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Calculations of the elastic strain energy due to an infinite ordered array of crystallographic shear (CS)
planes lying on {132} and {121} planes in reduced rutile (TiO,) have been made by using the Fourier-transform
treatment. The strain energy per unit area per CS plane and per unit volume for an infinite ordered array
have been evaluated as a function of n in Ti,O,,_,. It was found that, though the strain energy per unit area
per {132} CS plane is less than that per {121} plane, there is a crossover in the strain-energy curves per unit
volume for the {132} and {121} CS planes. These quantitative results clarify the experimental observations that
initial reduction of TiO, results in randomly distributed CS planes upon {132} planes and the change from {132}
to {121} shear planes takes place as the oxygen deficiency is increased. The stability of members of the
homologous series of oxides, Ti,O,,_,, has been discussed by comparing the strain energy in a crystal of an
oxide Ti,0,,_, with that in a crystal containing two phases, Ti,_,0,,_1y-, and Ti, , {0y, ; ;- The calculated
results agree well with the microstructures of CS-plane arrays observed in practice and it was found that the
elastic strain energy plays a significant role in controlling the microstructure of a crystal containing CS
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planes.

I. INTRODUCTION

A great deal of work has been carried out con-
cerning the nonstoichiometry in rutile (TiO,).!

In particular the correlation between the physical
properties and the structure of point defects sup-
posed to exist in slightly reduced rutile has been
investigated in detail.>™® On the other hand, it has
been established that at greater degrees of reduc-
tion than about TiO, 4, the change in anion to ca-
tion stoichiometry is accounted for by the forma-
tion of crystallographic shear (CS) planes’ and it
is by no means certain that concentrations of
point defects above the thermodynamic require-
ment of Schottky and Wagner statistics exists in
TiO, .

The structures of CS planes in reduced rutile
have been investigated fairly thoroughly on the
basis of solid-state chemistry and a reasonable
amount of precise information on the crystal
chemistry of these CS structures is available.
These show that when rutile is reduced to compo-
sition TiO, 4 to TiO, 4, the CS planes lie upon
{132} planes ({132} CS planes) and a homologous
series of compounds, Ti,0,,.,, with n=16-36 is
formed. These {132} CS planes were indexed by
using a series of electron-diffraction patterns®®
which showed that unambiguous indexing was only
possible for n <22 revealing only even values of n.
A considerable number of patterns clearly demon-
strated that, in “two-phase” mixtures, An=2.
These observations suggest that even -n values are
also favored for n>22.%°

In the region 1.66 <x(in TiO,) <1.90, Andersson
et al."'°"12 ghowed that a homologous series of

oxides, Ti,0,,.,, based upon {121} CS planes is
formed with »n of 4-10. Later Terasaki and Watan-
abe observed the homolog 7 =10 though it was co-
existed with other homologs.*

In the intermediate-composition range 1.89 <x
<1.93, an ordered phase forms. The CS planes
have an index between {121} and {132}, but they
are ordered. This is the swinging CS-plane re-
gion.”'* According to Bursill and Hyde, the transi-
tion from a {132} to a {121} CS plane is expected to
take place through the progression {132} - {253} —
{374} -~ {495} - - - = {121} and they observed ordered
{253} arrays experimentally.™

When rutile is reduced slightly (1.998 < x <2.00),
besides point defects, {011} antiphase boundaries
or {132} CS planes are formed.? In this region,
{132} CS planes are randomly distributed or tend
to cluster in pairs or in groups. Some parts in
large clusters are found to have structures corre-
sponding to the ordered array with n=37.%°

Despite such an amount of information on the
crystal chemistry of CS structures, there are
only a few papers in which the nature of CS planes
has been treated quantitatively on the basis of
solid state physics.’®”'® Unfortunately, most of
these studies are concerned with reduced tungsten
trioxide. Thus, in an attempt to analyze the large
amount of information concerning the microstruc-
tures of CS phases, several authors have attempted
to assess the strain energy caused by the defect
forces within CS planes.’®!? Stoneham and Dur-
ham?'® calculated the strain energies of the infinite
ordered array and a pair of {001} CS planes in a
ReQ,-type crystal by the use of Fourier transfor-
mation and found the equilibrium separations of
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the planes which were most stable. Iguchi and
Tilley” computed the strain energies in the ma-
trix between CS planes in reduced WO,. Though
their calculation is complicated because they have
not employed the Fourier-transform method,
their treatments can be applied to not only the or-
dered arrays but also to other plausible distribu-
tions of CS planes.

These theoretical studies have made progress in
a quantitative understanding of CS structures in
reduced WO,. In this report, however, we will
evaluate, using the Fourier-transform treatment,
the strain energy due to {132} and {121} CS planes
which are the typical ones in reduced rutile and
have much more complicated crystallographic
structures than CS planes in reduced WO,. Then
we will consider the relevance of the elastic
strain energy to the CS geometries observed in
practice. According to Clapp’s analysis,®° the
configurational entropy appears to be quite neglig-
ible, so the internal energy proves to be the im-
portant part of the free energy and the major in-
ternal energy is likely to come from elastic
strain. Many groups have calculated the energies
due to lattice defects in crystals. In oxides,
Dienes ef al.?' and Catlow®® evaluated the forma-
tion energies and migration energies of point de-
fects. On the other hand, in metals, Kanzaki,?
Khachaturyan,® Cook ef al.,?® and Hoffman?® em-
ployed the discrete-lattice model and expanded
very complicated theories. In this paper, we have
simplified the theoretical treatment as much as
possible by using the elastic-continuum theory and
the elastic Green’s function.

