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The tables of I-dependent ion-core radii (! = 0,1,2) derived from free-ion quantum defects and previously
presented by Simons and Bloch are extended to include halogens and the group-I-B metals (Cu, Ag, and
Au). From these radii hybridized bond-orbital coordinates with o~ and 7 character are formed. The dual
bond-orbital coordinates are used to discuss the structures, uniaxial distortions, and melting points of more
than 100 simple binary compounds belonging either to the octet family A™BF~" with P =8 or to the
suboctet family 2 < P < 6. Two conclusions emerge: the quantum bond-orbital o~ and 7 dual coordinates
describe the physical properties of these materials much more accurately than traditional classical coordinates
such as size and electronegativity, and the dual quantum coordinates are equally accurate for octet and
suboctet compounds. The success of the quantum coordinates implies that bond charges with o and =
components make important contributions to the structural energies of these materials. The dual coordinate
cellular scheme developed by Miedema and co-workers to describe the sign of the heat of formation of liquid
and solid metal alloys is examined within the context of orbital, /-dependent ion-core radii. We show that
Miedema’s original coordinate set is unphysical, but that his inductively revised coordinates which are
derived from more than 500 binary phase diagrams are remarkably accurate. Apparent irregularities in the
revised coordinates are shown by comparison with the orbital shell model to be correct and the consequence
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of core shell structure.

I. INTRODUCTION

For many years it has been traditional for physi-
cists to argue that it is not possible to predict the
crystal structures of most solids. The difference
in equilibrium energies of a given compound in two
closely related structures is known from P-T
phase diagrams to be very small, often less than
0.1% of the cohesive energy. However, inspection
of structural bibliographies!~* shows many chem-
ical trends which can be recognized (at least qual-
itatively) with the aid of the Periodic Table.

This situation can be formulated quantitatively
as follows. Structural energy differences are, for
the most part, too small to be calculated quantum
mechanically, because such calculations require
self-consistent crystal potentials of an accuracy
beyond the present state of the art. However, if
we consider the problem from the point of view of
information theory, then the available structural
data already contain a great deal of information:
about 120 bits, in the case of the A¥B®~¥ octet
compounds. Thus one can reverse the problem,
and attempt to extract from the available data
quantitative rules for chemical bonding in solids.

The rules that we seek should correspond to the
regularities of the Periodic Table. The latter has
two coordinates, and these two coordinates take
only integral values. To describe chemical bonds
therefore we again look for two coordinates, but
we allow these coordinates to be nonintegral. Sev-
eral two-coordinates or dual scaling models of this

IS

kind have appeared in the last two decades. It is
convenient to refer to them generically as Men-
delyev models. In contrast to Ising models, X-Y
models, Heisenberg models, etc., where the rules
of the game are well defined and the aim is to
apply the tools of nineteenth century mathematics,
Mendelyev models are as yet poorly defined, and
considerable physical judgment is required in
choosing suitable scaling coordinates.

There are several ways to define scaling coor-
dinates. The coordinates can be extracted from
observed properties of the elements, either as iso-
lated atoms or ions, or in the bonded state. The
latter approach is more empirical, is more ob-
viously consonant with the small magnitudes of
structural energy differences, and is the one
adopted by Goldschmit and by Pauling.

The first and most obvious empirical coordinate
is the atomic size 7(A) for each element A, and
tables of atomic radii are available based on me-
tallic and/or ionic structures.® The weakness of
this coordinate is that spherical atomic packing,
by itself, does not suffice to explain the crystal
structures of even the simplest compounds, such
as the alkali halides.® However, this classical
coordinate is often used in discussions of crystal
chemistry, and it does exclude from consideration
many ‘“unreasonable” structures which are never
formed.

The second coordinate with a sound empirical
basis is Pauling’s elemental electronegativity X(A)
which is derived from heats of formation.? Again
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this coordinate, which is related to work functions,
is classical in character. It has no directional as-
pects and, like atomic radii, is not well suited to
discussing structures where covalent bonding is
important.

The two classical coordinates, atomic size and
electronegativity, were used by Darken and Gurry’
to construct two-dimensional graphs to analyze in-
termetallic alloy solubilities at small concentra-
tions. This method was relatively successful (75%)
in predicting solubility trends. However, the first
major breakthrough using dual chemical coordi-
nates came with the classification of crystal struc-
tures by Mooser and Pearson.® They restricted
their attention to simple binary compounds (or
pseudobinary compounds such as the chalcopy-
rites). The coordinates they used consisted again
of Pauling’s classical electronegativity scale, but
the other coordinate involved the average principle
quantum number 7Z=3[n(A) +n(B)]. With these co-
ordinates they were quite successful (90%-95%) in
separating the fourfold and sixfold coordinated
octet compounds. Inadditionthey were also success-
ful in separating many transition metal compounds
of the form TB¥ (T isatransitionmetal and B¥isa
nontransition metal with N valence electrons: 3<N
< 6). Note that the principal quantum number »(A4) is
more nearly linearly independent of X(A) than is
the atomic radius 7(A). The Mooser-Pearson
coordinates have some quantum-mechanical char-
acter, but at the same time they retain part of the
original digital metric of the periodic table itself.
The Mooser-Pearson coordinates constitute a sim-
ple, almost classical, shell model.

For the special case of the octet compounds Phil-
lips and Van Vechten introduced®*® two fully quan-
tum-mechanical nonintegral coordinates. These
were the average covalent energy gap E, and the
average ionic energy gap C, both of which were
derived from the bond lengths and dielectric con-
stants of the compounds. They were able to sep-
arate exactly the fourfold and sixfold coordinated
AY¥B®=N compounds. Moreover, both their bond
variables have the dimensions of bond energy, this
appears desirable for structural plots which depend
on differences of cohesive energies. Unfortunately,
while their separation was exact, their method is
applicable only to fully bonded cubic crystals [i.e.,
no lone pair or unpaired (metallic) electrons].

In this paper we shall discuss a recent classifi-
cation scheme first developed by St. John and
Bloch!® based upon orbitally dependent radii as de-
termined by a Pauli-force model potential devel-
oped by Simons and Bloch.!'"3 The coordinate
scheme of St. John and Bloch stands out as a sig-
nificant improvement over previous classifications
for several reasons. First, the radii used in their

scheme may be incorporated into an electronega-
tivity scale which contains orbitally dependent con-
tributions. This implies that it is more refined
than classical isotropic approaches.”’® For ex-
ample, it lends itself to a discussion of structural
variations in chemical hybridization which is not
feasible with other scales. Second, St. John and
Bloch, using as coordinates this scale and a struc-
tural parameter based upon a combination of the
Simons-Bloch orbital radii,’* were able to separate
exactly hep, fce, bee, and “covalent” structures
among the elements. Further, when appropriate
o and 7 combinations of orbital radii were used as
coordinates they were able to separate exactly the
graphite, zinc-blende, wurtzite, rocksalt, and
cesium chloride structures of the octet binary
compounds. Third, their coordinates, unlike the
Mooser-Pearson scheme, are derived entirely
from quantum variables, yet vary smoothly across
the periodic table. This is a significant require-
ment for any coordinate scheme to be used in crys-
tal structure classification. [One of the major
drawbacks of the Mooser-Pearson % coordinate is
that it is of a digitalized form. Thus it cannot be
expected to separate fine differences or to account
for smoothly varying properties (such as c/a ra-
tios). Nevertheless it should be noted 7 is of a
quantum nature and does properly account for
gross chemical trends such as the increasing met-
allicity of the group-IV elements with 7Z.] Finally,
and most significantly, the coordinates used by
St. John and Bloch have been applied to suboctet
binary crystals such as CaHg, KSi, LiAl, and
CsAu. These fractionally-bonded nontransition me-
tal compounds also lend themselves to a nearly
exact separation using the same coordinate scheme
as for the octet binaries.!®* As previously noted,
the dielectric theory is not suited to such systems
and the Mooser-Pearson scheme has been shown
to be unsuccessful in this case.!®

Although the Bloch-Simons orbital radii are very
general, their physical significance as ion-core
coordinates leaves us unprepared for their success
in forming bond-orbital coordinates for neutral
atoms. Thus in discussing the Bloch-Simons radii
and the St. John-Bloch scheme we first review (in
Sec. II) the basic concepts and the definitions used
to formulate the radii. In this section we also ex-
plicitly tabulate the radii and display the trends of
the radii across the Periodic Table. We also dis-
cuss the =2 trends of the radii for all nontransi-
tion elements. In particular, we find it necessary
to modify the St. John-Bloch electronegativity
scale because fo the altered /=2 radii. In Sec. III
the physical meaning of bond-orbital coordinates
is brought out by comparing the St. John-Bloch
coordinates to other proposed coordinates: those
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of Mooser and Pearson and those of Phillips and
Van Vechten.

