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Gauge-independent statistical mechanics of free electrons in a magnetic field
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The equilibrium distribution function which satisfies the gauge-independent Boltzmann equa-

tion is derived using a nonunitary transformation of the exact equilibrium density matrix for free
I

electrons in a magnetic field. An integral representation of this distribution is obtained which ap-

proaches continuously the zero-field Fermi-Dirac distribution in the limit of vanishing magnetic

field. Moreover, the integral can be evaluated analytically in the limit of nondegenerate statistics

and in the extreme quantum limit when quantum oscillations are no longer present. As a check,
expressions for the low-field diamagnetic susceptibility and high-field Hall eftect are calculated us-

ing this distribution. The results are in exact agreement with those obtained by the more-usual

density-matrix approach.

I. INTRODUCTION

The galvanomagnetic transport properties of solids
for moderate magnetic fields can be explained quite
successfully in terms of the Boltzmann transport equa-
tion. That this approach is justified for noninteracting
electrons in small magnetic fields was first shown

rigorously by Stinchcombe' and later using an ap-

parently diA'erent method by Thomas. ' The
equivalence of the two methods was subsequently
demonstrated by Mertsching and Streitwolf' who

pointed out that the Boltzmann equation could be ob-
tained from a simple nonunitary transformation of the
Liouville equation. Ah interesting aspect of this
transformation is that the transformed equilibrium
density matrix is diagonal in the momentum represen-
tation. Thomas4 studied the form of this new distri-
bution function in the limit of small magnetic fields
and classical Boltzmann statistics and showed that it

approaches continuously the zero-field Boltzmann dis-
tribution, This result was significant since it also pro-
vided some justification for using the zero-field equili-
brium distribution in the semiclassical analysis of- tran-
sport for a nondegenerate system in a fnagnetic field.
Since, in the semiclassical theory of transport in me-

tals, the zero-field Fermi-Dirac distribution is always

used, it is important to know whether a result similar
to that obtained by Thomas also holds for the degen-
erate case. The main purpose of this paper is to show
that the Thomas4 work, which assumed classical
Boltzmann statistics, can in fact be generalized to in-

clude Fermi-Dirac statistics by applying the nonunit'ary
transformation (in the form given by Mertschirig and
Streitwolf') to the equilibrium. density matrix for free
electrons in a magnetic field.

%e begin with a brief discussion of the derivation of
the Boltzmann equation in order to properly define
the transformation of the equilibrium density matrix.

An exact integral representation of the transformed
equilibrium distribution is then obtained for arbitrary
magnetic fields and Fermi-Dirac statistics. The low-

field behavior of this distribution is considered and is

shown to reduce to the zero-field Fermi-Dirac distri-
bution. To show that the expression for the
transformed distribution is correct, the low field di-

amagnetic susceptibility and the Hall eAect in the ab-
sence of scattering are calculated. The well-known
results obtained by the more standard density matrix
are reproduced.

II. BOLTZMANN EQUATION

Consider a system of noninteracting free electrons
in a uniform magnetic field H and uniform electric
field E. The statistical mechanics of the system can be
described in terms of the single-particle density matrix

p, which satisfies the Liouville equation

it p =[ac, p]9t

where X is the Hamiltonian for the system,

X = (1/2m) [p —(e/e) A]' —eE. r

A is the vector potential defined by H = V'
&& A, e is

the electronic charge, c is the speed of light, and h is
Planck's constant divided by 2m. As shown in Refs.
1 —3 there exists an operator f, which, satisfies the
Boltzmann equation

it = [p',f] —eE [r,f]'r) 1

rlr 2m

(p xH. [r,f]+(r,f].p xH)
2mc

(2)
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and f is related to p by a nonunitary transformation
which is expressed most simply in the coordinate
representation as

tered about

hcXp= Kt, 6z =
eH ' '

2m
(e/H

with

f„=p„, exp( i)—„/f)

k,„=(e/2c) r H && r '+ (e/c) (4„—4, )

(3)
In the energy representation, the single-particle

equilibrium density matrix is diagonal, and is given
simply by the Fermi-Dirac distribution function

p = (exp [P (e —
p, ) + 1])

and where

A„=—H x r+'7, 4,

defines 4, .
The following results are also obtained and will be

used later: For the number of particles N (this defines
the normalization),

where P = (ks T) ', ks is Boltzmann's constant, T is

the temperature, and p, is the chemical potential. Ap-
plying the transformation defined by Eq. (3) one ob-
tains the transformed operator f which is diagonal in

the momentum representation (K representation).
For this new distribution function, one has

A =Tr(p) =Tr(f),
and for the current density J,

J = (e/m) Tr([p —(e/c) A]p) = (e/m) Tr(pf)

