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A theory of XPS and AES spectra of valence states of atoms in solids is proposed that allows for hole-
plasmon interactions in the final state. The model Hamiltonian includes an interaction term between plasmon
field and the resonant valence atomic orbital. The exact solution of the model is found for any shape of the
unperturbed local density of states. Plasmon effects show up not only as plasmon satellites, but also as a
very significant change in the shape of the main peak. The coupling to the boson field tends to localize the
valence hole. Eventually, if the coupling is strong enough compared to the level width, sharp resonances
appear in the spectra due to localized, small-polaron-like states. The degree of validity of a Born-
Oppenheimer approximation is assessed by comparison with the present exact results.

I. INTRODUCTION

X-ray photoelectron spectroscopy (XPS) and
Auger electron spectroscopy (AES) as applied to
the investigation of valence states in solids show
promise of becoming the key techniques for study-
ing chemical bonds at surfaces in a near future.
XPS and AES valence spectra are related to the
local density of states and can tell us a great deal
about bond strength, polarization, and symmetry,
and about the geometrical arrangement of atoms
belonging to or chemisorbed onto the solid.

While much experimental progress has been
achieved recently and excellent data are now
available in the literature, severe theoretical
problems remain to be solved before the useful-
ness of such techniques can be substantially ex-
plored. Problems involving valence states are
obviously much more difficult dynamical prob-
lems than those involving core states. Core holes
in solids behave essentially as structureless, “ex-
ternal” potential sources acting on the elementary
excitations of the system. Transient effects fol-
lowing the sudden switching of the core potential
are now fully understood in terms of Mahan,!
Noziéres-De Dominicis? asymmetry (in the case
of metals), and plasmon satellites. The problem
of a structureless deep hole interacting with a
sharp boson excitation field has been solved ex-
actly by Langreth?® several years ago. Valence
holes, on the other hand, are dynamical potential
sources that can react to the field of plasmon and
other excitations by changing their wave functions.
Since we are interested in obtaining the unper-
turbed valence density of states from the spectra,
we are faced with the coupled transient problem of
conduction-electron states and collective excita-
tions relaxing together.

In the present paper I address the problem of

electron spectroscopies of valence states in the
presence of a long-wavelength plasmon excitation
field. As Langreth* pointed out, long-wavelength
plasmons are the only ones that behave as reason-
ably sharp excitations, while plasmons with lar-
ger wave vectors g tend to merge into the particle-
hole continuum, and do not produce any prominent
structure in the spectra. Particle-hole excitations
will not be included in the present treatment for
the sake of simplicity. Nevertheless, our pro-
cedure is quite meaningful even in the case of
metals, when particle-hole shake-up is very ex-
tensive. The reason that it is permissible to deal
with plasmons separately is that we can use the
Born-Oppenheimer principle in reverse,* treating
the plasmon coordinates as the “fast” variables,
and the electron-hole coordinates as “slow” vari-
ables. Presumably, the particle-hole excitations
will perturb our results (in the case of metals) by
causing an extra relaxation shift and by making the
line shapes somewhat more asymmetric. This
effect could be included as a second stage in our
treatment, by perturbation theory, or perhaps by
extending Doniach’s pseudoharmonic approximation.’
The (initially occupied) resonant valence orbital
under investigation might be an impurity state, or
a localized d state in a transition metal. It will be
described within the familiar Anderson formalism®
in terms of a localized atomic orbital qua(f') and a
set of (orthogonalized) band states ¢,(¥). In
order to set up a reasonable model Hamiltonian
for the coupled valence hole-plasmon system,
we must assess the relative orders of magnitude
of the various hole-plasmon interaction vertices.
First, consider the vertex

L~ [@°r o BV @),

where V (T) is the potential associated with a
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plasmon having wave vector gq. Clearly, this is

a very important term, since plasmons interact
strongly with a localized hole charge distribution,
and we shall include it in the Hamiltonian. Next,
there are vertices like

L~ [ @37 ¢ (B0, (BIV ().