In Sec. IV we review previous work on the octet
and suboctet binary compounds. We extend these
results to include some binaries not included in the
St. John-Bloch plots such as the noble metal (i.e.,
Cu, Ag, Aubinaries). Inthe suboctet group we dis-
cuss melting points and the internal structure of
the CrB family and contrast our results with trends
based upon the Mooser-Pearson coordinates. In
See. V we discuss the ¢/a ratios of wurtzite com-
pounds and structural trends in the ternary com-
pounds AIBVCY. In Sec. VI we discuss the two
isotropic parameters introduced by Miedema,
Boom, and de Boer and show that for simple metals
these parameters can be expressed very accurately
in terms of orbital radii. In Sec. VII we review
some of our conclusions and discuss the implica-
tions of our success for the systematic develop-
ment of nonlocal pseudopotential theory.®

II. DEFINITIONS AND PHYSICAL CONTENT OF
ORBITAL RADII

The basis of the bond-orbital coordinate system
used by St. John and Bloch rests on orbital ionic
radii as determined by a pseudopotential for the
free ion. Simons, using a potential first introduced
by Fues,'” wrote the ionic potential as follows:

Z ~a
Vir)= i +§ l(l+1)2;zl(l+1) P, N

in atomic units, where Z is the net core charge, P,
is a projection operator which projects out the ith
component of angular momentum, and / is an [-de-
pendent parameter. This potential replicates only
the valence states and represents, away from the
nucleus, the one-valence electronion potential. The
principal advantage of (1) is that it yields an exact
solution to Schrddinger’s equation and thus eigen-
values and eigenvectors are easily obtained. Ac-
cording to the results of Fues, the eigenvalues of
(1) may be written

E,,==Z*/20+1-1?. ()

This result may be interpreted as a Rydberg series
with an /-dependent quantum defect. To obtain val-
ues for this defect 5, ; resort may be made to ex-
perimental spectroscopic data for the one-valence
electron system.!®19

It is probably worth contrasting the /-dependent
nature of (2) with the free atom, where [ is a good
quantim number and the quantum defect is associ-
ated with n. For bonded electrons 6, , is inter-
preted as entirely an [ defect because [ is no longer
a good quantum number in solids. In particular,
! mixing or chemical hybridization occurs in solids

(e.g., sp?, sp®), whereas n remains almost a good
quantum number. We sometimes call this the or-
bital shell model.

Bloch and Simons'?® first made use of this princi-
ple of maximal hybridization in the analysis of
chemical trends among the elements. They ex-
pressed the trends in terms of radii which they de-
fined as

r,=10+1)/Z . 3)

These radii represent the positions of the radial
maxima of the ionic eigenfunctions resulting from
(1). They are also a factor of 2 larger than the
classical turning points of (1) at V=0. The clas-
sical turning radii change very little on going from
the ion to the neutral atom, because very little
valence charge accumulates inside radii. The ra-
dial maxima of the neutral atom eigenfunctions,
however, are considerably greater than those of
the hydrogenic ions. Moreover, the classical radii
are more significant physically'® as we are in-
terested in examining potential differences near

E =E, (in the solid) or E =0 (isolated atom or ion)
and not wave functions. However, none of the re-
sults discussed here would be altered by rescaling
7, by a factor of 2 and thus we shall retain the
Simons original definition, Eq. (3).

St. John and Bloch!® showed that a successful
classification scheme for octet binaries resulted
if the following bond-orbital coordinates were em-
ployed:

— — B
ro=rierE | ro=vi-vE (4)

where 7§ =7 +7y and 7 =75 —r§. These bond-
orbital coordinates play a role analogous to # and
A X of Mooser-Pearson and to E, and C of Phillips
and Van Vechten. Phillips'® has presented a physi-
cal interpretation of these coordinates in which 7J
corresponds to s-p o hybrids on atom @, while g
corresponds to p®-sp hybrids, i.e., »$ measures
the strength of 7 bonding over and above the ¢ bond
strength. This argument is based upon traditional
chemical explanations. However, this does not
imply that classical hybridized free-atom orbitals
present a method for describing all the valence
charge density. If this were the case, we would
use orbital radii associated with the afomic valence
orbitals and not the ionic radii of Simons and
Bloch. The quantum-mechanical interpretation of
the Bloch-Simons orbital shell radii, therefore,
must be sought in a pseudopotential context.!®

In order to study the physical shell content of
orbital shell coordinates we first extended the re-
sults of Simons. In particular, using spectroscopic
data'® we extended his earlier work to include
halogens, I-B metals, and /=2 trends in the radii.
Our results are presented in Table I and displayed
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TABLE I. Orbitally dependent ionic radii as defined by Bloch and Simons [see Eq. (3)].
Radii are given in atomic units. Radii listed in parentheses have been obtained by extrapola-
tion. In addition to the radii, the electronegativity for each element is tabulated as defined
by Pauling, St. John—-Bloch, and Phillips. The St. John—Bloch scale has been modified from

the original definition as discussed in the text.

Element 7s ) 7a Xpauling Xst. Jom—Bloch X phillips
Li 0.93 1.88 5.99 1.0 0.97 1.00
Na 1.02 2.36 5.95 0.9 0.89 0.72
K 1.36 2.76 5.29 0.8 0.77 0.79
Rb 1.45 2.95 4.89 0.8 0.74 0.66
Cs 1.62 3.18 3.96 0.7 0.72 0.64
Be 0.63 0.93 3.00 1.5 1.49 1.50
Mg 0.86 1.43 2.92 1.2 1.15 0.96
Ca 1.22 1.87 1.52 1.0 1.07 0.91
Sr 1.36 2.09 1,74 1.0 0.98 0.83
Ba 1.55 2.34 1.71 0.9 0.92 0.79
Cu 0.43 1.61 5.89 1.9 1.53 0.79
Ag 0.45 1.66 5.90 1.9 1.48 0.57
Au 0.26 1.40 5.87 2.4 2.22 0.64
Zn 0.64 1.22 3.06 1.6 1.36 0.91
cd 0.71 1.32 3.18 1.7 1.27 0.83
Hg 0.60 1.26 3.24 1.9 1.39 0.79
B 0.48 0.62 2.00 2.0 2.00 2.00
Al 0.74 1.08 1,92 1.5 1.40 1.18
Ga 0.66 1.04 2.15 1.6 1.46 1.13
In 0.76 1.17 2.31 1.7 1.32 0.99
Tl 0.69 1.16 2.41 1.8 1.37 0.94
C 0.38 0.47 1.50 2.5 2.50 2.50
Si 0.66 0.89 1.42 1.8 1.64 1.41
Ge 0.64 0.92 1.68 1.8 1.59 135
Sn 0.76 1.07 1.87 1.8 1.40 1.15
Pb 0.72 1.09 1.98 1.8 1.41 1.09
N 0.32 0.38 1.20 3.0 2.99 3.00
P 0.59 0.76 1.13 2.1 1.87 1.64
As 0.62 0.83 141 2.0 1.71 1.57
Sb 0.72 0.97 1.56 1.9 1.52 1.31
Bi 0.72 1.02 1,78 1.9 1.46 1.24
o 0.28 0.32 1.00 3.5 3.49 3.50
S 0.53 0.66 0.94 2.5 2.10 1.87
Se 0.59 0.76 1.21 2.4 1.84 1.79
Te 0.69 0.89 1.35 2.1 1.62 1.47
Po (0.71) (0.98) (1.67) 2.0 (1.50) e
F 0.24 0.27 0.86 4.0 3.99 4,00
Cl 0.49 0.59 0.80 3.0 2.33 2.10
Br (0.55) 0.74) (1.15) 2.8 (1.93) 2.01
I (0.66) (0.85) (1.37) 2.5 (1.67) 1.63
At 0.69) (0.90) (1.65) 2.2 (1.56) cee

in Figs. 1-3. In the case of the heavier halogens, portance.

e.g., I and At, spectroscopic data are not avail-
able. In those cases the values of »; were obtained
by extrapolation across the row and down the col-
umn of the Periodic Table. Unlike the suggestion
of Bloch and Simons'® we have not made the ap-
proximations I(I=1)=1 for all first row elements
and f(l= 2) =2 for elements other than the alkali and
alkali-earth metals. In most cases this approxi-
mation is a valid one; however, in a few cases,
e.g., Ge and Si, the /=2 radii are of crucial im-

A remarkable feature of the orbital shell radii,
first recognized by St. John and Bloch,' is that
they can be used to define an orbital electronega-
tivity scale X(A). This scale generalizes the Paul-
ing electronegativity scale X(A). Paulingdefined
X(A)qualitatively as “the power ofanatom ina
bonded state to attract electrons to itself.” Quan-
titatively the parameters X(A) were derived in two
ways:

(i) By demanding that for the first period elements
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FIG. 1. 1 =0 Bloch-Simons radii in atomic units as
defined by Eq. (3). Note the effect of the closed d shell
in the (Cu, Ag, Au) series as evidenced by the nonmono-
tonic behavior of the radii.

