with strain field e», where, as has
been pointed out by Flynn, ' one obtains an addition-
al contribution proportional to e» to the diffusion
tensor of a cubic defect

D;,. =D05;; + d&, a&&a& ~

As will be discussed in Sec. III, the symmetry of
the "elastodiffusion tensor" d;~» is determined by
the symmetry of the saddle-point configuration,
so that a measurement of the elastodiffusion con-
stants allows the determination of the symmetry
and strength of the dipole tensor of the saddle-
point configuration.

The importance of the anisotropy of the saddle
point has first been pointed out by Koehler. '
Kronmiiller, Frank, and Hornung' have also dis-
cussed the effects due to the saddle-point inter-
action. However, they obtain an isotropic-dif-
fusion tensor which may be regarded as a first
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approximation to the anisotropic one. The importance
of the anisotropic diffusion for various experiments
will be discussed in Sec.V. Independently, savino'
has recently also given a derivation of diffusion an-
isotropy. Ingle and Crocker' have studied the
anisotropic diffusion of vacancies in bcc by com-
puter simulation.

II. DERIVATION OF CONTINUUM THEORY OF DIFFUSION
FROM LATI'ICE THEORY

First we treat defects with cubic symmetry only;
a generalization to defects with lower symmetry
is given in Sec. III. As an example, we consider
a hydrogen atom on octahedral sites in an fcc
metal. Figure 1(a)shows the hostatoms in a (100)
plane. The hydrogen atom may occupy one of the
octahedral positions (marked by the small dots}.
If the particle density at site n is p, (t), then the
particle current from n to rn is given by'

(~, fl) (11)j—(t)=ve os - - e ' ' p-(t)

= ~-;p-, (t).

Here v is an attempt frequency assumed to be the
same for all sites. The energies are counted
from the equilibrium energy in the ideal lattice
which is set equal to zero. F., is the saddle-point
energy in the ideal lattice. The potential energy

0 ~ 0 ~ 0 ~ 0

in the saddle point (mn) which connects the equil-
ibrium positions n and mdeviates from this ideal
value by E, '", and the energies in the equilibri-
um positions n and m are Z," and E, , respective-
ly [see Fig. 1(b)]. The change of the density at
site m is then

p - (t) =Q [~ —.p-„(t) —~-„- p
-(t)] +p- (t), (4)

where the first term represents the increase of
p-(t) due to particles jumping from a neighboring
site to m, the second term the decrease due to
particles jumping away from m, and the last term
the increase due to particle production P-(t) at m.

In thermal equilibrium [P-(t) =0=p~(t)] the par-
ticle density is given by (P -p-(t) =1)

exp (-PZ', ')
exp(-pz', ' )

m'

as can be verified by inserting into Eq. (4}. Thus
the equilibrium density is independent of the inter-
action E, in the saddle point (however, the time
needed to obtain thermal equilibrium depends
strongly on E,!). A more general formula for the
transition probability A. -„ is due to Vineyard. '
For its validity see the discussion in the book of
Flynn. '

3N
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FIG. 1. (a) Octahedral sites (o) in a (100) plane of
an fcc host lattice (large circles). The arrow indicates a
jump path of a hydrogen atom with a saddle point (X). (b)
Sketch of the energy profile for a defect (e) in a dis-
torted crystal. &8(m) is the energy in the equilibrium

site m' Ep+ p &
'~ the energy in the saddle point (m, n)

between the equilibrium sites ih and n.

Here v;", i=1, . . . , 3N, are the eigenfrequencies
of the whole crystal if the defect is localized at
the position n, whereas v,. ", j= 1, . . . , 3%-1
are the eigenfrequencies of the crystal if the de-
fect is at the saddle point (m, n). Since this con-
figuration is unstable, the (imaginary} frequency
v 3„' corresponding to the decay of this configu-
ration has to be left out in the product over j. In
the following we will always assume the more
simple form of Eq. (3}for X-, . However, all
subsequent equations can easily be modified for
the more general expression (6). For instance,
the equilibrium density is instead of Eq. (5) given
by

3N

P vii 'exp(-Pz' ')
5=1

Z tl, v, 'exp(-PE' '}
m'

In most cases the exponential dependence on the
energy E, is much more important than the fre-
quency factors, so that Eq. (3) represents a sat-
is factory approximation.
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For a time-independent yroduction the system
achieves a stationary state for which

By introducing a renormalized density 8'I
= p- exp(Pd, «), which according to Eq. (5}des-
cribes the deviation from the thermal distribution;
this equation can also be written in the form

Q A. -„(W„--W-)+P-=0;

A~—„=A,„m =ve px[-P(E 0E+I,'~~}], (9)

where X, depend only on the saddle point, but not
on the equilibrium interaction. Thus for given
production P- and given interaction d, '" these
equations determine the renormalized density W-
uniquely, which is consequently independent of the
interactions F., at the equilibrium positionst
Further also the microscopic currentsj, =A. —,p-„=k—„W-„; W; = p-„exp(PE,' ) (10)

are independent of E, and so is any macroscopic
current which is a sum of microscopic j—,. Note,
however, that the densities do depend on the equil-
ibrium interaction, since p-=exp(-PE, ) W .