Since the potential of a long-wavelength plasmon
is almost constant over an atomic wave function,
these terms (of order O(lq l) are negligible. Fin-
ally, terms like

Lo~ [ @7 o ® BV (F)

represent conduction electron-plasmon scattering.
Long-wavelength plasmons are rather sharp ex-
citations just because they do not interact with the
Bloch states too strongly. Actually, our wave-
functions ¢,(¥) should represent modified Bloch
states, orthogonalized to ¢ (¥), and the kinetic
restrictions preventing scattering should be par-
tially relaxed. However, since I, =0(|q|), such
vertices are still negligible in our problem.

Thus, we are led to the rather appealing physi-
cal picture of the valence hole being strongly
screened by the plasmons as long as it remains
localized at the atomic site where it was created,
whereas a delocalized hole is effectively decou-
pled from the plasmons. Such description should
be good, at least qualitatively, to deal with several
transient problems involving boson excitations
other than plasmons. It should be useful also in
the theory of electron spectroscopies of chemi-
sorbed molecules. In the latter case, the boson
field should be identified with the surface-plasmon
field which is largely responsible for the image
potential,” and the present mathematical frame-
work should be essentially adequate. The only
point of real difference is that when dealing with
surface plasmons one must be careful with the
vertices [, that may not, generally speaking, be
negligible.

From the mathematical viewpoint, the “local-
ized” nature of the coupling term in the Hamil-
tonian leads to an exactly soluble problem. The
method used is an extended version of the pro-
cedure by which I found the exact solution of the
Auger XVV problem.® The special form of the
coupling term is most directly exploited in looking
for an algebraic equation for the appropriate ex-
pectation value of the nth power of the Hamiltonian.

In Sec. II, I demonstrate the simplicity of my
mathematical procedure by working out Langreth’s?
core-hole problem. Section III is devoted to the
formal theory of photoemission from a valence
level. In Sec. IV the theory is extended to Auger

transitions involving one final-state valence hole.
The physical implications of the results are dis-
cussed in Sec. V. General conclusions are drawn
in Sec. VI.

II. PHOTOEMISSION FROM A DEEP CORE LEVEL

As an introduction to the concepts and methods
of Secs. III-VI we shall review the core-hole
problem and solve it by a new technique. The
model is the same as proposed by Lundquist and
later solved exactly by Langreth.® Its simplicity
lies in the fact that the deep hole has no internal
degrees of freedom and only acts as an external
perturbation on the boson excitation field of the
solid. Thus, before the hole is created, the model
Hamiltonian is just a free-boson Hamiltonian. In
obvious notation,

HO =2w0a1;aa’ (1)
q

and the system is in the ground state ]g) with no
bosons excited. After the sudden creation of the
deep hole, the Hamiltonian becomes H=H,+H,,
with

H, =Zga(a;+aq) . (2)

The density of states that we observe in the photo-
emission spectrum is

D(w)=%f‘dte‘“'(gle"”'lg). (3)

The Fourier transform D(f) can be rewritten in
form

o=y ",

n=0

with (4)
h,=(g|H"|g) .
We can assume, without loss of generality, that
H,|g)=0. Then clearly
hy=) gla,H™) , n>0. (5)
Q

This is readily calculated because our Hamiltonian
is such that

a H*=(H+ w ) a, +ga§(H+ wq)“'s'lH‘ .
Therefore,
(a1 = (g, /w K(H + w, ) —(HY].

By summing the Taylor series, Eq. (4), we ob-
tain
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D(t)=1- iz -fzjo" dt’D(t')(e*wet’ —1).

q Q

This equation is elementary and its solution
2 2
D(t)=exp <—Z%§ +Z:%‘é(e"“’a‘+iwqt)) (6)
q q q

coincides with Langreth’s result. Our technique

is quite simple and lends itself to generalization to
cases in which the hole is free to react to the
boson excitations, as we show below.