2X(A)=Z(A) +const, where Z(A)e is the ion-core
charge, e.g., Z(C)=4, Z(N)=5. The justification
for this procedure is that in the first period the
atomic ground states can be described by 2s™02p"0
and the hybridized states by 2s™2p"3@® with m,+n,
=Z and p<<0.1, i.e., the admixture of 3d states
into 2s-2p hybridized bonds is negligible. Also for
covalent and metallic bonds m +n + p=Z + & where &
is usually much larger than p but is still of order
a few tenths or less in most cases. The condition
6> p is not usually satisfied for chemical bonds in-
volving other elements where p>0.1, e.g., 3s3p3d
hybridized states.

(ii) By assuming that heats of formation AH(AB)
per resonating bond were given by [X(A) - X(B)]?
in eV.

Because the orbital shell radii 7, refer to iso-
lated ions, only condition (i) can be used to charac-
terize an electronegativity scale based on them.
Nevertheless, this is a severe condition and in
spite of the intuitive appeal of the St. John-Bloch
definition
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FIG. 2. I=1 Bloch-Simons radii in atomic units as
defined by Eq. (3). Unlike the I=0 radii (Fig. 1), the
closed d shell in the (Cu, Ag, Au) series has a relatively
weak influence on the /=1 radii.
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FIG. 3. !=2 Bloch-Simons radii in atomic units as
defined by Eq. (3). Note the large influence of the closed
d shell for the noble metals (Cu, Ag, Au).

X(A)=a Z (5)

(A*z)
it is by no means obvious why X(A) satisfies con-
dition (i) above so well.

A partial explanation for the success of (5) for
first period elements can be given as follows. By
fitting the values of 7, given in Table I to a Laurent
series in Z we find that for the first period ele-
ments

1/7,=%Z +0.62-0.05/Z , (6)
1/r,=%Z +0.15-0.13/Z , (7
1/r,=%Z . (8)

For an average value of Z =4, the correction terms
in Z~' in (6) and (7) are of order 1% of the terms in
Z. Substitution of (6)~(8) in (5) requiring (i) gives
a=4£. However, the best fit is given by a=0.423
and b =0.224 [in order to make X(C)=2.50 in agree-
ment with Pauling)].

The large Z limits of (6)~(8), and especially (6),
can be obtained by the quantum defect method. In
the limit Z - « the quantum defects 6, -0, for (nl)
=(2s), (2p), and (3d). In particular, I,=1+5,,, and
so from (3),

ro=ly(l+1)/Z=(1+6,)(2+8,0/Z ~2/Z . (9)

From this discussion one might conclude that i(l)
is merely a convenient way of relabeling the quan-
tum defects 6,;. Then one might attempt to calcu-
late 6,, by expansion in a series in Z~'. However,
when this is done, the constant term on the right-
hand side of (6) is overestimated by a factor of 20
when it is obtained by first-order perturbation the-
ory using hydrogenic 2s wave functions and the 1s
core potential as the perturbation. The well-known
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reason for this is that the 2s state must be ortho-
gonalized to the 1s states and this orthogonalization
is significant except for very large Z (Z> 10, as
the perturbation calculation shows). Thus the ac-
tual correction terms in (6) are small because of
the cancellation theorem.!® It is one of the objec-
tives of Mendelyev models to avoid calculation of
0,5, on the grounds that the accuracy of such cal-
culations is usually justified in any event by refer-
ence to experimental spectra or other empirical
sources.

Because the leading terms in (6)—(8) are all pro-
portional to Z, and because the correction terms
in Z~' are so small, condition (i) does not deter-
mine X uniquely. Indeed X could also be defined as

2 gl
=03 LW ., (10)
o "1
and condition (i) would still be satisfied for a wide
choice of positive values of g(l).

The choice of g(I) =1 made by St. John and Bloch
can be justified partially, as they note, by compar-
ing X thus defined with Xp,i; and Xppinps. For
most nontransition elements 2X = Xp, 00 + X phitips-
Because Xpaying i based to a large extent on mo-
lecular heats of formation (where hybridization is
minimal) and Xpyy;,, is based on fully hybridized
crystalline sp® bonds, the choice g(I)=1 seems
judicious. However, for certain structural fam-
ilies other weighting factors may be appropriate
[e.g., in layer compounds, g(0)=1 and g(1)=2 may
be more successful].

One of the classical tests for an electronegativity
scale, first proposed by Gordy and Thomas,® is
the extent to which the scale correlates linearly
with the work functions ¢(A) of elemental metals.
If X(A) is defined thermochemically, in the man-
ner of Pauling, then one might not expect the cor-
relation to be excellent. Moreover, in practice the
measured values of ¢(A) show substantial scatter
(of order 0.5 eV) because of variations in surface
preparation. Nevertheless, thermochemical data
can be used as a starting point for such a correla-
tion as discussed below.

A refined thermochemical treatment of the heats
of formation A H of metallic alloys and compounds
(both solid and liquid) has been given by Miedema,
Boom and, deBoer.?!*?? In addition to the negative
contribution to A H from (A¢*)?, where ¢* is an
electronegativity parameter, they include a posi-
tive contribution related to (an)?, where n=n(ryg)
is the electron density at the Wigner-Seitz or at-
omic radius. Their positive boundary contribution
is not the same in principle or in practice as a
size-mismatch energy, for it is similar in solid
and liquid alloys. Their model is specific to met-
als (it would not apply to ionic crystals, where size

mismatch is important) and their empirically ad-
justed values of ¢* are similar to measured val-
ues of ¢. However, their table of values of ¢* for
26 nontransition and 27 transition metals, based on
the phase diagrams of 481 binary systems, prob-
ably constitutes one of the better semiempirical
sources of values which can be compared to pro-
posed electronegativity scales. The application of
(10) to the Miedema scales is discussed in detail in
Sec. VI.

In Figs. 1-3 the 7, radii are displayed across the
periodic table. There are several specific obser-
vations which can be made with respect to these
figures. If we compare the 7 and 7, radii we note
that for both the first row is separated from the
second and higher rows; this trend is not observed
for the 7, radii. For example, in the case of C we
have »,=0.38, 7,=0.47, and »,=1.50 while in the
case of Si we have »,=0.66, »,=0.89, and r,=1.42.
Part of the reason for the large separation be-
tween the first and second rows is the lack of n
=1 core states to which the n =2 valence states
must be made orthogonal. In pseudopotential lan-
guage this results in reduced cancellation of val-
ence states as there exist no 1p core states and
only 1s state to cancel the strong core potential.
This makes the first row atoms abnormally small
as compared to those from the higher rows, and
lends them unique character. We also note the
relative s-p cancellation is of considerable impor-
tance. This is particularly true of the group-1V
elements. For example, in going down the column
the s-p separation increases. There is even an in-
version 7 (Sn) > 7 (Pb) which results in the failure
of Pb to form sp® hybrids as the promotion energy
from s?p? to sp® becomes too large. Thus C forms
in the diamond lattice, but not Pb.

With respect to r; similar observations may be
made. In the first two rows, no d states exist
within the core region. Therefore, no d cancella-
tion can occur for the first two rows. This results
in the smaller and nearly identical values for 7, in
the first two rows in contrast with the higher rows.
As an example, in C, Si, Ge, and Sn we have 7,
=1.50, 1.42, 1.68, and 1.87, respectively.

As we go across the rows we expect 7, to con-
tract as the core charge increases. This is true
for the cases of 7, and 7,, but not for r¢ (with the
exception of the first two rows). The rather rapid
decrease of 7, especially for the sequence I-B~
II-B-III-A is a reflection of the rapid contraction
of the just filled d shell. The d-shell core in Cu
is highly polarizable and contributes significantly
to the cohesive energy. The variation of 7, is also
quite interesting in that the radii appear to corre-
late exceptionally well with Pauling’s atomic radii.®
For example, the maximum of Pauling’s radii in
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ORBITAL RADII (ATOMIC UNITS)
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FIG. 4. Bloch-Simons radii as a function of ! for
selected elements. Note the effect of the closed 3d
shell on the /=2 radii for the Cu-Zn-Ge sequence. The
chemical differences between Si and Ge can be traced
to the /=2 radii.

the Ag-Cd-In-Sn-Sb.sequence occurs at In, which
is also the case for 7.