II. THEORY

The microstructure of a crystal containing CS
planes changes as the degree of reduction varies,
as described in Sec. I. The interaction between CS
planes may provide a key to understanding these
microstructures and so we attempt to evaluate
them here. The terms considered to contribute to
the interaction are the following. First, there is
the strain energy in the crystal, parts of which
have been calculated by Stoneham ef al.'® and
Iguchi ef al.'”; second, we have the electrostatic
interaction between ions in the CS plane and in the
matrix and the repulsive Coulomb energy between
CS planes, if they are not neutral'®; third, the
polarization effect is a very important factor as
well because the CS planes seem only to be
formed in oxides which have high dielectric con-
stants.'®

Among these factors, as Anderson suggested,®
the strain energy must be surely one of the most
dominant factors. Iguchi and Tilley made an esti-

mate of the electrostatic interaction energy be-
tween ions in CS planes and in the matrix and
found it to be negligible compared with the strain
energy.'® Although the polarization terms should
be present, it seems hard at present to treat this
effect theoretically®®~3° and so this will be post-
poned to the future.

The strain energy can be regarded as consisting
of the following two parts. One is the strain ener-
gy in the matrix caused by defect forces in the
CS planes and the other is the interaction energy
between a defect force and all other defect forces
in the crystal. The latter is written as the scalar
product of the force acting on a cation in a CS
plane with the displacement of this ion due to all
other forces. Then, if the cation displaces along
the defect force acting on it, this interaction
helps to counteract the increase in the elastic
strain energy, which implies that this is a relaxa-
tion energy. Hence this idea is similar to that of
Stoneham et al.'®* Here we denote the strain energy
in the matrix and the relaxation energy as E g and
Eg, respectively; then, the interaction energy in
the crystal induced by CS planes E; can be given
as follows: E; =Eg- Ep. We will evaluate the
energy E; for infinite ordered {132} and {121}
arrays. In calculating the strain energy E g in the
discrete-lattice model,?* 2% the defect forces could
be, in principle, obtained from a detailed study of
the local strain near isolated point defects. How-
ever, the local strain around CS planes looks diffi-
cult to be estimated precisely at present. So we
have evaluated the ion displacements using the
elastic Green’s function by which means the equili-
brium between the defect forces and the ion dis-
placements can be obtained when the point-defect
forces work in the elastic continuum. In this treat-
ment, information about the detailed ionic posi-
tions is not necessary and, moreover, the dis-
placement and the strain at any position can be cal-
culated only if the defect forces which give rise
to the deformation of the continuum are hypothe-
sized properly. How to determine defect forces
will be described in Sec. IIB. Therefore, the
strain energy in this report is not given by the
scalar product of the displacements of each ion as
in the discrete-lattice model, but is represented
in terms of the strain energy density w. By using
the elastic-continuum model, we can remove such
complicated treatments of the discrete-lattice
model, but we have to accept some assumptions
which will be described later.

A. Structure of {132} and {121} CS planes

In Fig. 1, a clinographic projection of the rutile
structure is shown. The rutile structure consists



FIG. 1. Clinographic projection of the rutile structure.
Two unit cells are heavily outlined. The lightly out-
lined (TiOg) octahedra are connected by edges to give
ribbons which are in turn connected by corners.

Closed circles, Ti; open circles, O. Every Ti ion is
located at the body-centered site of the (TiOg) octahedron.

of rectilinear ribbons of edge-shared (TiOg) octa-
hedra joined by corner-sharing to similar ribbons
so that the orientations of adjacent ribbons differ by
37 rad. The heavily outlined cells in Fig. 1 are
tetragonal, Ti ions are located at the corner

(0, 0, 0) and at the body-centered site (3, 3, ) of the
unit cell. The oxygen ions are located at +(u, u, )

02 (49r)

Ti (§ar)

FIG. 2. (100) planes of the idealized structure in which
the oxygen sites are represented by the relatlonu =0.25.
Closed circles, Ti; open circles, O. (a) Tl(O) layer and
Oz(zar) layer [equal to the O,(-44,) layer]. (b) Tl(z-a,)
layer and O, (;;ar) layer. The unit cell is represented by
the solid line. The broken lines in (a) and (b) indicate
the same region of the crystal.
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and *(3+«, 5 =4, 3), where u is estimated to be
0.305,% or 0.306.3* In order to simplify the theore-
tical treatment as much as possible, however, we
have used the idealized relation, #=0.25, by which
we can construct the idealized structure that An-
derson and Hyde employed in their geometrical
treatment of CS planes in Ti0,.>® In this structure,
the crystal planes normal to a are constructed by
repeating the four layers T1(0) 0,(3,), Ti(34,),
0,(33,) as shown in Fig. 2, where subscript » de-
notes indices based on the rutile cell and the vec-
tors &,, b,, and &, indicate the unit vectors along
the a, b, and c axes of the tetragonal unit cell.