II1. PHOTOEMISSION FROM A VALENCE LEVEL

The model Hamiltonian for the noninteracting
hole-boson system may be specified as follows:

H,= cac;ca+2<,c;c,,+Z:Va,(c;c,afc;',c,,)
R
+qua;a¢ . (7)
q

The first three terms of H, make up the well-
known Anderson model, with €,, C! denoting the
atomic energy level and hole-creation operator,
respectively, while €, and C, refer to the band
states. Thus, the V, are the familiar hopping
matrix elements between the atomic and the Bloch
states. Spin indices are suppressed, since they
are unessential in the present problem. The last
term in H, represents a free-boson field. Most
collective excitations in solids may be conveniently
described as bosons. Plasmons and optical pho-
nons are often adequately represented by disper-
sionless bosons w, = w, and the electron-hole ex-
citations in an electron gas are approximated by a
linear dispersion (w, proportional to g up to a
certain cutoff value).

A common feature of such boson excitations is
that they are strongly coupled to a localized
charge (an electron or hole in an atomic orbital),
but they are effectively decoupled from a delo-
calized Bloch electron. Therefore, the hole-
boson coupling is of the form

H1=naz:g¢(a:+a¢) , (8)

where n,=C}C, and the coupling coefficients g, are
proportional to the gth Fourier component of the
electrostatic potential produced by the localized
charge. The factor n, in H, ensures that the
bosons interact with the valence hole only when

it is in the localized state. Since the hole is free
to diffuse back and forth from the solid, it acts
essentially as a dynamic perturbation. In photo-
emission, a hole is produced at the atomic site,
and the photoelectron spectrum is proportional to

a square matrix element times a density of states
D(w) that carries all the interesting information.

Before being photoionized, the system was in the

ground state |g) of H,.

Of course, | £) is a product of the vacuum state
of the bosons and the ground state of the electron
system, where we assume that the atomic orbital
is occupied by an electron. The ionizing event
instantaneously takes the system to the state
|#y=C!|g) (in the sudden approximation). The
coupled electron-boson system will then relax to
its new ground state. The density of states that
weé want to compute is given by

D((.u)=§r—j°° dt e'“¥i| et . (9)

This can be calculated exactly as shown below.
The procedure essentially consists of a repeated
application of the method that allowed us to solve
the hole-hole interaction problem in the Auger
spectra of solids.?
The Fourier transform of D(w) is

D(t)=;(_i!t)"0n, D,=(i|H"|i). (10)

n

If there were no electron-boson interaction (4, =0)
the corresponding quantities D°(¢), D could be
computed by known methods. Thus, we should like
to write down D(¢) in terms of D(¢).

To this end, we use the operator identity

"= Hy+ S HEH (11)

r=1

It follows that

D"=D2+qui(i|H;"li)(i|aq H™r|dy . (12)

rsl
By defining
B(q,t)=(i|ae"t|d), (13)

we obtain, by summing the Taylor series,

D()=D%t) - i3 g, ['dt DAt -1)2(q,t"). (14)

The new unknown function ®(g,t) can be treated in
the same way, yielding the equation

#(q,0)=~i [ " dt? DOt — t)etadt ),
0
x (Zg,f(qlqz,t’Hg,D(t')) ,  (18)
a2

‘I’(qlqz,t)=(aqlaqze"”’) . (16)
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Ry iterating the process, we can form a set of
infinitely many integral equations for a hierarchy
of unknown functions. Define

q)(quqzv"'qurt) <a"x CPLRRR

The general equation is

aqke“”‘) . (1)

i)(qp- . ,qk,t)

= _if‘ exp[—i(w, + - - + W, )t - )] Dt - 1)

X[gq’.d’(qz, e }Qhat')+ e

+gq:b(q»19‘ .. )qk-lat')

+qu,<1>(q.l, ... ,q,,,q,’t')] at’. (18)
<

If the hole is strictly localized (D°(¢)=1) the above
set of equations is solved by the ansatz

®(qy,- -1 qns)=fq,,2)f@y,1) - .. flgp, t)D(E).