The usefulness of these radii in predicting chem-
ical trends among the elements is graphically il-
lustrated in Fig. 4. Here we display the changes
with [ of the radii for the elements Cu, Zn, Ge,
and Si. In the case of Cu where the 34 shell has
just filled the difference between r; and 7, with re-
spect to 7, is quite significant as compared to Ge.
Note also that the exceptionally small value of r
in Cu is an extrapolation of the 7,-7, trend, i.e.,
the 7, values are indeed analytic functions of .

The highly polarizable nature of Cu, or its “soft-
ness” as a noble metal compared to Ge, can be
deseribed by an index by making use of derivatives
of such curves [e.g., (r,~7,)/(r,+7,)]. The rela-
tive smoothness of the transition from Ge to Cu is
also encouraging. This regularity of change, in
part, justifies the use of 7, as an index of the rela-

tive d-state influence upon the chemical properties.

As we have pointed out previously, it is interesting
to observe the trends between Si and Ge. Si and Ge
have almost identical », and 7, values, so that it is
7, which separates them chemically. In fact, most
of the chemical differences existing between Si and
Ge such as the cohesive energies have been re-

lated to the metallizing effect of the d-core level.®

III. COMPARISON OF CHEMICAL COORDINATES

In Figs. 5-8 we compare the Bloch-St. John co-
ordinates with those of Mooser-Pearson (MP) and
with those of Phillips—Van Vechten (PVV). As we
have seen previously, the St. John-Bloch (SB) co-

5.0
v ROCK SALT
- o WURTZITE
+ ZINC BLENDE
a0F * GRAPHITE

T =[rs(A) + rp(a)]-[rs(B) + rp(B)]

4.0

AX (PAULING)

FIG. 5. St. John—Bloch coordinate 7, vs the electro-
negativity difference AX from Pauling for 67 octet
binary compounds AY B*¥. The good correlation occurs,
in part, because both r;+7, and X correlate with atomic
size.

ordinates 7, and 7, might correspond to the MP
coordinates AX and 7 and to the PVV coordinates
E, and C. In Fig. 5 we display the electronegativity
differences of Pauling versus the r, parameter of
SB. The usefulness of Pauling’s scale as a coordi-
nate is quite apparent as it dictates trends in ion-
icity (although it does contain some deficiencies as
mentioned above). The bond-orbital coordinate 7,
measures this property by correlating to some de-
gree the relative sizes of the ions. In Fig. 5 we
have plotted points taken from the 67 crystal struc-
tures corresponding to the octet group. An explicit
list of the structures displayed and values of C and
E, may be found in Ref. 9. Overall, the correla-
tion is fairly good, with the widest scatter occur-
ring for the rocksalt structure. The electronega-
tivity scale of Pauling we note is not capable alone
of separating the structures. In particular, near
AX=7r,~1 there is considerable mixing of rock-
salts, wurtzites, and zinc blendes. Another inter-
esting trend is that the least-squares-fitted line
displayed in Fig. 5 intercepts quite near »,=0, as
it should if »;~ A X. The linear fit in Fig. 5 yields

r,=1.12AX -0.15, (11)

where 7, is in a.u. and AX is as given by Pauling.®
In Fig. 6 we display a similar plot of r, vs 7.
MP chose this coordinate because it appeared to be
a good measure of the directional character of the
bonds formed between an atom with atoms of its
own kind. As 7 increases, they point out, the at-
omic orbitals involved in bond formation, and
hence the bonds themselves, gradually lose their
direction properties. (The increase in metallicity
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FIG. 6. St.John—Bloch coordinate », vs the Mooser-
Pearson coordinate, the principal quantum number 7
for 67 octet binary compounds. The digital nature of
n is a drawback in a chemical coordinate. The overall
correlation is rather poor.

from 7=1 to #=5 in the group-IV column is a good
example.) With respect to », we note it measures
an average of the s-p splittings of the atoms. Thus
7, increases, for example, from C to Pb and
should correlate to some extent as #7. In Fig. 6 we
see that there exists no strong correlation. How-
ever, the structures do tend to cluster in rows,
particularly near »,;~ 1 -2 (which correspond to
alkali halide series, e.g., LiF, LiCl, LiBr, Lil,
etc.) and the rows do tend toward a positive slope.
Another observation is that for any given 7 there
exists a trend with increasing values of 7, to go
from a covalent to ionic structure. For example,
with =1 with increasing r, there exist graphite,
wurtzite, and rocksalt structures, respectively,
and for any 7 the largest », value corresponds to
a rocksalt crystal.

In summary, with respect to the MP coordinates,
while AX correlates fairly well with 7 ,, v, does
not correlate with #. In particular, the digitalized
form of #7 appears to represent a serious drawback
to its use as a chemical coordinate.

In Fig. 7 we plot the dielectric coordinate C
against the bond orbital coordinate ,. C is an
ionicity parameter defined such that it measures
the ionic contribution to the average gap between
bonding and antibonding states in tetrahedrally co-
ordinated binaries. Overall, the correlation is not
so good as the Pauling A X-vs-», plot. For the
more-ionic rocksalt compounds in particular,
there is a wide scatter of the points. This may re-
sult from a failure of the PVV ionicity parameter
to describe accurately large deviations from the

FIG. 7. St. John—Bloch coordinate 7, vs the Phillips—
Van Vechten ionicity parameter C for 67 octet binary
compounds. The reader may note that the linear
correlation is better for small values of C than for
large ones, that is, it is poor for rocksalt compounds.
This reflects the classical closed-shell character of the
latter, which is not described well by either coordinate.

covalent case, or simply the breakdown of linear
scales in the strong-interaction closed-shell ionic
limit. The correlation between A X and 7, may be
superior to the correlation between C and 7, be-
cause AX and 7, are derived from atomic proper-
ties; however, C is restricted in its meaning to
tetrahedrally bonded crystals. We note that C by
itself fails in the same region as A X to distinguish
between wurtzite and rocksalt structures. Finally,
in Fig. 7 we find the best linear fit to the data
comes from

74=0.174C +0.023 , (12)

where C is in eV and 7, in a.u. It is interesting to
note that the constant in (12) is very small, com-
pared, e.g., to the constant in (11).

For the last comparison we have plotted »,
versus the dielectric coordinate E,. E, represents
a covalent, or homopolar, contribution to the ener-
gy gap. Van Vechten found that for group-IV mate-
rials E,~d™?-®, where d is the bond length. I we
do a similar analysis for », we find , ~d*® imply-
ing that E,~7;'. In fact a log-log plot for E, vs
7y was made and a least-squares fit to the result
yielded E,~77° . In Fig. 8 we display the results
for v, vs E;'. The best fit displayed in Fig. 8 is
given by

7n=2.64/E,+0.14 , (13)

where E, is given in eV and 7, in a.u. Qverall, the
agreement is fairly good, certainly better than an
rp-vs-ii plot. As expected those compounds with

the largest E, correspond to the covalent graphite
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FIG. 8. St. John—Bloch coordinate 7, vs the inverse
of the Phillips—Van Vechten covalent energy gap E, for
67 octet binary compounds. 7, measures, in part, the
degree of metallization present in the binary and thus
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structure C and BN. However, this plot fails to
make any strong correlation with structure.

In summary, we find that trends do exist between
(r4,7y) and (C,E; ') or (A X,7); in some cases they
are qualitative at best. Of course, this is obvious-
ly not a bad result; if an exact correlation were
found there would be no advantage in the (»,, 7y)
coordinates over the (C,E,) or (A X,#) coordinates.

IV. APPLICATION OF THE BLOCH-SIMONS RADII
TO THE STRUCTURAL STABILITY OF
BINARY COMPOUNDS

In a recent publication, St. John and Bloch!®ap-
plied their coordinate scheme to 63 binary com-
pounds A¥B®~¥, In this section we extend their
results to include the noble metals Cu, Ag, and Au.
These metals have been a source of trouble in the
construction of classical electronegativity scales.
Chemically they may exhibit a valence of either Z
=1 or Z =2; the reason being that the promotion
energy from d'°s' to d°s? is quite small.**

In Fig. 9 we display the results for 79 binary oc-
tet crystals. In addition to the usual compounds as
tabulated by Van Vechten® we have included the
noble metal compounds as labeled in the figure,
some barium and mercury chalcogenides, and
some cesium chloride structures. We have han-
dled the dimorphous compounds in a similar man-
ner to the St. John-Bloch plots. We consider only
the most stable compounds at zero temperature
and pressure. In the case of the fourfold coordi-
nated compounds we place those which form poly-
types into the zinc-blende class. This classifica-
tion is based upon the thermodynamic arguments

17 QUANTUM-DEFECT THEORY OF HEATS OF FORMATION AND... 2461

of Jagodzinski.'®'?® MgS and MgSe, which border
the zinc-blende-wurtzite separation, are class-
ified as rock salts. These compounds will con-
dense from the gas phase into wurtzite structures
and then slowly undergo a phase transformation
into a stable rocksalt structure.2¢:27