The above result can be made plausible by look-
ing at Fig. 1(b). In thermal equilibrium the dis-
tribution of particles within a single valley is
governed by the barometric-pressure formula.
Applying a harmonic expansion around the valley
minimum one obtains just the result Eq. (I) for
the total density within valley m. However the
current across the saddle j—„does not depend on
the density at the bottom of the valley, but is de-
termined by the density at the saddle itself which
depends criticaQy on the energy of the saddle
point, i.e., on F~, '" . Thus the above result, Eq.
(10), for the current in the stationary state is not
unplausible.

Equation (9) for the stationary state can also be
derived from a variational principle. The under-
lying "Lagrangian" is the lattice equivalent of the
one used by Schroeder and Dettmann~ for con-
tinuum diff usion

a slowly varying elastic strain field e„(R), e.g. ,
a homogeneous deformation or the longranging
strain field of a dislocation. In this case the in-
teractions can be described by the dipole tensors
for the equilibrium P'and saddle-point configura-
tions P'

E(m) g Ps (Rrn).
4$

E' "' = — P* (mn)e„(R™n).
ij

(12)

Instead of summing in Eq. (11) over m and n, we
may first sum over the difference Ti=n —m, i.e.,
over all z neighbors of m and then perform the
sum over m by transforming it to an integral over

pp% 0 p(i% R)
p

Since in this section we will only consider cubic
defects, P' is isotropic (P f, =P'O8,&). C.ontrarily,
the saddle-point dipole tensor is anisotropic and
moreover depends on the direction of the ele-
mentary jump(see Fig. 2). For ajumpfromntom or
vice versa, the defect exerts strong forces (dash-
ed arrows in Fig. 2) on the neighboring atoms, so
that the dipole tensor has a large component in the
direction of the nearest neighbors and two smaller
ones for the perpendicular directions. One can
see that the dipole tensor P'(mn) for the jump
m —n' (full lines in Fig. 2) can be obtained from
P'(m, )nby a rotation by 90'.

The transition to continuum diffusion is most
conveniently performed by using the Lagrangian
I, [W-]. If W- =W(R ) is slowly varying, we ex-
pand 8, in a Taylor series

W„=W(R ) +g(R;-R;"')s„mW(R )+ ~ ~ ~ .

The extremal condition 5I.=0 yields directly Eq.
(9), and the stationary value L, of I [W-] is

— 1I o
= -2 Q PmWm ~

Let us now specify the external field and assume

FIG. 2. Dipole tensor P in the saddle point {X)be-
tween two octahedral sites (o) in an fcc crystal. At the
saddle point between sites ih and iK the defect exerts
strong forces (dashed arrows) on the neighboring host
atoms garge circles), thus the dipole tensor P~ has a
large component in this direction. For a jump between
m and 5' the dipole tensor is rotated by 90'.
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R =R. The result is

d3+
L[W}= ( EDe (R}eRW(R)e . R(R}

ff

- P(R)W(R)) (13}

Eo

E=O
(0)

D;, (R) =- Q k'-„R, Rte*p I)pe, , (R)P', (P))2K" k' l

D, p Q r,"r", eep Pge„(R}P;,(}()1
1=AN k'1

(14)

Eo

E=O

(b)
for cubic crystals.

Here X'$}=s(f}vexp( PED)-is the jump rate in the
ideal crystal. r" are unit vectors for the different
jump directions. In deriving Eq. (14) we have re-
placed e»(R~ ' )by e(R ). However, the orienta-
tion dependence of P' (m, n) =P'(K) has been taken
into account exactly. (Note that P'$) has an es-
sential singularity at fi =0, if P;, is anisotropic. )
This means that the saddle-point energy depends
explicitly on the direction of the jump: Ef~(R)
=+, e» (R}P'„(E). Due to this angular depend-
ence, the interaction energy E& ' cannot be ex-
panded in a Taylor series around the point m,
since E, has an essential singularity at this point.
For cubic crystals, this gives direct rise to the
anisotropy of D„(R}according to Eq. (14). Note
that KronmGller et al. ' obtain an isotropic dif-
fusion tensor by assuming a Taylor series for E,
to be valid.

From Eq. (13) we obtain the differential equation
for the renormalized density W(R) =p(R}
exp[PE, (R)].

Q (}s [D s (R)es W(R)] +P(R) = 0.
i f

Together with the appropriate boundary condition,
e.g. , W(R) =0 for R-, this equation determines
W(R} uniquely. As in the lattice ease, W(R} is in-
dependent of the interaction in the equilibrium
configuration and so is the current

j;(R)=-QD, , (R)es W(R} .
j

This is illustrated in Fig. 3. In a crystal with an
arbitrary variation of the potential energy in the
equilibrium positions [Fig. 3(b}] we have the same
stationary current as in the ideal crystal
[Fig. 3(a)].