In order to make {132} and {121} CS planes, oxy-
gen ions upon {132} and {121} planes in the perfect
crystal are to be eliminated and then these vacant
sites allow the formal geometrical collapse opera-
tion (121) 3[011] and (132)3{011] where (121) and
(132) represent the crystal planes and 3[011] shows
the shear vector. After these operations, {132}
and {121} CS planes are formed, the Ti layers of
which are indicated in Fig. 3. The sites of oxygen
ions do not change relatively to each other before
and after the shear operation %[OTI], so we have
omitted the oxygen ions in Fig. 3, but one finds
that the spacings between cations in CS planes are
reduced compared with the spacings in the ideal-
ized structure.

The translation vector from the position of Ti
ions in the Ti (0) layer on the {100} plane shown in
Fig. 3 to the Ti sites in the Ti (qa,) layer is (2,
-b, +¢,) and the distribution of Ti ions in the
Ti(33,) layer is the same as that in the Ti(0) lay-
er. Every Ti ion marked with the double circle in
the (001) plane shown in Fig. 3 has an adjacent Ti
ion in a (200) or (200) plane, the spacing between
them being 3|2 ,|, and the TiO; octahedron of the
Ti ion marked with the double circle in the (001)
plane shares a face with the octahedron of the Ti
ion in the (200) or (200) plane. In Figs. 4(a)-

4(c), we have shown the Ti sites of the infinite
ordered array of CS planes projected on to the
(100) plane. As seen in these figures, every ar-
ray of TiOg octahedra which bridges two adjacent
CS planes has 37 octahedra in the case of {132}
CS planes with n even and, in the case of odd n
values, the array of 3(n - 1) octahedra and the
array of 3(n+1) octahedra are ordered alternately.
On the other hand, there are » octahedra in an
array between adjacent {121} CS planes.

The periodic unit cell in the infinite ordered
array of CS planes is constructed with the vector
K i§ and 6 the projection of the unit cell in
the (100) plane bemg outlined heavily in Fig. 4.

The vectors A B and C are expressed by linear
combinations of the primitive translation vectors
3, b, and ¢ of the idealized rutile structure as
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FIG. 3. Ti sites on (100) and (001) planes of the idealized structure. (a) and (b) (132)3[011] CS planes; (c) and
(d) (121)3[011] CS planes. Open circles indicate Ti ions. The Ti ion marked with the double circle in (001) has an
adjacent Ti ion in (200) or (200) marked also with a double circle and Ti0g octahedra of these Ti ions share a face
with each other. The arrow indicates the 2[011] shear vector. The double lines which link centers of double
circles represent the core of the CS plane. The cross section normal to (100) along the line AA’ in (a) is (b) and
the cross section normal to (001) along the line AA’ in (b) is (a). The relation between (c) and (d) is the same.
The primitive translation vectors 5, b ,and ¢ are also indicated for reference.

follows:

b for {132} Cs, (1a)
=d,,(b+¢)
A=4F-b+¢)
B=4(b-28) for {121} CS. (1b)
C=d,,(6+¢)

Here d,;, or d,,, is proportional to the spacing of
{132} or {121} CS planes in TiO, and is related to
n by

52 ==(2n=1), d, =%@2nrn-1). (2)

The primitive translation vectors 3, b, and & can
be expressed in terms of &,, b,, and &, in the
following way:

1> "...1_ a=1
a=3a,, 4Dy, C=3C,

) (3)

which allows the site of the ions in the idealized
structure to be repeated under the translation 3,
b, and €.

The CS structure of an infinite ordered array of
CS planes can be constructed by the formal geo-
metrical transformation "I‘—,

T=n&+n,B+n,L, (4)
where n,, n,, and n, are integers and L is the vec-
tor indicated in Fig. 4 and given by Eq. (5),

L =2(5b+2L%), (5)

6=2(-1)""1,
L= {%(;Hl), n even

} for {132} Cs, (6)
3(n-2), nodd

6=1

} for {121} Cs. (7)
L=3(2n-3)
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B. Defect forces in CS planes responsible for the strain
energy in the crystal

Here we consider the defect forces responsible
for the strain in the crystal. From Figs. 3 and 4,
it can be seen that in the CS planes, the cations
are brought closer together than in the matrix,
while the spacing between anions is insensitive to
the 3[011] shear operation. If we assume an ionic
structure for the CS plane, the major forces will
be ones of repulsion between cations in the CS
plane. Similar defect forces were hypothesized in
the CS structure of the W-O binary system,”**°
which were justified in the experiment by DeAnglis
et al .** using x-ray photoelectron spectroscopy.®
According to Pauling®® and Torrens,® the interat-
omic force between ion ¢ and j can be approximate-
ly expressed as