The general topology of the bond-orbital plot the
graphite structures C and BN at one end and the
eightfold coordinated compounds of the CsCl struc-
ture at the other extreme. Going from C to CsCl
along a line we traverse from threefold, fourfold,
sixfold to eightfold coordination. The great suc-
cess of the bond-orbital plot as opposed to the di-
electric separation scheme lies in its capacity of
distinguishing between the wurtzite and zinc-blende
structures. This very delicate separation depends
on changes in the position of third nearest neigh-
bors.!°

We shall now examine the Cu and Ag halide
groups. As a class they fall below the main body
of the binaries. Nevertheless, the separation of
rock salt from zinc-blende structure remains.
One noticeable failure, however, is the case of
CuF. It appears to fall into the rocksalt group,
yet presumably it has a zinc-blende structure ac-
cording to Wyckoff.?® This classification is from
the 1933 work of Ebert and Woitneck.?®

We note that the SB plot does not indicate the ex-
istence or nonexistence of compounds; nor whether
the ABbinary mightbe more stable than, for exam-
ple, AB,. Inthe example at hand, CuF probably
does not exist at all. Barber, Linett, and Taylor®
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FIG. 9. St. John—Bloch plot for 79 binary octet
crystals AYB¥N_ Note in particular the separation of
the wurtzite from the zinc-blende structures. This
separation was not possible with the dielectric method.
CuF, although tabulated by Wyckoff (Ref. 28) as a zinc-
blende binary, does not exist as a stable compound (see
text).
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FIG. 10. Phillips—Van Vechten diagram for octet
binary compounds. The (C, E,) coordinates result in
the exact separation of fourfold and sixfold coordinated
compounds, but do not separate the zinc blendes from
the wurtzites as do the St. John—Bloch coordinates.
For a discussion of the special case of CuF see the
text. The coordination number (CN) is listed for each
crystal structure.

have noted that although CuF has been reported in
the literature, its existence is now in doubt. In
particular, the method by which Ebert and Woit-
neck prepared CuF has been questioned by Warten-
burg.3! It is now thought that CuF might exist only
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FIG. 11. Bond-orbital separation for 79 binary octet
compounds using the coordinates (7, 7, 1). Note the
resemblance to the Phillips—VanVechten plot (Fig. 10).
The special case of CuF is discussed in the text. The
coordination number (CN) is listed for each crystal
structure.
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FIG. 12. St. John—Bloch diagram for the suboctet
binary compounds AVBP¥ (2<P<6). For a list of the
compounds except for the (Cu, Ag, Au) binaries see
Ref. 15. The numbered compounds correspond to AuCl
(1), BeCu (2), ZnCu (3), ZnAg (4), CdAg (5), MgAu (9),
LiAg (10), LiAu (11), RbAu (12), and CsAu (13). The
special case of CaAg.is discussed in the text.

in admixtures of CuF,.*°*®! This example nicely il-
lustrates the power of our plots. Because of the
discrepancy occurring in Fig. 9 (between predicted
and observed structures), an examination of the
literature was performed with the consequent dis-
covery of the nonexistence of CuF. This discrep-
ancy does not occur in the Mooser-Pearson dia-
grams' or the Phillips-Van Vechten diagram® (Fig.
10). According to Eqs. (12) and (13), the bond-or-
bital separation will resemble the dielectric one

if we use (r7',7,) as coordinates corresponding to
(E,,C). This is shown in Fig. 11, and the similar-
ity to Fig. 10 is evident.

In Fig. 12 we display a similar plot for binary
compounds which belong to the suboctet group
A¥BP-F¥  We have extended the results of Machlin,
Chow, and Phillips'® to 67 binaries including the
noble-metal compounds. The binaries considered
correspond to two broad classes: 40 structures
which are derived from bce CsCl structures and
27 anion valence coordination structures. In Fig.
12 the bec structures are represented by open
symbols, the anion coordinated structures by solid
symbols. The former structural types correspond
to the crystal classes B2 (cP2), L1, (tP4), and B32
(cF16). The latter group of anion valence coordi-
nated compounds form anion zigzag chain struc-
tures, cf. Se and Te such as the B33 (oC8) struc-
tures, with P — 2N =2 anion-anion bonds per anion
and anion tetrahedral clusters (perfect #64 and im-
perfect cP64) with P - 2N =3. Both t/64 (tP4) and
cP64 can be considered as distorted boundary
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phases, just as wurtzite is a distorted boundary
phase for octet compounds. The interested reader
is referred to Pearson for a more-detailed discus-
sion.3?

Figure 12 shows that the bond-orbital coordinates
separate not only the two broad classes of struc-
tures, but for the most part, the six separate
crystal structures as well. Thereisanarea of con-
fusion, however, in the r, ~ 1.7, r,~1.5 region.

It has been suggested that a successful separation
can be achieved in this region by using the normal-
ized coordinates: »{/r%, where 7, is the standard
close-packed atomic radius.'®

Before discussing the noble metal additions, we
shall review the general conclusions presented
elsewhere.!> The most significant information pre-
sented in Fig. 12 is that the same coordinates
which separated A¥B®~¥ separate AYB* ¥ where
P~ 4. This suggests that these coordinates are the
proper coordinates for almost all nontransition
metal structures for a wide range of P. Exceptions
for these coordinates may occur for small values
of P (~2) where exchange and correlation are espe-
cially important. In such cases the energy differ-
ences between the various structures can typically
be of the order of correlation energy differences.

The noble-metal compounds are labeled in Fig.
12 by number, with the exception of CaAg which
is explicitly labeled. The addition of these com-
pounds does not alter the general separation
scheme with the exception of CaAg. CaAg belongs
to the B33 structure which has as prototypes of this
structure CrB,** 3¢ and T11.2® (Other members in
this family include, e.g., CaSi, SrGe, BaPb, and

InBr.) We include the halides in this group for
comparison although properly they are “super”
octets with P~ 10. Although CaAg has the B33
structure, on the basis of its other properties it
appears to hold a unique position. This is illus-
trated in Table II where we have detailed the ca-
tion-cation, cation-anion, and anion-anion dis-
tances, the ratio of the cation-anion distance to the
anion-anion distance, the anion-anion angle for the
anion chains and the electronegativity differences
of SB and Pauling. We note the existence of strong
correlations between the electronegativity dif-
ferences of the orbital shell model, Eq. (5), with
both the cation-anion-to-anion-anion ratios and
the anion chain angle. For the reader’s conven-
ience the anion chain angle is illustrated® in Fig.
13 for CasSi.

In conventional chemical bond theory the forma-
tion of the B33 structure in simple metallic com-
pounds is explained by the fact that with P -2N=2
there are two electrons/anion free to form anion-
anion bonds which are required for anion-anion
chains. However, this qualitative explanation does
not account quantitatively for trends in internal
structural parameters. Presumably this is one of
the reasons why Parthe has said® that “Simple
ideas on crystal structure formation using size ef-
fects, number of valence electrons, etc., are just
not sufficient” for the B33 and related structures.

We have plotted in Fig. 14 the anion-anion bond
angles 6 for these compounds. The angles span a
wide range from 95° to almost 110°, The figure
dramatizes the fact that 6 is a linear function of
AX=X(A)-X(B) to within better than 1°, where X

TABLE II. Structural parameters for the CrB (B33) structures. d.., d.,, and d,_, are the
nearest-neighbor distances for the cation-cation, cation-anion, and anion-anion, respectively.
6,, is the anion-anion angle for the anion chains (see Fig. 13). The parameters were obtained
from Refs. 33-35. Electronegativity differences from St. John-Bloch and Pauling (see Table

I) are also tabulated.

Compound dg.c dy g deq 044 (dc-a/da-a)-l AXst, Jom-Bloch AXpayling
CaSn 3.79 2.90 3.27 96.6 0.128 0.33 0.9
CaAg 3.66 2.89 2.99 106.9 0.0346 0.41 0.9
SrSn 3.88 2.93 3.43 100.4 0.171 0.42 0.8
BaSn 4.03 2.97 3.60 102.2 0.205 0.48 0.9
BaPb 3.79 2.90 3.61 99.7 0.245 0.49 0.8
CaGe 3.56 2.59 3.12 100.7 0.205 0.52 0.8
CasSi 3.59 2.47 3.11 104.6 0.259 0.57 0.8
SrGe 3.77 2.62 3.27 105.3 0.248 0.61 0.8
Srsi 3.76 2.51 3.26 106.6 0.299 0.66 0.8
BaGe 3.97 2.64 3.44 109.2 0.303 0.67 0.9
BaSi 3.93 2.54 3.38 108.8 0.331 0.72 0.9
T 3.83 4.33 3.34 74.8 -0.115 0.30 0.7
Inl 3.58 4.34 3.23 67.1 -0.266 0.35 0.8
InBr 3.68 3.94 2.80 61.6 -0.289 0.61 1.1
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FIG. 13. CrB (B33) structure. The anion-anion chains
are shown with the value of 6,,=105° appropriate to CaSi.
The figure is taken from the work of Kiessling (Ref. 33).

is given by Eq. (5). We consider this to be re-
markable correlation, which, as Parthe remarks,
cannot be achieved with classical (orbitally inde-
pendent) coordinates.