Exceptions from this rule can only occur, if
E, (%) enters via the boundary condition: if, e.g. ,
the density p(R) = p(R, ) is given at the boundary S,
then we obtain due to W(R, ) = p(R, ) exp[pED (R, )J a

FIG. 3. Energy profiles: (a) ideal lattice; (b) varia-
tion of the equilibrium-site energies, saddle-point en-
ergies are not changed. For stationary conditions more
defects will occupy the deeper valleys, but the jump
rate across each saddle point is the same.

dependence of W and j upon the interaction E,(R, )
at the boundary. However in many cases E, (R)
can be assumed to vanish at the boundary, so that
W(R, ) =p(R, ). Then Wand I a.re again independent
of E,.

Finally we can also reintroduce the density p(R)
in Eq. (16}and by differentiation separate j into
a diffusion current and a drift current.

A =i ~(' +i ~""=Q Di; (R}es,. P(R}

with

—g D„(R)Pp(R)S„,E.(R)
f

D;, (R) =D;, (R) exp[PE, (R}] (17)

=DDg Q r,"r,"exp( p[E," (R—) —E,(R)]].
h=NN

By comparison with the phenomenological Eq. (2)
we see two effects due to the lattice structure
which are mentioned in the introduction: the two
different interactions E„E, and the anisotropy of

Dij W

III. DIFFUSION OF NONCUBIC DEFECTS

So far we assumed cubic symmetry for the defect
in its equilibrium configurations. However many
defects have lower symmetry than the host lattice.
Examples are the tetrahedral and the octahedral
interstitial in bcc, where the interstitial site it-
self has tetragonal symmetry (D,R and D,„, re-
spectively). Figure 4 shows the octahedral sites
in the bcc lattice. There are three nonequivalent
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xfj

+'xf'z

FIG. 4. Octahedral sites (o) in a bcc host lattice
charge circles). The host-atom octahedron is not per-
fect, thus one can distinguish three different site sym-
metries labelled x, y, z indicating the direction of the
closest neighbors.

sites with preferred orientations in x, y, or z di-
rection. Sites with the same orientation form a
bcc lattice, the total interstitial lattice is a non-
primitive bcc lattice with three nonequivalent
sites.

By denoting the Bravais lattice by vectors M, 8,
and the s nonequivalent sites within the unit cells by
a =1, . . . , s, the equa. tions of motion read

where ~„& is the transition rate from position
(NP} to (Ma).

Another example for noncubic defects are self-
interstitials in the form of dumbbells, e.g. , the

~II

(b)

FIG. 5. (a) (100) dumbbell interstitial in a fcc cry-
stal. (b) (110) dumbbell interstitial in a bcc crystal.

(100) dumbbell in fcc with tetragonal symmetry
(D„}as shown in Fig. 5(a) and the (110) dumbbell
in fcc with orthorhombic symmetry (D» } in Fig.
5(b). In such cases we can have different orienta-
tions p. on a given site m, e.g. , the x, y, or z
orientation of the (100) dumbbell or six different
(110) orientations for the (110) dumbbell. Thus
for ehch position m we have to introduce partial
densities p „(f}for the different orientations g,
leading to equations of motion similar to Eq. (18)

p „(t)=Q [&„;p,"(&)—~",„p„(&)1+0g(~) ~ (19)

Due to the new orientational degrees of freedom,
many new effects can occur. For instance, we
can obtain a one- or two-dimensional diffusion
process. An example for a linear diffusion is the
(110)dumbbell in fcc metals which is supposed to
move always along a preferred (110) chain, so
that the orientation is not changed during a jump.
Thus the different orientations do not couple and
for each orientation e one can derive a diffusion
constant of the form

Djj Dlj~j ej& (20)

with e of (110) type, meaning that we have a con-
stant Djj for diffusion along e, but a constant D = 0
for diffusion perpendicular to e.

An example for a two-dimensional diffusion pro-
cess is the motion of the di-interstitial in fcc. In
Al the stable di-interstitial consists of two
parallel (100) dumbbells on nearest-neighbor sites
[Fig. 6(a)].' The elementary jump of this defect
consists of two steps. "" First one dumbbell
jumps to a nearest-neighbor site forming the
metastable configuration of Fig. 6(b). From there
the dumbbell can proceed to thy stable di-inter-
stitial configuration shown in Fig. 6(c). By this
elementary jump the dumbbell centers are al-
ways restricted to the plane perpendicular to the
dumbbell axis.

In most cases, however, one has three-dimen-
sional diffusion. This will be always the case if
starting with a given orientation, all others are
finally populated with equal probability so that no
direction is preferred. An example is the (100)
dumbbell in fcc. During the elementary jump one
dumbbell atom moves to a nearest neighbor thus
forming a new dumbbell on a nearest-neighbor site
with the orientation changed by 90'. Figures 7(a}-
7(d) illustrate which configurations can transform
into each other in this way. For instance, starting with
z orientation in the lower right-hand front corner
[Fig. 7(a)]we obtain the @ory orientation by jumps to
the nearest-neighbor sites. Proceeding this way it
ca~be shown that the orientation is always the same
for positions belonging to the same simple cubic (sc)
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FIG. 6. Diffusion jump
of a di-interstitial in fcc
crystals (a) equilibrium
configuration: two parallel
(001) dumbel. ls on nearest-
neighbor sites. (b) metas-
table configuration: the
dumbbell in the front cor-
ner has performed a reg-
ular jump to the nearest-
neighbor position on the
right-hand face of the cube.
(c) equilibrium configura-
tion: after-a second jump
of the same dumbbell the
di-interstitial is in an
equilibrium configuration,
its center of gravity dis-
placed by half a lattice con-
stant.

sublattice. However, when we start with thex orien-
tation on the lower right-hand front corner [Fig.
7(b)], we obtain a quite different set of configura-
tions. In this way all configurations can be classi-
fied as belonging to one of the four "migration
channels" shown in Figs. 7(a)-7(d). These chan-
nels are completely separated and do not mix, as
long as the (100) dumbbell does not rotate on its
site. According to computer simulations" and
relaxation measurements in "Al and '~Ni this does
not occur at low temperatures.