(4a) f ( K ) = 2 Jt dx $ (—1)"p„(K,)
n=p

&& exp( —2iK x) $.(x —xo) $„(x+xo)

(8)

III. EQUILIBRIUM DISTRIBUTION

(4b) I

The integral in Eq. (8) can be done and the result ex-
pressed in terms of the Laguerre polynomials L„as

Using Cartesian coordinates with the direction of H

defining the z axis, H = (0, O, H), and choosing the
Landau gauge, A =(O, Hx, 0), the expression for X„„
can be written

) „, = (eH/2c) (x+x') (y —y')

In this gauge and in zero electric field, the eigenfunc-
tions and eigenvalues of K are, respectively,

p (r) =(1/2') exp(iK, .y+iK z)p„(x —xo) (6a)

and

f ( K ) = 2 exp( —u) g (—1)"L„(2u)p„(K,), (9)

where u = (it/men)(K„'+K, ,'). The details of the
above integration are given in the Appendix.

At this point one should calculate Tr(f) to check
the normalization and show that Tr(f) =Tr(p). Using
either Eq. (8) or Eq. (9), one obtains

Tr(f) = Jt d'K f(K)
(27r) '

$ Jl dK p„(K,)

e.= (n + —,) h(u + e
1

(6b) = Tr(p) (10)
where o. denotes the set of quantum numbers,
o. = (n, K, K, ), n =0, 1, 2, . . . , @„(x—xo) is the nor-
malized nth harmonic-oscillator wave function cen-

As shown in the Appendix, f(K) is also given by
the following exact integral representation:

exp( —P(e —p) [—,(1+iv)]) exp( —u tanh( —,Ptcu[ —, (1+iv)]))
f(K) = —

J dv
4 cosh( —, rrv) cosh( , Pica[ , (1+iv)])——

where u is the same as defined in Eq. (9). The integral in Eq. (11) can be done by closing the contour in the ap-
]

propriate half-planes. However, when e, ( p, ——, tee, the contour must be closed in the upper half-plane where

there are essential singularities coming from the poles of tanh( —,Pfcu[ —(1+iv)]). The results are in that case very

complicated and not easily interpreted as to their physical significance. It is better in fact to leave the integral as it
is; that is, when f is used to calculate some physical quantity, the integration over K and K,, can often be done first
which will eliminate the term containing the essential singularities. On the other hand, when e. ) p, ——, Aced, the

contour can be closed in the lower half-plane where 'there are only the simple poles of [cosh( —,ri v)] '. That case

corresponds to either the high-temperature limit when p, becomes negative or the extreme quantum limit when
]

—, leo ) p, . Closing the contour then in the lower half-plane, one obtains, for f(K),
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exp [—(m +1)p(e, —p)] exp [ u—tanh[ —(m + 1)p tee] j
f(K) = $ (—1)

m=p cosh[ —,
'

(m +1)pt(o]
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(12)

IV. SMALL-FIELD APPROXIMATION

f(K) =g(e)—
T

' l 2 1

1 d'g + 1 d'g
(13)

2 dE

When pike « 1, the field-dependent terms in Eq.
(11) can be expanded in powers of Pro Ke.eping
terms to order (Ptcu)' one obtains, for the distribu-
tion,

which of course reduces to the classical Boltzmann
distribution in the high-temperature limit; i.e., in Eq.
(15b),

g'(e) =exp[ —p(e —
I o)]

One should note that while Eq. (15a) is a new result,
Eq. (15b) is exactly the expression obtained by Tho-
mas4 for the classical Boltzmann electron gas.

In Eq. (13), e= t'K'/2m, el =e —e„and
g(e) = [exp[p(e —p)] +1] ' which, apart from the
quadratic dependence of p, on H is simply the zero-
field Fermi-Dirac distribution function. In the two
limiting cases of degenerate (keT « p) and nonde-
generate (ke T » p, ) statistics, one can do the in-

tegral in Eq. (4a) using the small field expression for
f(K) in Eq. (13). The results of these integrations
give the following expressions for p, as a function of
magnetic field:

V. LANDAU DIAMAG'NETISM

As a check on the validity of this transformed distri-.

bution, we consider the susceptibility for the two
cases, k~ T && p, and k& T && p„ In either case one
needs the thermodynamic potential 0, which can be
obtained from the expression fear the number of parti-
cles N = —(BO/Bp) ru. Using Eqs. (4a) and (13)
yields the following expression for 0:

and

1

1 AM
p, =pp 1+

12 2pp

p, = p, o 1+ (pto))1 ko)

12 2pp

k~T (& p,

kgT » p

(14a)

(14b)

fl = Jt d3K ke T In (1 —g)
(2m)'