FIG. 4. (a) Ti sites in the (100) plane of the infinite
ordered (132) array with » even (in the case of n=10),
(b) with » odd (n=9), and (c) the Ti sites in a (100)
plane of an igfinite grdered (121) array (n=6). The
vectors B, C, and L lie upon (100) planes and the
projection of the vector A on the (100) plane is also
indicated. The periodic unit cells are heavily outlined.
The shaded parts in the cells represent the regions of
CS planes in which the distortions of Ti ions differ from
that in the idealized structure.

f%i =q;q,6%/er®+A Bexp(-Br), (8)

where ¢; and ¢; denote the charges of ion ¢ and j,
and 7 is the separation of these ions, € is the di-
electric constant in the matrix between ions, e is
the unit of the electronic charge, and A and B are
constant terms. Unfortunately, we have no infor-
mation on the charge state of ions in CS planes, so
in this report we have assumed each CS plane to
be electrically neutral overall. Although we can
have many examples of ionic distribution in CS
planes, the following arbitrary arrangement is
employed. The valence of Ti ions in the face-
shared TiOg octahedra is assumed to be +3e and
other Ti ions in CS planes have valence +4e.

Using these conditions, the forces shown in Fig.
5 are estimated as follows:



2510 YASUHIRO SHIMIZU AND EISUKE IGUCHI 17

FIG. 5. Defect forces in CS planes projected onto (100).

(a) (132) CS plane; (b) (121) CS plane. The forcef 33
acting on the Ti ion at ?1, marked with the double circle,
is normal to (100) and along [100]. Alsof3+? on Ti at T
is normal to (100) and along [100]. The orlgln of the
coordinates is taken to be midway between ry and r,

PSS S
~14.30:3.10:3.27:3.18:1.53:1.45. (9)

We have used the following values in this esti-
mate®%37;

A =9352.6 (eV) ,
B=3.5981 (A™Y),
89.8 (along 3,),
€=<166.7 (along ¢,),
128.3 (along {011)).

Here the average value of the dielectric constants

along 2, and &, is used as the value in the (011)
direction since we have no data for it. Also, we
have employed the following lattice constants®!:

a=4.5937 A, c=2.9581 A.

In Eq. (9), f; indicates the repulsive force along
4, between Ti ions in the face-shared octahedra,
f.c denotes the repulsive force along (011) be-
tween cations in the {100} plane, and f, means

the repulsive force along &, acting on a cation in
the {100} plane which is induced by the asymme-
trical distribution of the surrounding cations. In
estimating the defect forces, besides the cations
described just above, the cations which are lo-
cated farther away from the CS plane should be
considered, but the biggest defect force due to
these cations is 0.12, which is very small in com-
parison with the ratios 14.30-1.45 in Eq. (9). So
we have neglected the contribution from these cat-
ions. Despite this, estimating the defect forces
by using Eq. (8) is rather crude. In ordertoassess
the real defect forces, the long-range forces com-
ing from all other ions in the lattice, e.g., the po-
larization term as described before and the Made-
lung term, may be considered as did Dienes etal.?!
and Catlow.?? We have also tried several other
plausible models for both the defect forces and the
charge distribution associated with the planes, the
calculated results are almost similar to the result
obtained by using the model in Eq. (9), as will be
discussed in some detail later.

C. Strain energy in the matrix due to an ordered array
of CS planes E

The defect forces in the CS plane induce strain
in the matrix. When a unit-volume element de-
forms reversibly by the different strain increment
de;;, the strain energy-density function is obtained
by the integration of the work that the stress does
on the element, i.e.,

“’=f 0y dey; =3 Cynisenr, (10)

where C;;;,; is the elastic constant in tensor form.
Thus the strain energy density for a tetragonal
elastic continuum has the form3®

w:é[Cu(ez +e5,) + 338:233]
+C pe,,€5, + Ciy(€504; +e55e)))
+2C (€5, +€33) +2Cyqe}, . (11)

The displacement in the ath direction of ion at
T, u(F), caused by the Sth component of the force
at ¥’ in a CS plane F4(F’) is given by the following
equation®®
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uolF) = 20 2 GuslF = FIFo(F). (12)

B

In an infinite ordered array, the forces as hypo-
thesized in Fig. 5 repeat periodically, so we can
employ the Fourier-transformation treatment. The
transformed defect force and Green’s function can
be written

- 1 >\ _—iQeT!
Fo(f) = 3 2o Fo@ee7, (132)
q

SN I o DRI
Gap(F =)= 7 2. Cas@)e™¥7, (13D)
q

where N is the number of unit cells.!* We can ob-
tain u,(T) by substituting Eq. (13) into Eq. (12):

wlf)= 57 Lo Lo @Fod. (0
q

The kkth component of the strain e, is related to
the component of the displacement by the following
equation:

1 du, du,
‘m=73 (Bx,, * 8x,,>’ (15)
SO ey, at T in the matrix is given by
- i _iat 5 e
enlF) == g5 L ¢” T 2 10.61s@)
3

+qnéna(€)]F5(§)- (16)

We have assumed that the total strain energy Eg
in one periodic unit cell is given as