In bcc, the (110) dumbbell has a very similar
migration process: a jump to a neighboring atom
with a change of orientation by 60'. In this way we
obtain 12 different migration channels. Here how-
ever the reorientation on site seems to be much
easier, so that channel changes couM be very
frequent. Below we will see, however, that this
does not influence the diffusion constant.

Let us first discuss the lattice and the continuum
diffusion for an ideal lattice (with orientational
degrees of freedom). Equation (19) can be written
in the form

= —Q A' „„p„'(t)~P„(t),
(21)

with the ideal jump-frequency matrix

~0 Nm go nm yo mn+ 0mn yo nm' gio (mm) (22)gv vg trav Jkv gv'' tt V
n'tt'

Note that for the ideal crystal the transition prob-
ability A,

~ is symmetrical in the pairs mp, and nv:
1.'~=X"„@=)P,(m~'. For the solution of Eq. (21) we
expand into eigenfunctions of l'1' „'„which have the
form

N 't'a„(q)e"'" (N= number of sites). (23)

(c)
For the amplitudes a (q) of the s nonequivalent or-
ientations we obtain a system of s-coupled equa-
tions

A'„„qa„q =0 q „q;
v-"j.

~0 ( ) g t(omn lq(Rm-Rsj
gv q = ~ I v

mn

(24)

(b)

FIG. 7. Four channels for the diffusion of the (100)
dumbbell in fcc crystals. The channels are labelled
according to the occupation of the lower left-hand front
corner of the cube (a) z channel, (b) x channel, (c) y
channel, (d) 0 channel.

which have s orthogonal solutions a„"', i =1,. . .,s.
The s eigenvalues Q((q) are reciprocal decay con-
stants: the eigensolution (q, i) decays as exp[-A, (q)t].
%e have always one "acoustical" solutioncharae-
terized by Q,(q)-0 for q -0 and (s —1) "op-
tical" ones, with finite relaxation times for q -0,
i.e. , A((@=0) finite. For q-0 the acoustical mode
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is determined by the thermal equilibrium a(() (0)
=s ' ' since all orientations are equivalent.

Contrary, the optical modes represent for q -0
nonequilibrium distributions of the different orien-
tations in the unit cell. For continuum diffusion
only the long-time behavior is important which is
determined by the acoustical mode alone.

For small q, Q, (q) can then be calculated by per-
turbation theory

l+
//

z -site x-site y-site

FIG. 8. Structure of the effective jump-frequency
matrix for an octahedral interstitial in a bcc crystal:
the full star is obtained by adding the planar jump-
frequency matrices for the z, x, and y site.

Q, (q} =—ga(()(0)A0 „(q)a(&)(0)= —g A'„„(q) .1

gV ll V

By comparision with the continuum result

Ii)(q) = QD(((f((i( ~

fg

the diffusion tensor D, &
follows as

D = —gR Rn —g A'( "&
~ s,„

R"Rh —gA (")
2 - ' ~ s y. V

Pl gV

With Eq. (22) this can be written as

D Q RhRh Q)(0 (h)
Q 2 ~ f P g PV

h gV

(28)

(26)

(27a)

(27b)

The meaning of this effective-jump matrix is il-
lustrated for the octahedral interstitial in Fig. 8.
Whereas for the x, y, and z site we have only pla-
nar-jump matrices, the jump directions of which
(full lines in Fig. 8) are perpendicular to the pre
ferred axis (dashed line), by averaging over the
different sites we obtain a jump matrix A,«with
cubic symmetry.

To derive the analogous expressions for D(((R) in
a slightly distorted crystal, we start as in Sec. II
with the Lagrangian for the stationary state, since
the gradient expansion is most easily done in this
form

I [Wm] g )(mn(Wn Wm)n +pm Wm (30)

Thus only the orientational average of A'„'"„' enters
into the diffusion constant. This is a direct conse-
quence of the equal distribution of all orientations
in thermal equilibrium. The resulting effective-
jump frequency A','"„' = (1/s)Q, „A0 (h' has therefore
the same structure as the jump matrix without or-
ientational degrees of freedom. Furthermore, one
can see from Eq. (27) that on-site rotations cor-
responding to matrix elements A „'"„= ' do not inQu-
ence D,&

at all.
A similar expression can be derived for cases

like the octahedral interstitial in bcc where each
interstitial site is connected with a definite sym-
metry. In this case we have to use the nonprim-
itive description of Eq. (18). Quite analogous to the
above arguments we obtain for the diffusion constant