The fact that CaAg does not group with the other
B33’s is indicative of its special nature. Unlike the
others, CaAg has catalytic properties. The Ag-Ca
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FIG. 14. Anion-anion chain angle 6,, displayed as a
function of the St. John—Bloch electronegativity AX.
Note the anomalous behavior of CaAg.
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alloy, known as Raney Ag, is used as a catalyst in
oxidation-reduction reactions such as the conver-
sion of ethylene to ethylene oxide.*® In fact, its
exceptional position in the SB plot suggested that
CaAg might have unusual properties. This empha-
sizes the usefulness of such plots.

Another example of a significant correlation be-
tween structure and properties occurs in the cases
of CsAu and RbAu (labeled 12 and 13 in Fig. 12).
These crystals are separated by a large distance
in the SB plot from the other B2 crystals suggest-
ing again some special properties associated with
them. In fact, CsAu and RbAu are semiconductors
unlike the other B2’s.377% (CsAu is thought to be a
semiconductor with a band gap of approximately
2.5 eV. It also displays some rather interesting
optical absorption structure in this region which is
thought to be excitonic in nature. On the basis of
band calculations for the alkali series LiAu, NaAu,
KAu, RbAu, and CsAu, Huang and Liu have hypoth-
esized that a metal-semiconductor transition takes
place between KAu and RbAu.?” This is in agree-
ment with previous speculations on the character
of NaAu and KAu.*® Unfortunately, little work has
been done on NaAu and KAu, and at present it is
not clear to what crystal structure they corres-~
pond. Thus they have not been included on Fig. 12,
but they would fall in the gap between LiAu and
RbAu (compounds 11 and 12).

Finally, with respect to the suboctet structures,
we note the placement of the “superoctet” B33’s
(ry =75~ 0.5). While these P=10 binaries also
have the CrB structure, the internal parameters
as listed in Table II indicates that the bonding
properties in these compounds are quite different
from the suboctet group. For example, the ratio
of cation-anion-to-anion-anion distances is less
than unity, and the anion chains have ceased to be
important. If we define an anion-anion angle as for
the suboctet group we see the angle changes sys-
tematically with ionicity (as defined by Pauling or
St. John and Bloch). Likewise, the distance ratios
also correlate well; however, both the distances
and the angles correlate inversely with ionicity dif-
ferences in contrast to the suboctet compounds.

We now turn to the prediction of melting points
T, for the suboctet compounds. The theory of
melting points, as in the case of crystal struc-
tures, involves small energy and entropy differ-
ences and is thus a particularly difficult subject.
With the exception of Van Vechten’s*® recent work
on AYB®¥ semiconductors, no major advance on
the theory of T, has occurred since the work of
Lindemann®! in 1910. The reader will recall that
Lindemann proposed that a crystal should melt
when the mean amplitude of the thermal vibration
X of one of its constituent atomic species reached
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a critical value x,. Thus, Lindemann proposed the
following expression for T,:

T, = x2MO3/81° , (14)

where M is the atomic mass and @, is the Debye
temperature. Typically x, is one-quarter of the
atomic radius.*? While (14) is a useful expression
for estimating T,, as Van Vechten®® notes it is of
limited practical use for estimating T, as it re-
qires a knowledge of ©,. Since 6, is usually more
difficult to obtain than T;, it is common to invert
(11) and use the observed value of T, to estimate
0,.

Van Vechten’s analysis of the melting points of
semiconductors is based on scaling the bond ener-
gies occurring in the dielectric theory of the octet
semiconductors. Given certain experimental data
on Si, i.e., the heat and entropy of fusion, the
Debye temperature, and the pressure at which Si
transforms into the B-tin structure, Van Vechten
was able to predict the melting temperatures of
most IV-IV, III-V, and II-VI semiconductors within
an accuracy of 10%. While this approach is supe-
rior to Lindemann’s treatment in that it does not
require a knowledge of ©, (except for Si), it un-
fortunately is applicable only to the binaries for which
the dielectric theory can be used. In addition, Van
Vechten’s results are based on the assumption of a
liquid phase which is metallic. Therefore, it can-
not be applied to crystals which melt into an insu-
lating liquid such as CuCl. Finally, problems also
arise in cases such as the arsenide binaries, e.g.,
GaAs, where the As tends to associate in the liq-
uid.

In the present context we consider the melting
temperatures of some 40 suboctet compounds. One
advantage of studying the suboctet groups is that
the problem associated with liquid-anion associa-
tion in octet binaries is reduced in the case of the
suboctets as the constituents are largely cationic.
The basis of our treatment of melting points re-
sides in the accuracy of the structural separation
achieved with the bond-orbital coordinates (7, 7).
Since these coordinates appear to be very accurate
chemical coordinates, we expect them to be able to
distinguish between the various melting points. To
examine this possibilty we assume that the melting
temperatures may be expressed as function of
(r5,75). Thus, we take

Ty=T(rs,7x) (15)
and expand T, to second order:
TV V) =o+ Q)7 o+ AV 5+ Gg¥ ¥ g + a; % +ark
(1e)

In a similar fashion we may attempt to understand

the melting temperature point behavior by an ex-
pansion in the simple-model (Mooser-Pearson) co-
ordinates (77, A X):

T,@,AX)=b,+b AX+bA+bAAX+bAX?+bJ .
)

The expansion coefficients in both cases were de-
temined by a fit to the experimental melting points.
In the fitting procedure we excluded from consider-
ation the suboctet compounds which undergo struc-
tural transformations before melting. Another
problem with the experimental data is the lack of
information on the t/64 and cP64 structures. These
structures include such compounds as KGe, NaPb,
and RbSi. Members of this family tend to subli-
mate. However, of the remaining structures melt-
ing temperatures are available for the majority of
cases.*

The resulting coefficients for Eqs. (16) and (17)
are presented in Table III. In Table IV the pre-
dicted melting points on the basis of (16) and (17)
are compared to the experimentally determined
melting temperatures. We have also plotted the
results listed in Table IV in Figs. 15 and 16.

Overall the orbital shell-model results displayed
in Fig. 15 are in reasonably good accord with ex-
periment. The rms error, neglecting the anoma-
lous behavior of MgAu which will be discussed be-
low, is less than 140 °K; the predictive accuracy
of (16) is therefore on the order of 15%. In the
case of the simple shell model the attempt to fit (17)
to experiment results in the very poor fit exhibited in
Fig. 16. The rms error is over 260 °K and the
average deviation is almost 30%. The major prob-
lem of the Mooser-Pearson simple shell-model co-
ordinates is their inability to distinguish between
compounds on the basis of # and AX alone. For
example, consider the compounds SrSi and LiTl.
Both suboctets have #=3 and AX=0.8 and as a con-
sequence the Mooser-Pearson expression assigns

TABLE III. Expansion coefficients [Eqs. (16) and (17)]
for the melting points of suboctet compounds. The units
are such that if (r,,7,) are in atomic units or AX is
from Table I, then Ty is in °K.

Bloch-Simons Mooser-Pearson

aq 1410 by 570
@ —1400 by 2080
a, 940 by —345
a —640 b 110
a 660 by -1220
as 54 bs 35




2466 J. R. CHELIKOWSKY AND J. C. PHILLIPS 17

TABLE IV. Predicted and observed melting points for the suboctet compounds A¥BF~¥, The
experimental data are from Ref. 43. Experimental values in parentheses were not used to fit
the expansion coefficients [Eqs. (16) and (17)] as these compounds undergo structural transitions
before they melt. Note the anomalous behavior of MgAu.