Eg= 2 Gmride(), (17

where 7 indicates the summation of the strain
energies of all ions in a periodic unit cell, w(¥)
denotes the strain energy density of an ion at T,
the ionic radius of this ion being abbreviated as
7. Since linear elastic theory is used, theoreti-
cally one should obtain the unit-cell volume in-
stead of the ionic volume in Eq. (17). The rutile
structure, however, consists of edge-shared TiO,

|

d=4x 9,92,

q.=(2m/a)[1/(4L +30)|[(4L +30)M +(2L +0)N +2 P]
q,=(2n/a)[1/(4L +33)(2LN +6P)

q,=(2n/c)[1/(4L +3%)|(-6N+4P)

g, =(1/a)[1/(L +D|[2(L +1)M +(2L +1)N +2 P]
qy,=(m/a)[2/(L +1|(LN +2P)
g, =(n/)1/(L +1))(-N+2P)

where M, N, and P are integers.

for {121} Cs,
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octahedra as mentioned in Sec. I and has chains of
voids called open channels. The volume of voids
is nearly equal to the volume of ions. Thus, in
order to remove the overestimation on the strain
energy E; we have made the assumption which is
represented by Eq. (17).

D. Relaxation energy E,

On a cation at ¥’ in a CS plane, the defect force
F,(T") does work. The displacement of this cation
g /g

u(T') induced by another force Fy(¥”) at ©” can
be expressed in a fashion similar to Eq. (12):

u(F) =3 ;GQB(F' — T Fg(F")
rll

’

- % et ‘z;éae(ws@). (18)

Then the total relaxation energy Ej in a periodic
unit cell has the form

1 - S~ =
Ex= 2 2L Fel®) e T Gos@Fo@),  (19)
r’ q

where ) means the summation of the relaxation
energies of all ions in the cell.

Though, in the discrete-lattice model,?*~%¢ the
relaxation energy Ej is twice as large as the
strain energy in the matrix Eg, it seems quite
difficult in this paper to relate Eq. (17) to Eq. (19).
Even if these equations could be combined, a sim-
ple relation as the one which is obtained in the dis-
crete-lattice model might never be expected be-
cause of the complicated form of Eq. (17).

III. CALCULATIONS AND RESULTS

The defect forces associated with each shear
plane in the array have the translation symmetry
of the plane itself. The forces repeat under the
translation T and all transforms F(@) of the forces
in Eq. (13) vanish unless q reflects this transla-
tion. Then each component of the wave vector
can be written

for {132} Cs, (20a)

(20b)



2512 YASUHIRO SHIMIZU AND EISUKE IGUCHI

The strain energy can be obtained as a sum over
discrete values of § in the first Brillouin zone of
the lattice, i.e, —47n/a <gq,, q,< 4n/a, and
-4r/c<q,< 4n/c.

A. Fourier-transformed force F @)

Besides the cations shown in Fig. 5, a periodic unit
cell has cations which are translated from the cation
in Fig. 5 by A, In addition, as shown in Fig. 5,
in a periodic unit, the force at ¥/, F(¥’), and the
force at ¥, F(T), are reversed with respect to one
another, although they have the same magnitude.
We have chosen the origin of the coordinates to be
midway between these forces, to give the follow-
ing relations:

FF)=-FF), 7'=-F. (21)

Then the Fourier-transformed F(§) is given as
F@)=(1+cosmM) <ZF(F)e‘5'7 + Z F(;,)eia.r">
r T

=2i(1 +cosnM) Y F(¥)sin(@ - F). (22)

The defect forces and the sites at which they
operate are then:

for {132} Cs,
site I force F(T)
1(0,5, =3) (0, f 3% cos9, f3*sinv),
1(0,1,1) (0,13 cosd, fi*sind-f 29,
1(0,-83,5) (F2%, (fa +132) cos,
(fad =fal)sind = £ 3);

for {121} Cs,
site T force F(¥)

(0,3, -1) (0, f 3 cos9, 3% sin9),

1(0,-3,3) (f3°, (fa* +f 22) cosy,

(fast =f&) sind -3,

where 9=tan"*(c/a); so, )7 in Eq. (22) indicates
summation over the sites described above.

B. Fourier-transformed Green’s function G i,.(?]')

The Fourier-transformed Green’s function for a tetragonal elastic continuum is obtained in a similar
way to that followed by Dederichs et al. for a cubic lattice*°

-11

G = S Kl [ (80, 10,0, (1=

q° h a;a, 292 h

3 2 2 2 2
(D o) s

3 1 2

3

. 1 1 1 1 1 K2
G = | —a[—=— = =0 —_— 1 ——n
14 g [h h g> '3] a; [ ¥ }; (a,,

)]'1 (%)),

whea-an(i-£) (2225 ()
T a +1=-0 (1 h a,a,a, K?

3 -
DB (1) (EL) o,

1 a,

with

h=C,+Cq, g=C,+C

449
a; =(1/B)[(C,, = C;, —2C)K
+(Cpy = Ceo)K 2 + Cgg) (£#3), (23)
a,=(1/8)[C,y - Cy -2C, K2+ C,,],
where the K; are the direct cosines (¢;/9) of g,
and 6;; is the Kronecker delta.