(28)

Similar to Eq. (27) we can also in this case intro-
duce an effective-jump matrix A','«with the sym-
metry of the host lattice so that

D(, = ——Q R", Rh A','h„',
h

with

Wm=pmexp(SE m) ~

) ..=)(::=v em'-(3(E. +E, („„'))].
(31)

d'R
&[W(..] = —

2 QD„(R)s„W„,(R)as W„,(R)

n

Here E, + E, (,„) is the energy in the saddle point
between the equilibrium configurations (mp) and
(n)r). In the continuum limit we will have a local
thermal equilibrium between different orientations
on a given site or in a given unit cell. Actually,
such a local equilibrium will already be reached
after a few jumps, long before any long-range mi-
gration process has taken place, as has been
pointed out already by Kronmul. ler et al. ' Thus we
have

p, =exp(-gE, „)W, =—exp(-9E, „)W(R ), (31')

i.e. , the renormalized partial density W =—W(H )
does not depend on the orientation and is slowly
varying. Then we obtain from Eq. (30) for the total
renormalized density in the unit cell W„,(R)
=Q„W(H„) =s W(Rm)

A0 (h) — g AO (M I)()s
0(8

(29) -P„((R)W„,((R)

with the 8-dependent diffusion constant

(32)



ANISOTROPIC DIFFUSION IN STRESS FIELDS

the form

IIIRK &((g& (H~)efi
h

A similar result can be obtained for the tetrahedral
or octahedral interstitial in bcc [compare Eq.
(29)]. Then &((~«' has the "star structure" of A', «
shown in Fig. 8.

As in Sec. II, the tensor D &((8) depends only on
the saddle-point properties, in particular on the
interaction E, („). In the presence of an external
strain field z»(H) we obtain

D„(H) = —g H'(H&] —P &('('„&

h - IIV

x exp Sg e„(R)P;,('„„}

(34}

where X'„'"„' is the jump matrix for the ideal crystal
and P' ("„„)is the dipole tensor for the jump direc-
tion h. This formula simplifies further, if the di-
pole tensor P' (~„) is independent of p and &), i.e. ,
the same for all jumps with 6= m —n irrespective
of the orientations. This is, for instance, the case
for the saddle-point dipole tensor of the (100)
dumbbell which has orthorhombic symmetry" and
also for the saddle-point dipole tensor of the oc-
tahedral and tetrahedral interstitials in bcc. Un-
der these conditions we obtain

Q S„(D(q(R)(&„[p„((R)exp[PE;"(R)]))+P„,(R).R] gg R. tot

By comparison with Eq. (15), we see that the ef-
fective interaction E;((, defined by Eq. (36), re-
places the usual interaction in the equilibrium con-
figuration for cubic defects. The diffusion tensor
is given by

D (R) g Ith Ith &(0 (h& exp[ P[E (h&(H) @o(r(R)))
h

(38)

IV. DIFFUSION IN A HOMOGENEQUSLY DEFORMED
CRYSTAL

Under normal conditions the external strain & is
small, typically 10 ', so that we can expand D(z
linearly in E

D]~=D]~+ ~ d]~~gE»', D]~=D06]~0 ~ 0

»
(40}

The simplest deformation state is a homogeneous
strain &». Since then all interactions are constant
throughout the crystal, D,&

is independent of R.
For the density p(R) we have the usual diffusion eq-
uation

for cubic crystals.
The "elastodiffusion" tensor d, », describes the

influence of the homogeneous strain on the dif-
fusion. It has the symmetries

yo &h) yo (h)
gV

WV ~tv» = ~y~» = "~piny (41)

i.e. , the same result as for defects without pre-
ferred orientation [Eq. (14)]. Thus we see that
then the anisotropy of the equilibrium configuration
is quite unimportant and in a cubic crystal does
not lead to anisotropic diffusion. This can only be
due to the anisotropy of the dipole tensor I for the
saddle-point configuration.

Finally we would like to write the equations of
motions in terms of the total density

p„,(R ) Q p„= —Q W„,(R ) exp(-PE, „)S

and, for cubic crystals, in addition the symmetry
against change of the pairs ij and kl. Thus, d, »,
has the same symmetry as the elasticity tensor
C,», and therefore in cubic crystals three inde-
pendent constants d», d», and d«(in Voigt's no-
tation) corresponding to the elastic constants cyy,

C~2y and C44.
Most conveniently, d,», can be written with the

help of six orthonormalized basis tensors b'"),
w'hich form the space of all symmetrical sx 3 ma-
trices" (like e» and D(z)

=W...(R ) exp[-PE;"(R )] (36)

Here we have used Eq. (31'}. The differential equa-
tions for W„,(R} or p„((R), respectively, then take with

y(X)y O, )y 0, )
fg» ' fg»
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g b&k&b&x')

y (1) 1

M3

100 100
010 . y(2)

M2

d&&) (b&1) db&1)) D P Tr(Ps Pe)

d&2) L(b&a) db&2&) ' (b&3) db&3))

= ~ Dop[(y, —r 2)(p;& —p~~)

001 000 +(~,'—~,')(P;, -P;,)]
100

5(3) 0101

M6
002

010'
1 o o; (42)1

v2
000

d&4) (b&li) d bn))
3

"ooi
000(5)

W2
100

000
OO1(6)

vY
010

d"'= d"'= d"'= 2d-.

