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A method of testing the validity of the Rayleigh assumption is presented. The test can be applied for any
one-dimensional or two-dimensional surface of analytic shape. It can be used for Dirichlet and Neumann
boundary conditions and also when the surface is penetrable and a refracted field exists. The test is based on
the asymptotic evaluation of the diffracted order amplitudes and in this way is similar to Millar’s potential-

theory analysis.

The problem of the diffraction of an incident
plane wave from a corrugated surface is often
solved by a method, described below, known as
the Rayleigh method.! It has been shown in the
case of Dirichlet boundary canditions for the si-
nusoidal surface ¢(x)=hcos Gyx, that the method
will converge if? and only if® Gy2< 0.448. 1t is
useful to be able to establish convergence in more
general circumstances since the Rayleigh method
is often used not only for surfaces of other one-
dimensional profiles, but also for two-dimensional
surfaces ¢(x, y), for Neumann boundary conditions,
and for cases where the surface is not impene-
trable and a refracted field exists. In this note,
we will give a simple, heuristic way of deter-
mining the validity of the Rayleigh method in all
the cases just mentioned.

Consider the case of a plane wave, ;
incident on a periodic surface of reciprocal-lat-
tice vectors G. For points outside of the selvedge
region (i.e., outside of the region where ¢ . <z
<& )» the scattered field can be represented by
an expansion in diffracted orders,
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The wave vector of the incident wave, &; =(K,, -p,),
has components parallel (Eo) and perpendicular
(-p,) tothe normal z direction. Likewise, the scat-
tered wave vectors K are written k; = (K¢, pg).
They are given by the Bragg diffraction condition
K;=K, +G. Energy conservation gives b

= (k2 -KZG)‘/Z, where (1) tells us to take the root so
that p; is positive real for K;< k; and positive
imaginary for K; >k;.

The Rayleigh method consists of assuming that
the expansion of the scattered field in diffraction
orders, Eq. (1), can be analytically continued all
the way back to the surface so that the coefficients
F; can be determined by the requirements of the
boundary conditions. The scattered field must be
analytic everywhere above the surface, including
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the selvedge region, because it is the solution of
an elliptic differential equation.® It is true, then,
that expansion (1) will represent the scattered
field as long as the series converges. In order to
test for convergence, we will derive an exact
equation which expresses the expansion coeffici-
ents F; in terms of the boundary values on the
surface. Though these boundary values are not
known beforehand, it is possible to determine the
convergence cf (1) by assuming certain analytic
properties of the boundary values which are likely
to hold when the surface profile ¢(x,y) is itself an
analytic function.

The convergence condition. We can find the
wanted expression for F; by beginning with the
exact equation for the field,!
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The surface of integration S$’ is coincident with the
physical surface. The normal derivative 8/8n’
points outward from the surface. We employ a
notation for the position vector T which is similar
to the notation for E; viz., r= (ﬁ,z). The Green’s
function has the integral expression!s ®
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with p=(k2 —K?)!/2, Using this G(F, ') in (2) and
taking z > &, We get

1 . et -T% B’
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(3)

The integral is over the unit cell which has area
A. We have defined
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Convergence can now be determined by examin-
ing (3) as |G| ~. The phase ¢p(R’)=-ipst(R’)
- iKg R’ reduces to ¢(R")~ |G| ¢@®R')-iG-R’ and is
rapidly varying in this limit. The integral in (3)
can then be evaluated by steepest descent if it is
true that the quantity in braces is analytic in R for
a region between the real axis and the stationary
point of ¢. We will assume that this is true and
discuss this point later. The equation for the
stationary point is

3¢c®) . G _
_TR—-_Z'?—T—O. (5)

The steepest descent evaluation of (3) will lead to
an expression which has the exponential dependence
expl | G| ¢(R,) —iG *R,], where the subscript s
stands for evaluation at the stationary point. The
factor in (1) that multiplies F, exp [i(pgz +Kg R/,
goes like e~ '¢'% for large |G|. Hence, in order
for (1) to converge at points including the lowest
points in the selvedge region, it must be that

~|Gl¢.. +Re[|G|t®,)-iG-R,]<0. (6)

This gives a test for convergence: the stationary
point is determined by (5) and then used in (6).
Many times this can be done analytically, but even
when it cannot, it is easy to solve (5) numerically
for R, and then test for convergence with (6).