In calculating the strain energy and the relaxa-~
tion energy, we have employed the elastic con-

stants obtained by Fritz*! and the following ionic
radii for O*” and Ti** ions*:
C, =2.701, C,,=4.819, C, =1.239,
C,s=1.930, C,,=1.766, C, =1.480,
in units of 10" dyn/cm?,
70=1.40 &, 7;,=0.605 A.

where 7o and 7, are the ionic radii of O*~ and Ti*",
respectively.
We have used a computer to evaluate the strain
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energy and the relaxation energy because of the
algebraic complexity of the terms; no approxima-
tion is involved.

C. Results

First, we have calculated the strain energy and
therelaxation energy per unit area per plane in the
array (Ug), and (Ug)a, respectively, and plotted
the total energy Uy,, the sum of (Ug), and —=(Ug),,
as a function of » in Fig. 6. The striking feature
is that U, decreases only a little in both cases of
{132} and {121} CS planes as » increases, but the
curves are oscillatory, i.e., they have series of
peaks and valleys. For {132} CS planes, their
valleys occur at =17, 10, 13, 16, 19, 22, ...,i.e,,
An=3, and in the {121} case the valleys are at »
odd. In the strain energy of {107} CS planes in
reduced WO, crystals,'”* a similar series of peaks
and valleys is also observed. Thus, these must be
general properties of the crystal of interest, and
not specific to the discrete defect forces we have
taken. In both cases of {132} and {121} CS planes,
(Us)a and —(Ug)4 decrease as n increases and os-
cillate as a function of n with the same periodicity
shown in Fig. 6. We have employed the continuum
approximation for the Green’s function and the dis-
crete approximation for F(d), but one could envis-
age a situation in which the oscillations on the
curves in Fig. 6 might disappear if the continuum
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FIG. 6. Total shear-plane energies U, per unit area
per CSplanein infiniteordered arrays of {132} and {121} CS
planes as a function of » in Ti,0y,_;. Shear-plane
energies are plotted in arbitrary units,
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FIG. 7. Total shear plane energies Uy per unit
volume in infinite ordered arrays of {132} and {121} CS
planes as a function of ». The energies are plotted in
arbitrary units.

approximation for F(§) were made. On the other
hand, the (Ug), values are found to be always nega-
tive in both the {132} and {121} cases. This may
be due to the fact that every cation in a CS plane
is attracted to the inside of the CS plane by all
other forces in that CS plane. The variation of U,
with change of #» is small, which means that sur-
rounding CS planes in the ordered array contri-
bute to U, only slightly compared with the contri-
bution from the CS plane in which we have chosen
the origin of the coordinates.

Though U, in the ordered {132} array is always
lower than for the {121} in the region of #=5 to
36, we must determine the energy per unit volume
in the ordered array so as to clarify which type of
CS plane, {132} or {121}, is more stable for the
composition Ti,0,,.,. We have reduced (Ug), and
(Ug)4 to the strain energy and the relaxation ener-
gy per unit volume, (Ug), and (Ug)y, and plotted
the total energy per unit volume, i.e., Uy =(Uy)y
—(Ur)y, of a member of the infinite periodic array
as a function of # in Fig. 7. In both the {132} and
{121} cases U, falls off smoothly with increasing
n and the peaks and valleys clearly recognizable
in Fig. 6 seem to disappear because the spacing
between CS planes increases much more rapidly
than the change in U, as n increases. The main
feature in Fig. 7 is that there is a crossover in
the energy curves and the difference between these
values increases as n increases beyond n=11 or
decreases below n=10.

According to the constant terms used in Eqgs. (8)
and (9), one unit on the vertical axis in Fig. 6 cor-
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responds to 0.063 eV/. A? and one unit on thee vertical
axis in Fig. 7 corresponds to 0.021 eV/A%,

IV. DISCUSSION

The quantitative results in this paper predict
several important features which can be compared
with experimental results.

A. Formation energy of isolated CS planes

First, we can estimate the formation energy of
a CS plane from Fig. 6. This figure suggests that
the U, values of {132} and {121} CS planes are ex-
pected to converge to some constant value at high
n values, which means that the U, values at n=«
are insensitive to the interaction due to surround-
ing CS planes. Then, if an isolated CS plane is in-
troduced into a crystal, the increase in energy per
unit area of the CS plane is equivalent to the U,
value extrapolated at n=« in Fig. 6, and this can
be defined as the formation energy (U;) for that
CS-plane type. The ratio of the formation energy
of a {121} CS plane (U}),,,, to that of a {132} plane,
(Uf) 32, is then estimated to be [(U);5,/(Uf) 30}~ 1.6.
In addition to the formation energy due to the
strain, the dissociation energy of oxygen ions must
be considered when a CS plane is formed in a sin-
gle crystal.’®* Two oxygen ions per a*[1+5(c/a)?]/?
area in the case of a {121} CS plane, and two per
a*[4 +10(c/a)*]'/? area in the case of a {132} CS
plane are to be eliminated. So the dissociation en-
ergy of oxygen ions per unit area of a CS plane
U; can be written as follows'®%:

(Ug) 150 =2E;/a’[4 +10(c/a)? ]1/2 ’ (24a)

(Ua)yp, =2E;4/a°(1 +5(c/ay?]t/? s (24b)
or

(Ud)132 =2Ebond (Tl - O)/a2[4+ 10(6‘/0)2]1/2 , (240)

(Ud) 21 =2Evona (Ti = 0)/a?[1 +5(c/a)*}*/?,  (24d)

where E, is the formation energy of an oxygen
vacancy and Epond (Ti—0) is the Ti-O binding ener-
gy. This yields the relation

(U:i)ml/(Ua)mz =1.628.