The physical meaning of the b(~) is that they are
eigenstates to any fourth-rank tensor of cubic
symmetry like d,», or C,-z» with eigenvalues d'~'

or c"'. b"' describes a homogeneous deformation
which couples to the constant d"'= d»+ 2d„or to
the compression modulus c"'=c»+ 2e„, respec-
tively. b"' and b"' are [110]shear deformations
giving rise to the constant d&2'=d„-d„(c&2'=c»
—c»), whereas for the [100]shear deformations
b"', b"', and b"' the constant d"'=2d«(c"'=2c«}
enters.

By expanding the diffusion tensor D&& of Eq. (38)
with E;"from Eq. (36) linear in the strain a», we
obtain

', D,p Tr(P'--p) Tre= -pp(AV' —bV'), (46)

where p is the corresponding pressure and bV'
—4V' is the activation volume for diffusion TrP
=(c»+2c»)nV. This result is well known. '"

By measuring all three constants d"', d"', and
d' ', one can get very useful information about the
symmetry of the saddle-point configuration. For
the most important symmetries, P' has the fol-
lowing form

In this form r =r and P'=P'(h) refer to an arbi-
trary jump direction h. One does not have to aver-
age over all cubic equivalent directions, since the
expressions are already invariant against cubic-
symmetry operations.

Note that only the elastodiffusion constant d"',
coupling to a uniform compression, depends on the
dipole tensor P' of the equilibrium configuration,
and only on its trace. This is a consequence of
averaging over all equivalent ori.entations. Since
a compression does not break the cubic symmetry,
the change ~ of the diffusions constant D is given
by

&f„a, = —M R', R",X' 'h'[Pa, (h} —Poba&l
h P„O 0 P„O 0

with

Po= -,' TrP'. (43}

Here P',
&

is the dipole tensor in the equilibrium
configuration, which is isotropic for cubic defects
(P f& P;6,.&). For non-cubic defects we have, ac-
cording to Eq. (36), to average over all equivalent
orientations, so that only the invariant P;= 3 TrP'
enters. Thus the anisotropy of the noncubic defect
does not influence d, ~».

For a nearest-neighbor jump matrix X' '", we
can extract the "ideal" diffusion constant D, from
Eq. (43), so

d&», -- 3DQ(r&&h' r&h'[Pf, (h) —P~ob»]), (44)

where ( ) means an average over all jump direc-
tions R". ith this formula the constants d ', d
and d"' can be easily calculated. The results are

0 P„O
0 0P1,

0 P„O
0 0 P22

P11 12 12

P12 P1, P,2

P12 P12 P11

P11 P12 0

P12 11

0 0P3,
(4V)

for cubic, tetragonal, trigonal, and orthorhombic
symmetry, respectively.

Now, depending on the geometries, the constants
d'"' are proportional to the combinations of P,~

elements listed in Table I. Thus. as long as one
restricts oneself to these relatively high symme-
tries, a measurement of d"', d"', and d"' allows
a complete determination of the symmetry and
strength of P'. the vanishing constant determines
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TABLE-I. Elastodiffusion constants for different saddle-point symmetries.

Symmetry ~

d(2)

d (4)

Cubic

Pii -Po

Tetragonal

1
3 +fi 2P22~ ~0

Pi 1 P22
S

Trigonal

Pii-Po

Pi

Orthorhombic

3 {2Ri+ P33~ Po

Pii -P33

Pi2

Note that the R~ are jurnp vectors, i.e., differences between neighboring equilibrium
positions. Therefore they are not necessarily connected with the symmetry of the saddle
point, even if in most cases zR~ is the distance to the saddle point.

the symmetry, the other ones determine the non-
zero elements of the dipole tensor P', provided
that P' or 4V', the volume change for the equil-
ibrium position, is known. However, this state-
ment is no longer valid, if the saddle-point sym-
metry is lower or if P'(h„) depends explicitly on
the orientations of the defect, as discussed in Sec.
III. The whole scheme is quite analogous to the one
derived by Trinkaus" and Nowick et a/. "for the
dipole tensor of the equilibrium configuration:
elastodiffusion gives the equivalent information
about the dipole tensor of the saddle point as Huang
scattering" or mechanical relaxation" give for the
dipole tensor of the equilibrium position.

V. DISCUSSION AND POSSIBLE APPLICATIONS

We have shown in the preceding sections that
external (homogeneous) fields can induce an anis-
otropy of the diffusion of defects. In anisotropic
fields the different jump directions become in-
equivalent even for cubic defects like vacancies
or octahedral interstitials in fcc crystals. This
is due to the anisotropy of the saddle-point con-
figuration.