12' 't

geo 1 dg 1 d'g
2 2 d6 3

(16)

which is valid for all temperatures. For the two limit-

ing cases then,

where p, p is the chemical potential in zero field,

po = p, (T,H =0). The expansions of f (K) about the
respective zero-field distribution functions are

and

f) = ——'
, Tr (eg) + —,

'
v(p, o) (—,

'
tee) ',

ksT « p, (17a)

and

f(K) =g'(e)—
2

1 dg'

12pp d 6

+1 dg +1 dg
2 de 3 de

keT « p, (15a)

n= —', Tr(.g)+ ,'Np( ,
' m)', ——

ke T » p, , (17b)

where v(po) Is the zero-field density of states evaluat-
ed at e = p, p. The susceptibility is calculated according
to

d BQ

f (K) =g'(e) [1+—,', (Pt~)'(Peg —1)]

ke T » p, , (15b)

where g (e) is precisely the zero-field Fermi-Dirac dis-
tribution

g'(e) = [exp [P (e —p, o) ] + 1] '

' From Eqs. (17a) and (17b), one then obtains the
results of Landau'

X=——v(IM, p)(et/2mc), ksT « p,

and

x = , N p(e t/2mc)', k, T » p—, —.

(18a)

(18b)
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VI. HALL EFFECT

When the effects of scattering can be neglected
(p~9 && I, where E is an average lifetime), Eq. (2) is

appropriate to describe the transport. Expressing Eq.
(2) in the momentum representation and considering

only the steady state, the following equation remains
to be solved:

[E+(t/mc) K x. H] Vxfr=0 (19)

where fr represents the total distribution. In the

linear-response approximation, the solution of Eq.
(19) is

fr =f —— (K„E» —K»E„)
tc rlf
H

(20)

I„=(Nec/H) E»

Therefore, the well-known result for the Hall

coefficient RII is obtained

(21)

The current is calculated using Eq. (4b) and yields for
the x component

When transforming to the momentum representation,
an exact summation over the Landau levels is possible
and an integral representation of the distribution is

obtained. The form of the distribution makes it possi-
ble to show by a simple calculation that the Hall
coefficient is given by its semiclassical value for arbi-

trarily large values of the field when scattering effects
can be neglected. The distribution can also be ex-
panded about the zero-field Fermi-Dirac distribution
function and the leading term is quadratic in the mag-
netic field. Using this small-field expansion of the d'is-

tribution, the well-known Landau diamagnetism for
spinless electrons is correctly predicted.

Iri the usual semiclassical treatment of transport in a

magnetic field, the zero-field equilibrium distribution
is always used. A problem presently under considera-
tion is determing to what extent neglect of field-

dependent terms in the equilibrium distribution is

justified. This problem is complicated when scattering
effects are included but is (nonetheless) one which

needs clarification.

Rn = I/Nec (22)
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APPENDIX

The details leading to Eqs. (9) and (11) are presented here. Consider first the derivation of Eq. (9) from Eq. (8).
The nth harmonic-oscillator wave function @„ is expressed in terms of the nth Hermite polynomial H„as

@„(x)=(1/2"n!)' ~(mes/Trt)'i exp[(—mes/2t)x']H [( rom/t)'i~ ]x
Using the Rodrigues formulas for the H„, the product $„(x+xp) $„(x—xp) can be written in the form

(Al)

i

y„(x —xp) g„(x +xp) = (—1)" m co

22n

1/2 n

exp (x'+x,') $ (—1)' Hi,
, p, ~

t

1
~ 1/2

2fP2 CU x H2n-2s

( 1/2
2m co

xp
A

'

(A2)

and for the Pourier transform, one then obtains

Jf dx exp( —2iK x) Q„(x —xp) @„(x+xp) =,„exp (K„'+K»') g Hq,
(—I)" 1/2 ' 1/2

2A
K~ H2„2, K,

Pl GQ

(A3)

The sum on the right-hand side of Eq. (A3) is simply (—I)"2~"n!L„, where L„ is the nth Laguerre polynomial, ' and

Eq. (A3) becomes

dx exp( 2iK,x) P„—(x —xp) @„(x+xp) = exp (—u) L„(2u)

where u = (t/m pp) (K„'+K»') is defined in Eq. (9),

(A4)
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To obtain Eq. (11) from Eq. (9), first write the distribution in the form

p„(K,) =exp(an +b)/cosh(an +b)

where a = ,—p—tc—o and b =——
—,p(e, + —, tee —.p). Next, Fourier transform [cosh(an +b)) ' to obtain

f(K) = 7 exp( —u) Jl dv, g L„(2u) [—exp[a(1+iv)]]" .
t~™ exp[b(1+i v)]

cosh( —rr v)
2

Then using the generating function for the Laguerre polynomials'

(AS)

(A6)

QL„[r)z"= exp, ~z~ &1
1 —z z —1

t

one obtains the integral representation of f(K) given by Eq. (11).

(A7)
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