These results show that a {132} CS plane is much
more likely to form in a single crystal of rutile
than a {121} CS plane. Thus the difference in en-
ergy of isolated {132} and {121} planes clarifies
the experimental result that {132} CS planes are
formed firstly in rutile when the degree of reduc-
tion is small.

B. Change of CS plane type

The result in Fig. 7 also agrees very well with
the observed change from {132} to {121} shear

planes as the oxygen deficiency is increased. Fig-
ure 7 indicates that, in the region of » <10, (Uy),,,
is less than (Uy),;,. This result suggests that or-
dered {121} arrays must be formed instead of {132}
arrays when x in TiO, is less than 1.90, which co-
incides with the results in Refs. 7 and 11-13. In
the region of n>11, (Uy),,, is less than (Uy),,,,

but the difference between them becomes appreci-
able only at n values greater than 16. This result
suggests that a {132} array is preferred when x is
greater than 1.94, in good agreement with the ex-
perimental observations that in the region of x
=1.93-1.98, ordered arrays of {132} CS planes
with the »n values of 16-36 are formed. According
to the result in Fig. 7, although (Uy),,, is less than
(Uy),0, in the region of n=11-15, their difference
is so small that we can not recognize it clearly. It
is of interest that, in this region, swinging CS
planes are observed experimentally.

At small degrees of reduction, the energy of the
isolated plane is the dominant factor, but as the
reduction is increased, the interaction energy be-
tween planes becomes more important. Here it
should be noted that we could not have such a good
correlation between our theory and experiments
in the case of reduced rutile if we were to omit
either (Ug)y or (Ug)y as shown in Fig. 7. Both of
these factors are necessary in the quantitative
analysis of the observations of reduced rutile CS
structures.

C. Stability of homologous oxides

Within any one family of CS planes, it has been
found empirically that some homologs, those with
n even in the Ti,0,,., series based upon the or-
dered {132} CS phase, for example, are favored
over those with # odd. In the case of the {121} CS
phase, a similar behavior has not been established
because “two-phase” mixtures are, in the main,
observed. In {132} CS phases, some members of
a series are likely to be thermodynamically more
stable than others. To explain this, imagine a
crystal of the oxide Ti,O,,-, to contain an ordered
array of {132} or {121} CS planes. Simply by re-
distributing the CS planes laterally, we can form-
ally convert the original crystal into a crystal
containing two phases, Ti, O,, -; and Ti,,0,n, -y,
which are distributed alternately as shown in Fig.
8 without changing the total number of CS planes,
that is,

2T1,0,5-, =Tin102n1—1 +Tin202n2-1 . (25)

Although there are plenty of combinations of 7,
and 7, which are subject to the condition of Eq.
(25), it is impractical to calculate all the combin-
ations and, as indicated in Fig. 8, we have only
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FIG. 8. Ti sites on (100) in a crystal containing two
phases Ti;04 and Ti;0;; based upon {121} CS. Though
formal periodic unit cells are indicated by broken lines,
the periodic unit cell employed in the calculations
consists of two regions (shaded parts), one is the unit
cell of the Ti;O4 oxide and the other is that of Ti;0,;.
The origin of the coordinates in the “two-phase” mixture
is taken to be midway along the vector D from the
origin ot the TizO4 unit cell to the origin of the Ti;O4

unit cell.

employed the pair #,=r~1 and n,=n+1 as did
Iguchi and Tilley.” The theoretical treatment is
quite the same as for an infinite ordered array ex-
cept for the following points. The vectors Aand B
are the same ones as in Eq. (1), but Cis expressed
as follows for {132} and {121} CS planes:

C=a'(b+8),
d'=%(2n-1) for {132} Cs,
d’=4(2n-1) for {121} CS.