The one-dimensional sinusoidal hard wall. As
the first of two examples let us show that the meth-
od just described leads to the result already es-
tablished for the one-dimensional profile £(x)
=hcosGyx.2* 3 Equation (5) gives the stationary
point: ~hG,sinGyx, —i=0. With Gyx, =—sin™'(i/
Goh) and Lmin = —h, (6) then gives

Goh +[1+(Gh *] 12 = sinh™'(1/G ) <0.

This criterion determines the maximum value of
G,h for which the Rayleigh method is valid. Put-
ting G,k =(n2 -1)/2n we obtain Petit and Cadil-
hac’s® equation for the critical value of 7,

min

e"=(n+1)/(n=1) or n=cothin.

This has the solution n=1.543, corresponding to
Goh<0.448,

The two-dimensional sinusoidal hardwall. As a
second example we will examine the two-dimen-
sional corrugated surface ¢(x,y)=5h(cosGyx
+c0sGyy). In this case, G=G,(m% +ny) can be-
come large in different manners; that is, m or n,
or both can become large. All of these cases can
be handled together by putting m=al and n=pl with

a=cosf and B=sinf. Then, convergence is tested
for arbitrary 6 as l—~, so that |G|=G,l~ and
bpe—~iG,l. Equation (5) gives the stationary point,

a1 fila ot
GoXs ==sin™! <Z> , Goys=-sin 1<_u£0> )
with uy=Gyn/2. For ¢,... =—h, (6) gives the equa-
tion

2u0+(u<2, +a2)1/2+(u§+32)1/2

- sinh™}(a /u,) — sinh™(B8/u,) =0 (7)

for the critical value of u,. Roots %, of (7) are
found numerically for values of 6 between 0° and
45°, which is sufficient in this case because of
the symmetry of the surface. The smallest of the
roots is the overall critical value for this two-
dimensional surface. The value is found to be 2,
=Gy,h =0.592. This is the root that occurs at 6
=0°

The Rayleigh method has been applied to cal-
culate the scattering of He from a LiF (001) sur-
face.®~® The surface parameter % is varied in or-
der to match experimental data. The unit cell of
the surface is a square of side 2.84 A, giving G,
=2.21 A”!. This implies that # should not be lar-.
ger than 7 =0.268 A if there is to be strict con-
vergence. Although this condition is often not met
(e.g., h=0.305,° and” £ =0,295), it is still probably
true that the Rayleigh method gives good asymp-
totic results. That is, the boundary conditions
can be satisfied to a good approximation with a
finite number of terms in the expansion even
though the expansion eventually diverges.

Analytic properties of the boundary values. The
analysis above is based on the assumption that the
boundary values H(R) and L(R) are analytic from
the real axis to the stationary point. We asserted
that this is likely to hold when the profile @) is
an analytic function. This can be seen by examin-
ing the self-consistent equations® for boundary
values when either Dirichlet or Neumann condi-
tions hold:

For Dirichlet conditions, with P denoting prin-
cipal value,

aYs) _, (dyi(s) 1 3G(s, s’)
on _2( an _41rpf an

X_B_Z_IJ(S’_) dsl> . (8)
on
For Neumann conditions,

B 1 8G(s,s’)
Y(s)=2 (w‘+41rpf on’