For external elastic fields, the double force ten-
sor P' of the defect in the saddle-point configura-
tion determines the potential energy of the defect
in the external field and thus also the anisotropy
of the diffusion tensor. As shown in Sec. IV, the
elements P',

~ of the double-force tensor can in
principle be determined by measuring in a single
crystal the change of the diffusion constant ~
induced by applying uniaxial stresses in different
crystallographic directions. From Eq. (46) one
can easily estimate the expected relative change
of D. Using an external strain &

=—10 4 and a value
of p'=—10 eV, which are both rather high values,
one obtains at room temperature a value of hD/
D, —= 4X10 ', i.e., D changes at most by a few
percent. Unfortunately this is just about the ac-
curacy of measuring diffusion constants, and a
direct determination is very difficult. But this
diffusion anisotropy can play a role in the reaction
of defects due to much larger internal strains
caused by other defects.

A. Defect reactions

Defect reactions are usually described in terms
of rate equations with rate constants K (for a re-
view on the work of irradiation produced defects
see Hef. 20). The rate constants depend on the
diffusivities of the reactants and the range of the
interaction. Let us assume one reactant to be
immobile (e.g. , dislocation loops) and the other
one (e.g. , vacancies or interstitials) to be mobile
withdiffusion constantD. A reaction is assumed to
take place if the distance between the reactants is
less than R„ the radius of the reaction volume.
Outside of this reaction volume one has to take
into account the long- range interaction between
the defects, e.g., in metals the elastic-dipole in-
teraction" is the most important one. For low-
defect concentration the reaction constant K is
then given by the total flux of mobile defects into
the reaction volume if the density is maintained
at unit concentration at infinity. ' To calculate the
density distribution and from this the total flux
one has to use Eqs. (15) or (37) which include the
change of the potential energy of the equilibrium
and saddle-point configurations due to the inter-
action. This introduces a space-dependent dif-
fusion constant which for the case of point; defect
absorption has previously been discussed (see e.g. ,
Hefs. 2 and 22). For angular-dependent interac-
tions these equations cannot be solved analytically
but it turns out that a spherically symmetric ansatz
for the renormalized density

W(R) =p„t(R) exp[PE's(R)] —= no(R) (48)

yields good results' for the rate constant K. If
this ansatz is used in the Lagrangian, Eq. (32),
one obtains a radial equation for n, (R)

—28„R D,«(R)ea no(R)+p(R) = 0. (49)

dQ
D,ft(R)= 4 Qr, D)~(H)r~.

4m
(50)

Here D,«(H) is the angular average of the space-
dependent diffusion tensor D,~(H) given in Eqs. (14)
or (84)
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teraction with dislocations of type 1, and hence
in a preferred growth of the corresponding lattice
planes. Savino' recently suggested that the non-
equivalence of the jump directions in external
fields due to the anisotropy of the saddle-point
configurations could add to the difference in arri-
val rates T. he exponential dependence of D(R)
[Eq. (14)]on e(R) which is the sum of the external
strain c,„, and the dislocation strain e«, leads to
an interference term -a„,c«, due to first-order
interaction. Whereas for a configuration with

cubic symmetry this leads only to isotropic swell-
ing, the anisotropy of the saddle-point configura-
tion leads to different arrival rates. This has mo-
tivated the present paper.

FIG. 9. Dislocations in an external stress {-). {1)
extra plane perpendicular to the stress axis terminating

in type-1 dislocation; {2) extra plane parallel to the
stress axis terminating in type-2 dislocation.

Equation (49) has to be solved with the boundary
conditions p(R) =0; no(R -~) = 1; no(R-Ro) =0;
the reaction constant E is then given by the total
flux through the surface of the reaction volume

ff = 4wR20 D, ~(fR)so„na(R)
~ ~ . (51)

As one can see, the interaction enters only via
D„,(R), and thus K, depends only on the interac-
tion in the saddle-point configuration. Due to the
influence of the interaction E becomes tempera-
ture dependent2 and for an interaction with attrac-
tive directions (like the elastic-dipole interaction
in metals} the range which determines the reaction
constant is approximately given by the distance
at which the potential energy gained by the ap-
proaching defect in the saddle-point configuration
is equal to the thermal energy kT. The anisotropy
of the diffusion does not enter explicitly, of course
it determines the value of D~, (R)

A case where the anisotropy of the diffusion in-
duced by an external stress can enter explicitly is
in aration creep. During irradiation under ex-
ternal stress, extra planes perpendicular to the
stress axis terminating in type-1 dislocations (see
Fig. 9}grow faster than parallel planes terminating
in type-2 dislocations. An explanation for this
effect, the so-called stress-induced preferred
absorption (81PA) mechanism, has been suggested
by Heald and Speight" and worked out by several
authors. '3~' In this model the strong elastic polar-
izability of interstitials by external shears leads
to a relatively large and induced change LP,&(c)
of the dipole tensor, resulting in a stronger in-

8. Diffusion in homogeneous force fields

Finally we would like to discuss the implication
of our results for the measurement of diffusion
constants in homogeneous force fields like Qorski
effect and el.ectromigration.