Melting points (°K)

Experimental Predicted
Compound (°K) Bloch-Simons Mooser-Pearson

CaAg 938 906 1030

BaPb 1123 1330 1109

BaGe 1418 1570 1039

CaGe 1573 1344 1003

CasSi 1518 1405 1035

CaSn 1260 1178 989

SrSi 1423 1486 1003

SrGe 1438 1420 989

Tl 723 966 936

CdAg (1003) 1079 203

LiAu (1159) 1191 1064

MgAg 1093 987 944

ZnAg (963) 1083 420

CdAu 900 930 936

LiAu 918 986 849

MgAu 14232 879 673

RbAu 773 670 748

ZnAu 998 931 992

BeCu (1203) 809 745

CaCd (958) 903 924

CaTl 1243 923 1038

CaHg 1234 1033 992

SrCd 973 948 921

ZnCu (1153) 1029 462

LiHg 868 839 1038

MgHg 900 773 924

LiPb 755 872 1003

LiTl 783 841 1003

MgTl 628 805 834

LiAl 991 876 949

LiCd 822 828 980

LiGa 999 892 963

Liln 910 839 980

Naln 713 842 1703

LiZn 753 833 963

NaTl 578 839 1030

LiBi 878 903 1038

NaBi 793 860 1046

NaPb 641 844 1030

KPb 843 853 1061

KSn 1103 885 1046

BaCd 854 1024 1005

BaHg 1095 1025 1130

HgSr 1133 964 1055

2See text.

them identical melting temperatures of 1003 °K; With respect to the structural plots for the sub-
however, experimentally SrSi melts at 1423 °K and octet compounds in Fig. 12, several interesting
LiTl at 783 °K. The orbital shell-model coordi- observations can be made. The low-melting-tem-
nates yield predicted melting points of 1486 °K for perature compounds lie on a line which roughly
SrSi and 841 °K for LiTl in good agreement with passes through CaAg and RbAu. With compounds
experiment. These results illustrate the super- which lie some distance in a direction perpendic-
iority of the latter coordinates over those of the ular to this line, the melting temperatures in-

Mooser-Pearson simple shell model. crease fairly rapidly. For example, the CrB com-
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FIG. 15. Observed and predicted melting points for
44 suboctet binary compounds. The predicted melting
points are from Eq. (16) which is based on the Bloch-
Simons Coordinates. The open symbols were not used
to determine the expansion parameters. The anomalous
behavior of MgAu is discussed in the text.

pounds such as SrSi or BaGe have a very high
melting point compared to compounds such as NaTl
or LiPb which lie near the CaAg-RbAu line. The
CrB compounds have rather large values of 7, and
small values of ;. In analogy to the Phillips-Van
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FIG. 16. Observed and predicted melting points for
44 suboctet binary compounds. The predicted melting
points are from Eq. (17) which is based upon the
Mooser-Pearson coordinates. The rather poor predictive
powers of the Mooser-Pearson coordinates is indicated
by the poor correlation. The open symbols were not
used to determine the expansion parameters. The
anomalous behavior of MgAu is discussed in the text.

Vechten coordinates, this implies large values of
C and E,, respectively. Therefore, perhaps it is
not too surprising that such structures have high
melting temperatures.

A similar examination of a Mooser-Pearson plot
in an attempt to understand the melting points
would be difficult on the basis of the fit in (17).
The fit is so poor that the addition or deletion of
just a few compounds can radically change the val-
ues of the expansion coefficients. Therefore, it is
risky to interpret the coefficients in physical
terms. About the only observation which can be
made is that the index # appears to play a minor
role which again occurs because of its digitalized
form.

With respect to Fig. 15 we note the anomalously
high melting point of MgAu. -From Table IV we ob-
tain the predicted melting point of MgAu to be
879 °K. The difference is almost four standard
deviations away from the fit to the remaining com-
pounds. In addition, the behavior of similar val-
ence compounds such as ZnAu and CdAu appear to
be correctly described, thus adding to the bizarre
behavior exhibited by MgAu. Pearson®*! has dis-
cussed the anomalous behavior of MgAu in terms
of electronegativity differences as the atomic radii
of Mg and Cd are nearly identical. On Pauling’s
scale A X(MgAu)=1.2, while AX(CdAu)=0.7. Thus
Pearson proposes to account for the 520 °K differ-
ence in melting points between CdAu and MgAu as
a charge transfer effect. However, on the basis
of the St. John-Bloch scale we would find
AX(MgAu)=1.1 and A X(CdAu) =1.0 which would not
account for such a large melting point difference.
We prefer to attribute the anomaly to the character
of Au as nearly a transition metal element, which
means that 7, plays an important role. Further
discussion of this point is given in Appendix A.

Finally, with respect to Fig. 15 we observe that
several suboctet compounds on the basis of the or-
bital shell-model coordinates are predicted to have
higher melting points than observed. These com-
pounds cluster in the lower left-hand corner of
Fig. 15 and include, e.g., NaPb, NaTl, MgTl, and
LiPb. Their presence results in the sharp turn
down of the experimental melting points compared
to the theoretical values near 850 °K in Fig. 15. It
is interesting to speculate that the behavior of
these compounds may be analogous to that ob-
served in the octet semiconductors. In this case,
it has been found that for large values of the Phil-
lips ionicity parameter the semiconductor lattice
tends to soften as the ionicity nears a critical val-
ue separating the tetrahedral configuration from
the more ionic sixfold coordinated rocksalt struc-
ture.**'%® If a similar softening occurs for the sub-
octet compounds this might be reflected in the re-
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duced melting temperature and deviations occur-
ring from the predicted melting points. Such a
softening, possibly of a zone-boundary acoustical
phonon, could be detected in several ways, e.g., in
specific-heat data. According to Table IV, the
greatest softening probably occurs in NaTl, where
T expry 1S 250 °C below T (heor -

V. UNIAXIAL STRAINS

In this section we discuss uniaxial strains in two
families of tetrahedrally coordinated octet semi-
conductors, the wurtzite simple binary family and
the chalcopyrite pseudobinary family. These
strains are known very accurately. We hope that
chemical trends in these strains can be correlated
with bond-orbital coordinates.

The stability of octet wurtzite compounds has
been discussed carefully by Lawaetz.*” He has
shown that there is a close empirical correlation
between c/a and the stability of wurtzite-versus-
sphalerite (hexagonal-versus-cubic) modifications.
He concludes that the critical parameter A given
by

A=c/a -1.633 (18)

must be negative (within at least 0.1%) for the
wurtzite modification to be stable. Moreover, the
range of c/a values for which the materials are
dimorphous extends about equally to both sides of
the ideal value A=0. This suggests that the re-
lationship between the energy difference and A is
almost linear.

Lawaetz further identifies this energy difference
with y=(ZC/kw,)? and shows that there is a good
linear correlation between y and A. The param-
eter y involves Z, the formal cationic charge (or
the number of Pauling resonating bonds), the Phil-
lips ionic energy gap C, and the plasma energy
7iw,. This rather unexpected combination of pa-
rameters also correlates well with the Szigetti ef-
fective dynamical charge eX for lattice vibrations.*®

From Fig. 9 we see that on a bond-orbital or SB
plot the boundary between sphalerite and wurtzite
structures is perpendicular to the 7, coordinate.
This suggests that we examine the correlation be-
tween y'=»,/a and A. (Both y and y’ are normal-
ized dimensionless coordinates. Here a is the
wurtzite lattice constant in the basal plane.) This
correlation is shown in Fig. 17. It should be com-
pared with Fig. 3 of Lawaetz.?” The two are re-
markably similar; the worst fits in both cases in-
clude BN and BeO.

We have found in general that our structural plots
are more satisfactory if we use non-normalized
coordinates. (This implies that it is the shell
structure of the ion cores and not the atomic cell
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FIG. 17. Distortions of the c/a ratio from the ideal
value for several wurtzite binaries as a function of the
normalized Bloch-Simon coordinate »,/a. The results
are quite similar to those obtained by Lawaetz (Ref. 47).

dimensions or outer atomic wave functions which
are of primary structural significance; therefore,
it is not correct to normalize the former by the
latter.) In Fig. 18 we show the non-normalized
plot of A against »,. Comparing Fig. 18 with Fig.
17, we argue that 7, is a better configuration co-
ordinate than 7,/a. Note that in Fig. 18 three com-
pounds, BN, SiC, and BeO have moved much clos-
er to the line. Two compounds AIN and ZnO, have
moved away, but these are the compounds for
which |A| is the largest, and for which a nonlinear
increase in |A| with 7, (similar to what is shown
in Fig. 19 for the chalcopyrite distortions) might
be expected.

We next investigate the structural trends in the
ternary tetrahedral compounds: the A"B™CY
chalcopyrites.**~% Just as the binary compounds

0.02
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[ 2]
(2]
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I -
°
£
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[ IN THE WURTZITE STRucTURes ~EN 2
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o = [fs+5] - [7(B) +7,(8)]

FIG. 18. Distortions of the c¢/a ratio from the ideal
value for several wurtzite binaries as a function of the
nonnormalized Bloch-Simons coordinate 7,. Note the
improvement over the results obtained with 7, /a as in
Fig. 17.
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FIG. 19. Tetragonal strain for A™B! (Y chalcopyrite
semiconductors plotted as a function of a suitable
combination of bond orbital coordinates.