Both s and s’ denote points on the surface; i.e.,
s means T=(R, ¢([R)). The kernel of (8),

c})(s’)ds') .9
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8G(s,s’) _ 8 <e"‘"“" )
on on \ |T-F'| ) -q®, o=c®n’

is an analytic function for real values of R#R’ if
z(R) is an analytic function. Since the point R
=R’ is excluded from the integral, we can con-
clude that 8y(s)/n is analytic for real R. More-
over, it will remain analytic as R takes on com-
plex values if |¥ -%’| is never zero as R’ ranges
over its (real) values of integration. We will not
pursue this point any further. For the case of a
simple sinusoid £(x)=% cosG.x, Millar? rigorously
shows that the stationary point and the real axis
lie within an analytic strip.

Nonanalytic profiles. When the surface profile
Z(R) is not analytic, (3) cannot be evaluated by
steepest descent so that special considerations are
needed to discuss the validity of the Rayleigh as-
sumption. If the surface has sharp corners, the
field will usually be singular at the corners.’® I
the field is singular, then by a theorem given by
Millar?, the Rayleigh assumption is invalid. It
should be pointed out, though, that under special
circumstances, the field is not singular at a cor-
ner and the Rayleigh method provides an exact so-
lution. Meecham!! gives an example of this: for
an echelette surface with Neumann boundary con-
ditions the incidence angle and the incident wave-
length can be chosen so that the Rayleigh series
(1) terminates after only one term.

A nonanalytic profile can be approximated by a
truncated Fourier expansion, an analytic func-
tion, so that the method of this paper can be ap-
plied. We did this for a symmetric sawtooth for
which only odd cosine terms appear in the Fourier
expansion of {(x). For G,2=0.1, where G, is the
fundamental and 2/ is the peak-to-peak amplitude,
the convergence test, (5) and (6), indicates that
the Rayleigh method is valid when g(x) is repre-
sented by the first 10 odd cosine terms and in-
valid when ¢(x) is represented by 15 terms.

Penetrable surfaces. The Rayleigh method is of-
ten used when a refracted field exists. In this case
the refracted field is also expanded in diffracted
orders,!' 12

> Rette T, (10)
g

The vectors E'G are determined by the Bragg con-
dition so that k¢ = (K, —q;) where gg = (k2 — K%)'/2,
Equations (1) and (10) are extended to the surface
from above and below, and boundary conditions are
applied in order to find F; and F;. The analysis
already used to determine the convergence of (1)
still applies. We can go through the same analysis
for (10), only using the Green’s function G'(»)
=e®7/y, where k' =ke!’? (see Ref. 1). Since q;
~i|G| when |G|~ and since (10) must converge
up to the highest point within the material £y ,

the convergence of (10) is determined by the equa-
tions

or  iG
;ﬁ,+_IET_0’ (11)

|G|z . +Re[-|G|tR,)-iG-R,]<0. (12)

max
Just as in (5) and (6), Eq. (11) is used to deter-
mine the stationary phase point, and then conver-
gence is tested by (12). In particular, the conver-
gence criterion is independent of €.

Conclusion. When the Rayleigh assumption is
valid, a simple, exact calculation of the scatter-
ing from a periodic surface is allowed. A rigorous
criterion for its validity has been known for some
time in the case of a simple sinusoidal surface.?*3
We have given a method of testing the assump-
tion’s validity when it is applied to any analyti-
cally shaped surface. The first steps of this test,
the applicationof Eqs. (5) and (6), are easily car-
ried out, and one can usually stop here and have a
high degree of confidence of the validity of the
Rayleigh assumption for a particular surface. In
the case of Dirichlet or Neumann boundary condi-
tions, one can go on and rigorously establish the
validity by examining the locations of the singu-
larities in the kernel of (8) or (9).

Even if the Rayleigh assumption is invalid, the
general method of calculation can sometimes be
judiciously applied to get good asymptotic results.
Also, it is now known!? that when the coefficients
(1) are calculated by a variational procedure,'! an
exact solution is obtained.
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