It turns out that
flg,t)=(g,/w)e et - 1),

and D(t) coincides with Langreth’s solution, Eq.
(6). For general D°(¢) and general boson disper-
sion law, our set of equations looks rather awk-
ward. In the following, we shall concentrate on
the case of dispersionless plasmons w, = w,, with
general D°,

1t is convenient to define the quantities

k(t) Z qu ng s qu‘b(qpqz’ coe qk,t) (19)

aq

and to Laplace transform our equations. They be-
come

D(s)=D(s) —iD%s)®,(s)
®,(s)= -iD%s +iw,)[BD(s)+ &,(s)]

®,(s)= —iD(s +ikw,)[kB®,.(s)+ By, (s)], (20)

where 3 =Eg 2,

The procedure for solving the above infinite sys-
tem involves a limiting process. One can assume
®;,,=0, solve the first L equations, and finally
let L—- . Clearly, ¢,—~0 for L—«. The result
can be expressed as a continuous fraction

DP(s)

BD°(s)D’(s +iwp)
1 2BLP(s +iwp)LP(s +2i wp)

1+ e

D(s)=

(21)

This is our closed-form exact solution.
The density of states that we need is finally given
by
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D(w) =% lim ReD(s =0—iw). (22)
80
6%

The continuous fraction of Eq. (21) is difficult to
handle analytically, but its numerical evaluation
is straightforward.

The density of states D(w) that we have computed
is just the diagonal component D, (w) of a density
of states matrix D, .(w), with the indices m and
m’ running over the complete set of single-elec-
tron valence states of the sample. In general,
along with D_(w) one must consider other compo-
nents D,,(w) and D,,,(w), where & now refers to
the band states in the Hamiltonian [Eq. (7)]. The
photoelectron yield per unit time will be propor-
tional to 25, M, ,M% D, (w), where the matrix

m'p " mm'
elements M may be written as usual

= fa%zqm — iV |mye T (23)

Here e and q are the polarization vector and wave
vector of the incoming x ray and Ip) is the outgoing
fast electron state. Since the band states |k) have
to be orthogonalized to the localized state |a), they
will give nonvanishing matrix elements M,, and,
will contribute to the photoelectron yield. How-
ever, once D(s)=D,_(s) is known from Eq. (21),

the other components of the matrix D__,(s) can

mm?

also be specified. It is easily seen that

D (s)==i 2D, (s) (24)
R
and
_ by V.V
Dk“’(s)_s+i€k (s +i€)(s +i€,) Dygfs) - (25)

Equations (21)-(25) allow us to compute all the
contributions to the photoelectron cross section.

IV. AUGER CORE-CORE-VALENCE TRANSITIONS

Auger transitions involving valence electrons
can provide a powerful probe of chemisorption
bonds and impurity states. By properly analyzing
the Auger core-valence-valence (or XVV) spectra,
involving two valence holes in the final state, we
can obtain the local density-of-states matrix of
valence electrons.® The analysis is simplest in
the case of Auger core-core-valence (or XX’V)
spectra, involving one final-state hole in an inner
level and another hole in the valence band. In
principle, XX’V spectra are directly related to
the local single-electron density of states. How-
ever, in order to perform an accurate quantitative
analysis of the experimental data, we have to deal
with the complications due to the presence of col-
lective excitations. In the present paper we are
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interested in the effect of plasmons on XX’V Auger
spectra of chemisorbed or impurity atoms.

In the initial state, there is one deep hole in the
core of the atom that polarizes the plasmons. The
hole lifetime before the Auger transition is as-
sumed to be long enough to allow for the complete
relaxation of plasmons and valence electrons. The
Auger transition eventually replaces the core hole
by another core hole plus a valence hole. The
core-hole potential will not change with the trans-
ition, provided the symmetry of the core hole is
the same in the initial and in the final state. If
the core-hole symmetry varies, the higher mul-
tipoles of the core potential will also vary. In such
cases, the interaction between the core and plas-
mons of appropriate symmetries will be suddenly
turned on or off. In the present paper we confine
ourselves to cases in which the latter effects are
negligible, or to the case of the equal deep-hole
symmetries in the initial and final states.