(26)

The vector L, in the translation vector T is (see
Fig. 8)

T =4(6b+2L8),
8 =(=1)"
t(n-2), neven
={%(n+1), n odd
8=1, L=3(2n-3) for {121} CS.

for {132} Cs, 27

For crystals containing the mixed oxides,

Tin-10z(n-1)-1 @Nd Ti,;,05(n41)-,, the Fourier-trans-
formed force Fmix(d) can be obtained in a similar
way as in the calculation for a pair of CS planes by
Stoneham ef al.'®* As shown in Fig. 8, we have
chosen the origin of the coordinates in the “two-
phase” mixture to be midway along the vector D,
from the origin of the unit cell of Ti,_,0,(,-;)-,

to that of the unit cell of Ti,,,0,(n+;)-,- Then
F.14(@) has the form

- -

+ Z F(F+§D)eiq-(r+5/2)

=2cos(d + 3 D)F{), (28)

where () is the same one as in Eq. (22) and D
has the following form:

D=2(8b +2L&),
6=(-1)",
{é(n-3), n even

L nodd } for {132} Cs, (29)
6=1
121 .

i(n- 5)} for {121} Cs
Using these relations, we have calculated the en-
ergy per unit volume of the “two-phase” mixture,
which is denoted as (U,,)y. The difference in en-
ergy per unit volume (AU)y =(U)y = (Unix)y is shown
in Fig. 9 as a function of n. If (AU, is negative
the Ti,0,,-, oxide will be stable, while if (AU)y is
positive the phase will be disproportionate with
respect to the phases on either side. As seen in
Fig. 9, it is clear that (AU), of the {132} phase
has a series of maxima and minima with a period-
icity An=3 while, in the {121} case ordered ar-
rays of n=5,17,9,11,... are favored, i.e., An=2.
It is of interest that the valleys of (U), in Fig. 6
occur at these stable » values in Fig. 9. In order
to confirm this correlation, we have calculated
(Unmix)y for several combinations of n, and n, when
n=16, which is expected to be one of the most
stable 7 value of the ordered {132} array observed
in practice, and we have plotted (Unix)y for these
combinations in Fig. 10. This result demonstrates
clearly that the combinations of », and n, at which
the valleys of (U)4 occur in Fig. 6 correspond to
minima of (Unix)y values.

According to our results, homologs with n=13,
16,19,22,... in the Ti,0,,-, series based upon
ordered {132} CS planes may be stable. However,
inmost of the specimens investigated by Bursill and
Hyde® ordered arrays of {132} CS planes with =
values of 16, 18, 20, and 22 are mainly observed
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FIG. 9. Difference between (U)y and (Uy,)y as a
function of n. (U)y is the shear-plane energy in an
infinite array of Ti Oy, and Up,ix)y represents the
energy of a crystal containing two phases Ti(y-1) Oy(n-1)
and Ti(p41)02(n+1)-1- The units of the vertical axis are
arbitrary.
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FIG. 10. (Upy,)y for several combinations of »n; and
ny when n=16. The vertical axis represents (Up,)y in
arbitrary units and the horizontal axis indicates the
combination of #; and 7,.

and homologs with other 7z values are rarely iden-
tified. Moreover, Terasaki and Watanabe found a
“two-phase” mixture of {132} CS planes with ~
values of 13 and 14.® Thus some features observed
experimentally agree with our calculation, but some
deviate slightly from our theory. Our prediction,
however, presupposes that the specimen is in
thermal equilibrium. It should be noted that, even
in WO, samples doped with a few percent of ger-
manium at 1100 °C for 5 weeks during preparation,
the perfect-equilibrium state was not apparently
obtained.** One would, therefore, expect that CS-
plane microstructures could well be sensitive to
both heating times and heating temperatures during
preparation.

In the case of {121} CS planes, the homologs with
n odd seem to be stable theoretically and these ar-
rays are expected to be observed if the sample is
in thermal equilibrium, although “two-phase”
mixtures are detected in practice. In addition,
the lattice polarization also seems to be one of the
factors which should be considered in understand-
ing the stability of homologous oxides, but this
may require a formidable calculation. In order to
establish a more accurate correlation between the
experimental results and our theory, careful sta-
tistical surveys of experimental results equivalent
to that for {103} CS planes in reduced WO, shown
in the previous work!” would be helpful.

D. Nature of CS planes

We have tried the following related models of the
defect forces. One consists in estimating the ratio
of the forces by assuming the total positive charge
in the CS plane to be distributed equally over all
the cations in the CS plane, making the valence
state of a cation in the {132} or {121} CS plane
either +4 e or +e. A second alternative is ob-
tained by considering only the Born-Mayer poten-
tial, the second term on the right-hand side of
Eq. (8). A third alternative may be obtained by
omitting the dielectric constant € in Eq. (8) be-
cause the interaction between cations in the CS
plane could possibly be regarded to be of short
range. However, the results calculated by using
these ratios were quite similar to that reported
above and will not be considered further here.

There still remains the question of whether the
CS-plane regions can be treated as elastic con-
tinua the same as the matrix. Although the force
is assumed to be transmitted through the CS
planes without any damping, in this report, Iguchi
and Tilley'” hypothesized that the force can not
pass through the CS plane in WO,_,. In experimen-
tal results, the cumulative outcome that the CS
plane spacings near the centerina cluster are close
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is certainly found for TiQ,_,," but such an out-
come has not been found for WO,_, up to date.
This shows the difference in the nature of the CS
planes in TiO,_, and WO,_,. This problem will be
another project.

In this paper we have used the idealized rutile
structure. This model explains the experimental
observations very well while, on the other hand,
the real structure may need a complicated and
long calculation. Thus the results presented in this
paper suggest that the strain energy is one of the

most important factors in controlling the observed
microstructures.
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