Gorse effect" is the mechanical relaxation due
to the redistribution over macroscopic distances
of highly mobile defects (e.g. , hydrogen atoms
dissolved in bcc metals) under the influence of an
inhomogeneous stress. The stress dependence of
the diffusion coefficient causes a difference of the
relaxation times to reach equilibrium measured
when applying and releasing the load, respectively.
When a crystal is bent, a dilatational field is pro-
duced which depends linearly on the distance
across the sample. Due to the interaction with
this- strain field, the dissolved hydrogen atoms
diffuse to the expanded part of the sample. This
causes additional anelastic strain whose time de-
velopment is measured. Since the hydrogen atoms
are diffusing under the influence of an external
strain, the time for reaching the new (inhomogen-
eous) equilibrium distribution is determined by
the strain-dependent diffusion tensor given in Eq.
(38} if one neglects the small difference between
the strain field in a saddle point and a neighboring
equilibrium site. For crystals with inversion sym-
metry, the neglected term contributes to the
change of the diffusion constant only to second
order in the external strain. Thus in principle
all stress and anisotropy effects discussed in
Sec. IV for homogeneous stresses should show

up in the relaxation time. On the other hand,
when the load is released the hydrogen atoms relax
to the homogeneous equilibrium distribution. This
time they only feel the anelastic strain caused by
the inhomogeneous defect distribution, which in
general is small (except close to phase transi-
tions). The relaxation time in this case is es-
sentially determined by the ideal diffusion con-
stant Do. Thus, in principle, one can determine
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K„„„(x)=q+(x) F . (52)

q* must have lattice symmetry, and thus is an
oscillating function of x. As has been argued be-
fare ' q~ should have a maximum in the saddle-
point configuration. The tensor symmetry of q*
is determined by the symmetry of the configura-
tions. In the following we shall restrict to simple
defects, like vacancies or hydrogen atoms on
octahedral sites in fcc crystals. Then the saddle
point is half way between two neighboring equil-
ibrium sites, and along the jump path one can find
a common eigenvector representation of the tensor
q*(x) with one eigenvector in the jump direction.
For a vacancy jump in fcc crystals, e.g. , the sym-
metry is (110) orthorhombic.

To obtain the change of the potential energy due
to the electric field one has to integrate the force
along the jump path

z( )-z(x,)= f (d ', q'(x')F).
"0

(53)

The jump rates, Eq. (6), and the diffusion tensor,
Eq. (17), only contain energy differences between
equilibrium sites and saddle points. If x and x
are both equilibrium sites we can decompose the
integral in Eq. (53) into path integrals along in-
dividual jump paths characterized by jump

the elastodiffusion tensor d,~~„Eq. (40), by mak-
ing Gorski effect measurements in differently
oriented single crystals, and, in particular, by
measuriag the difference of the relaxation times
between loading and unloading in each case. How-
ever, since the estimated change of D is only a
few perceot, it is clear that in practice this dif-
ference is hard to determine. In addition, other
effects like irreversible motion of dislocations
contribute to the mechanical relaxation when the
stress is applied and make an experimental deter-
mination of the stress dependence of the diffusion
coefficient by Gorski effect even more improbable.

E/eetrornigration' "can be discussed in close
analogy to Gorski effect. Here an external electri-
cal field F couples to the effective charge q~ of a
defect. Two terms can contribute to q*: the elec-
trostatic charge and a term arising from the "elec-
tron wind force, " i.e., from the momentum trans-
fer of the accelerated electrons. The total force
on the defect and thus the effective charge can be
calculated by linear-response theory. 2' In general,
the effective charge q* is a tensor quantity. It
depends on the configuration of the defect because
of the variation of the scattering power for elec-
trons with the change of configuration. For a dif-
fusing defect this means that during a jump the
electrical force can change in magnitude and
direction

(f+ (x) = Qe',.Q'(x)e,'.
a

(56)

Because one of the eigenvectors is parallel to
R", only the longitudinal eigenvalue Q'(x) belonging
to this eigenvector enters in bE". For the cases
considered Q'(x) is independent of the jump direc-
tion and one obtains

~"= (F, R')(Q'),

with the average longitudinal eigenvalue

R
(()')= lH'I' f d~'()'(*').

0

(57)

(58)

The energy difference between an equilibrium site
and a neighboring saddle point can be calculated
by the same method yielding"

E,(R+ 2R") —E,(R) = g(R", F)(Q') .

One sees that only the average longitudinal eigen-
value (Q') enters into the diffusion constant. Be-
cause of the smallness of the energy differences
(typically 10 '2 eV per jump distance for a metal)
one can expand the effective diffusion constant,
Eq. (17), in powers of the external field F

D( (R)=D 6, ——'P(Q'}Q 8"B"(R F)XO' '+O(E')

(60)

Due to the particular form of the energy differences,
Eqs. (57) and (59), being proportional to the jump
vector R", the effective-diffusion constant does
not change in first order in the electrical field
for crystals with inversion symmetry. This can
easily be seen from Eq. (60). The sum over h
of an odd power of R" is zero. Thus electromi-
gration is determined by the ideal diffusion con-
stant and no anisotropy effects, similar to the
ones discussed in this paper for "elastomigration, "
occur.
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vectors Rh

E,(x) —E,(x o) = g n. nE",
h

with yg the number of jumps with jump vector Rh and
h

Rh

dx yq+ x F
0

the potential-energy difference between two equil-
ibrium sites separated by a jump vector R". To
calculate ~"we use the eigenvector representa-
tion of the (symmetric) effective charge tensor
q* along the jump gath Rh
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