The valence hole can be represented by the An-
derson model Hamiltonian as in Sec. III, namely,

H,,=<ana+§; eknk+2; Va(CiC,+CIC,). (26)

The valence-hole correlation function, in the ab-
sence of plasmons,

D) =(g,|CetCllgy , 27

where |g,) is the hole vacuum, can be calculated
exactly,® and characterizes the electronic struc-
ture of the undisturbed atom. Our task will be to
see how it appears in the Auger spectrum.

The model Hamiltonian of the coupled hole-plas-
mon system in the initial state is

H,=H,+ Una+z wqa;aq+2dq(aq+a:)
q q

+na2gq(a:+aq). (28)

The term Ur, represents the shift of the valence
level due to the core-hole potential. The next term
is the free-plasmon Hamiltonian. The last two
terms represent the coupling of plasmons to the
core and valence holes, respectively. The plas-
mon-valence hole interaction is taken to be local-
ized, as discussed above. Before the Auger trans-
ition takes place, the system isinthe ground-state

| g)ofH ; withno valence holes. The (intra-atomic)
transition suddenly takes the system to the state
C; Ig), while the Hamiltonian becomes the final-
state Hamiltonian,

H,=H,+AE, . (29)

Here, AE_ is the energy difference between the

initial and final core-hole states. Again, we are
using the sudden approximation. Interatomic trans-
itions would bring about the states C/ |g), in anal-
ogy with the XPS case (Sec. III). However, it is

an important feature of the Auger effect, when
compared to photoemission, that such terms are,
generally speaking, rather unimportant (see, e.g.,
Ref. 9).

In this respect, the difference between Auger and
XPS lies mainly in the form of the matrix elements
that allows us to consider AES an almost ideally
local technique. Therefore we do not worry about
the off-diagonal terms of the density-of-states
matrix (see Sec. III); our unknown is rather the
diagonal term

V@)= (g|C e **Cl|g). (30)

In order to proceed, it is convenient to introduce
new boson coordinates A , defined by*

a,=A,-d,/w,. (31)

The canonically transformed Hamiltonian is H ;
=H,+H,, with

d
H0=H,,+(U— 2y —:-JgJ)na+ 3 wAlA,
q q q

2
- sk, (32)
q wq
H1=n02; g Al+A). (33)

The transformed ground state [g'r) is the vacuum
state for the A  and the plasmon variables do not
contribute to the correlation function L°(¢) defined
in terms of H, alone as

DP(t)=(g |c, et HtC!|g) . (34)

Now let W=U- 22, (d,&,/w,). The function D°(¢)
differs from D,(¢) tEq. (27)4] by a phase factor
exp{-i [AEc+f(dﬁ/wa )]t}and by a level shift Wn,
in the Hamiltonian. This implies that D°(¢) can

be readily written down in terms of D,(¢). In fact,
the analog of Eq. (14) in this case is a Dyson equa-
tion yielding

LP(s)=Dy(s+in)/ 1 +iWD,(s +in)], (35)
with
n:AEc— E dqz/wq .
qQ
QOur final task is to write down D(s) in terms of
DP(s). Since this problem is the same as the XPS

problem, the exact solution has already been found
in Sec. III [Eq. (21)].
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V. DISCUSSION

The above results may be summarized as fol-
lows. X-ray photoelectron spectroscopy and Auger
spectra involving one valence hole in the final state
can be discussed in terms of a local density of
states D, (w) calculated in the presence of the
hole-boson coupling. Off-diagonal elements of the
density-of-states matrix should be of minor im-
portance, atleast in AES; however, they can be
expressed in terms of D, (w) as in Eqs. (24) and
(25). Moreover, D, (w) can be written down in
terms of a local density of states Dga(w) calculated
in the absence of any coupling with the boson field.
In the case of dispersionless plasmons the only
other ingredients needed to specify D in terms of
D° are the plasma frequency w, and the square
coupling constant 8=2,g2. In principle, D? (w) is
easy to calculate. In the case of XPS, D° is just
the single-electron density of states as obtained
from an Anderson model, and contains the infor-
mation about the unperturbed local electronic
structure that we are interested in.!° In the case
of AES, the relevant D° is related to the unper-
turbed density of states through a simple “impuri-
ty state” formula| Eq. (35)] involving the “screened”
deep-hole potential W. Therefore, the main phy-
sical point of our discussion is the relationship
between the “observed” density of states D and its
“bare hole” counterpart D° [ Eq. (21)].

In a very simpleminded approach one could have
guessed that D(w) should be something like a con-
volution of D°(w) with Langreth’s function [as given
by the Fourier transform of Eq. (6)]. This cor-

FIG. 1. Density of states D(w) for a=0.1 and 6=0.2w,
(see text). The dot-dash line represents the unperturbed
D, (Eq. 36) convoluted with Langreth’s function; the
dashed line is the Rorn-Oppenheimer approximation
normalized to e~%; the solid line is the exact solution.

responds to the idea behind the Doniach and Sunjic'!
treatment of XPS line shapes in metals. In fact,
this is true in just one case. K D°(w) is taken to
be a Lorentzian, it is not hard to see that the so-
lution of Eq. (20) is the same as Langreth’s func-
tion, with all the 6-function peaks broadened into
Lorentzians. This “obvious” case is very patho-
logical in several respects. Mathematically, a
Lorentzian D°(w) implies that the one-electron
Hamiltonian does not have finite moments, and
cannot represent any realistic valence band.
Physically, the convolution result implies a com-
plete lack of correlation between the decay of the
hole and the plasmon field. Therefore, while the
trivial solution may be useful in introducing core-
hole lifetime effects, it is certainly irrelevant to
the problem of valence holes.

Hole-plasmon correlation effects are important
provided D° is allowed to have finite moments, as
it should be. In order to bring out the main phys-
ical features, it is convenient to assume a simple
model. Let D°(w) be the symmetric, triangular-
shaped function having a half-width 6 at half-max-
imum

D%(w)=(1/25 - |w|/46%)0(26 - |w]|), (36)

where © is Heaviside’s step function. In our nu-
merical computation we also need the Hilbert
transform I°(w), given by

w+26
w=20

w? - 462
w2

w
+Wln

111°(w) =2161n (37)

In Figs. 1-3, we see the resulting D(w) for sever-
al values of the width parameter 5/ w, and of the
coupling strength a =B/w2. The convolution of D°
with Langreth’s function is also shown for compar-
ison. We notice that, besides producing satellite
peaks, the plasmons affect the shape of the main
peak in a characteristic way.

For weak coupling (2<6/w,) the peaks become
asymmetric with a tail on the same side as the
energy losses due, e.g., to electron hole and other
excitations. Thus, asymmetries due to plasmons
may superimpose on those due to energy losses,
even though their origin is different. This point
can be important in analyzing the experimental
spectra. For stronger coupling (a~5/w,) the peaks
become very much sharper than the unperturbed
ones. The reason for this narrowing is clearly
that the plasmons can only screen a localized hole
and tend to favor localization. Eventually, for
a>8/w,, the hole may become self-trapped, and
a localized state develops that recalls a small
polaron. Indeed, as a byproduct of our calculation,
we have also obtained the exact ground-state ener-
gy of our final-state Hamiltonian that could be in-
terpreted as a continuous model for a polaron
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FIG. 2. Density of states D(w) for a=0.1 and 6=0.1w,.
Dot-dash line: simple convolution result. Solid line:
exact result. The peaks tend to become sharp and asym-
metric because the plasmons tend to localize the hold.

bound to our impurity. I note in passing that the
position and intensity of the 6-function peak are
best obtained, in a numerical evaluation of Eq. (21)
by looking at the pole in the imaginary part of D(s).
The results shown in the figures refer to situa-
tions in which the level width 6 is much less than

4 A

34 [

N A
1 \ RIS
o 1 KON
Wp
FIG. 3. Density of states D(w) for a=0.2and6=0.1w,.
Dot~dash line: simple convolution result. Solid line:
exact result. The vertical bars represent 6-like

singularities due to localized states of the hole.

the plasma frequency, since this is usually true

in solids. In such conditions, the plasmon vari-
ables may be considered as fast variables as com-
pared to the hole coordinates. It may be interest-
ing to know how good the Born-Oppenheimer ap-
proximation would be in calculating the shape of
the main peak. The Born-Oppenheimer approxi-
mation would consist in assuming that the plas-
mons “have time” to relax completely around the
resonant orbital before the hole moves, and the
hole effectively sees the potential of a static
screening cloud. Thus, the problem would reduce
to a simple impurity problem, and the result would
be given by Eq. (35) with n=0 and W = —aw,. The
“Born-Oppenheimer” density of states Dgy, nor-
malized to e™ to allow for the presence of plasmon
satellites, is shown in Fig. (1) for the sake of
comparison. As far as I know, this is the first
time that the degree of validity of a Born-Oppen-
heimer approximation can be assessed by direct
comparison with an exact result. It can be seen
that for 8/w,=0.2, Dy, turns out to be qualitative-
ly correct, and a much better approximation than
the simple convolution results.

VI. CONCLUSION

Any attempt to obtain density-of-states informa-
tion from XPS and Auger valence spectra should
be based on a separation of one-electron proper-
ties from many-body final-state relaxation effects.

In the above discussion it has been shown that
the hole-plasmon coupling can produce not only
plasmon satellites, but also an important change
in the shape of the peaks. If the coupling is strong
enough compared to the single-electron level
width, the plasmons will cause the localization of
the final-state hole and the occurrence of sharp
resonances in the spectra.

The present treatment is based on a model
Hamiltonian that includes those coupling terms
that are important for long-wavelength bulk plas-
mons. A new mathematical technique has been
proposed that allows us to solve the problem ex-
actly in the dispersionless limit. The results
should allow for the comparison of specific one-
electron local-density-of-states calculations with
experiment, or, equivalently, for a first-princi-
ples calculation of the spectra. Such a calculation,
though feasible nowadays, involves complex nu-
merical computations that are outside the scope
of the present paper.

Finally, I should like to mention several related
problems that are still open. The inclusion of
boson dispersion in the present scheme, though
probably fairly unimportant in the case of plas-
mons,*? would be of interest in problems involving
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acoustical phonons and electron-hole excitations.
However, this generalization does not seem to be
a trivial one. Another challenging problem arises
in the connection with the coupling of holes to sur-
face plasmons. Since the latter may cause large
electric-field fluctuations close to the surface, it
may be necessary to use a more complicated
Hamiltonian than the present one, as pointed out
in Sec. I. Instead, a theory of x-ray emission
from a valence band, including plasmon effects,
can be built up within the present model, and a
solution can be obtained by the present formalism.
This sort of calculation is currently in progress,
and the results will be reported elsewhere. The
important new result of the present paper is the
exact density of states calculated in the presence
of the hole-plasmon coupling. The solution of a
model field theory is interesting on its own right

and we have shown that nontrivial effects should
be found in the experimental spectra. However,
inelastic-scattering effects due to the outgoing
electron are also important in many cases and
should be included in a complete theory. We al-
ready have a good physical understanding of such
effects. They could be taken care of by extending
well-known treatments given by Chang and Lan-
greth!® and Sunjic and Sokcevic.!* Such important
refinements, as well as the approximate inclusion
of electron-hole shakeup,'® are deferred to a fu-
ture publication. To sum up, the application of
electron spectroscopies to the investigation of
valence states involves a very interesting area of
theoretical research, and, despite many intriguing
problems, the idea of getting reliable densities of
states from such techniques is rapidly becoming
a practical proposition.
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