A"B®-¥ are analogous to diamondlike crystals A",
so these ternary compounds are analogous to the
binary ones. The primary difference is that the
ternaries contain two types of cations. In the chal-
copyrite structure each A -type of cation has as a
second nearest neighbor 8 B cations and 4 A cat-
ions. These are distributed with 4 B cations in the
x-y plane, and 2 A and 2 B cations in the x-y and
y-z planes. A key feature of this arrangement is
the presence of A-C-A and B-C-B linkages par-
allel to the x axis. This difference in linkages
causes a tetragonal contraction along the z axis,
which contains only A-C-B linkages. This results
in ¢/2a being less than unity by typically 0.05.
Thus it appears that chalcopyrite compounds are
stable only for c/a —2<0, just as wurtzite com-
pounds were stable only for A <0. Crystallograph-
ic studies of trends in ¢/2a among chalcopyrites
using combinations of atomic radii have been only
qualitatively successful.®® This is not a surprising
result; for covalent crystals polarization effects
may dominate thus invalidating this sort of “rigid-
ion” approach.

Another approach has been to describe the charge
redistribution taking place in terms of elemental
electronegativities. In such an approach it be-
comes apparent that Pauling’s electronegativity
scale is not appropriate. For example, 1-c/2a
varies from 0.081 for CdSiP, to 0.025 for CdSnP,
but Pauling lumps Si, Ge, and Sn together with the
same electronegativity of 1.8. Therefore, Phillips
used an electronegativity scale based upon the di-
electric method in an attempt to understand the
tetragonal distortions.’® He was able to obtain a
reasonable fit to the experimental values by taking

2-c/a=-0.6X,+0.25X5+0.15X; +0.01.  (19)

This linearized expression yields accurate results
for small distortions, but it underestimates the
observed values for large distributions. Phillips
was also able to note the coefficient in (19) sug-

TABLE V. Average cation spin-orbit splitting for
several AB'VCY chalcopyrites, Ago(AB)=3[A(4)+A(B)],
compared to the crystal-field splittings, A ;. The ex-
perimental values are taken from Ref. 52. Note the very
large value for Agy compared to A for the case of
CdSnAs,. The energies are in eV.

Compound Ago(AB) Agg AgoAB) /A
CdSiAs, 0.14 0.24 0.6
CdGeP, 0.26 0.20 1.3
ZnSiP, 0.06 0.13 0.5
ZnGeP, 0.18 0.08 2.2
CdSnAs, 0.47 0.06 7.8

gested a contribution to the distortion which de-
pended three times more on the charge transfer
involved with atom A as compared to atoms B or
C. In fact, he observed the coefficients in (19)
scale roughly as 1/Z,.

We have attempted to undertake a similar study
with the Bloch-Simons radii as the basis of corre-
lating the distortions. Unlike the previous ap-
proaches using atomic radii, the Bloch-Simons
radii are orbitally dependent and thus should pro-
vide a basis for the chemical trends resulting in
the tetragonal distortions. As a first attempt to
find a relationship between c/2a and the radii, we
considered the quantity »,=7,(A) -7 ,(B) in a sim-
ilar fashion to the structural plots. However, this
approach is only qualitatively successful. The ma-
jor defect of this coordinate is that it does not dis-
tinguish between the anions. Also since the d radii
appear nowhere in 7, the coordinate cannot dis-
tinguish between Si and Ge chalcopyrites.

A number of alternate coordinates were con-
sidered before we found the correlation presented
in Fig. 19. In order to distinguish between Ge and
Si we have included an 7,(A) -7, B) correction,
and further to distinguish among cations we include
an 74(C) term. The denominator correction is
small being on the order of 10%. Unfortunately
two notable exceptions to the smooth curve in Fig.
19 occur: CdSnP, and CdSnAs,. This result can
be attributed to the presence of a very large spin-
orbit splitting on the cations. For the reader’s
convenience the cation spin-orbit splittings are
compared®® to the crystal-field splittings for sev-
eral compounds in Table V.

VI. GLOBAL THERMOCHEMICAL MODEL

The binary phase diagrams of more than 500
metallic alloys have been investigated extensively
by many workers over a long period.? In a few
cases the diagrams are rather simple, corres-
ponding perhaps to nearly ideal liquid and regular
solid solutions. In most cases, however, the dia-
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grams are quite complex, because there are a
number of competing solid phases which are either
alloys or compounds. Theoretical analysis of these
diagrams has become correspondingly sophisti-
cated as evidenced by the pioneering work of Kauf-
mann.®® The current state of the art is reflected
in the specialist papers in the new journal Compu-
ter Analysis of Phase Diagrams and Thermochem-
istry.

In this section instead of analyzing specific phase
diagrams we will adopt the viewpoint developed
over the last five years by Miedema and co-work-
ers in a very important series of papers.®~57
Miedema has chosen to analyze the global problem
of the systematics of the heats of formation of bi-
naries formed from 27 transition and 26 simple
metals. Thus he has introduced a global metric
which is quite accurate for all 500 alloys as both
solids and liquids. Because the model averages
over so many systems it treats, in effect, only the
isotropic part of the heat of formation, and not the
anisotropic or structural part which is responsible
for structural phase transitions. The theory is a
chemical one in the sense that two variables are
fixed for each element (106 elemental variables
altogether) and thse are unaltered by the formation
of chemical bonds. This assumption appears to be
necessary and sufficient for calculating the iso-
tropic part of AH,.

How much information is contained in the phase
diagrams studied by Miedema and co-workers?

In general, far too much for a global model, and
so although the model yields numerical values for
AH,, in practice, the variables have been adjusted
to determine primarily the sign of AH; as well as
possible in approximately 500 binaries. (Actually
the separation of AF into AH, and AS is not trivi-
al, so the model also contains certain qualitative
rules® for establishing the sign of AH,.) Although
the data have been oversimplified, there are still
500 bits of information to be analyzed. This mas-
sive data base may be compared to 120 bits for
the five crystal structures of 80 octet compounds,
or 70 bits for six crystal structures of 50 suboctet
compounds. It is therefore apparent that the suc-
cessful separation of the fields “+” and “-” signs
for AH, in the dual-coordinate diagrams of Mie-
dema, Boom, and deBoer is a remarkable ac-
complishment.

We now propose to trace this accomplishment
through its final two stages and to show that the
dual adjustable variables have fundamental quan-
tum-mechanical significance. We recall that orig-
inally® for a rather small number of elements
(about nine transition metals and 14 simple metals)
values were given for the dual variables ¢* and =,
interpreted as the atomic chemical potential and

charge density at the edge of the (sphericalized or
Wigner-Seitz) atomic cell. Shortly thereafter® the
list was revised to include 27 transition metals
and 15 simple metals. In both cases the values of
¢ * were obtained from scattered and fragmentary
experimental values of the work function ¢. n was
obtained from an empirical correlation between
the molar volume V, and the bulk modulus. It
should be emphasized that such an intuitive, em-
pirical approach is an excellent way of nucleating
a global model.

The model formula for the heat of formation AH,
of an alloy A, B,_. at this stage has the form®®

AH,=f(c)[-Pe(adp*)?+ Q(an)®> -~RO,6,], (20)

where f(c) can be assigned the regular solution
form ¢(1-c¢). P, @, and R are positive-valued
constants. In (20) there is an attractive term as-
sociated with charge transfer Pe(A¢*)?, a repul-
sive term Q(An)? associated with charge-density
mismatch, and an s-d correction term R6.6,
which is present for s-d pairs only (6,6,=1) and
absent otherwise (6,6,=0).

The trial values® of ¢* and n were only partial-
ly successful, using (20), in predicting the sign of
AH;. This is shown in Fig. 20, which is repro-
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FIG. 20. Sign of AH; for solid alloys correlated with
differences in the work function A¢ and electronic
charge density at the cell boundary Anyg for constituting
metallic elements. Region I contains 107 negative and
4 positive signs while region II contains 37 positive signs
and 2 negative signs. The results are from the early
work of Miedema, deBoer, and Chatel (Ref. 54).
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duced for the reader’s convenience. The wedge re-
gion labelled III contains both “+” and “-" values,
while region I contains 95% “~" values, and re-
gion I contains 95% “+” values. In view of the
fact that (20) and the dual parameters (¢*,n) were
essentially guessed, the results shown in Fig. 20
are not unexpected. To examine the model further
we took the postulated ¢ * variables at this initial
stage () and fitted them to the generalized orbital
electronegativity (10) with g(!) adjusted to give the
best fit. The result was (simple metals only)

0.41 . 0.15 0.96

i
$.=3.69+ e . .

(21)

in eV. This result is unphysical in several ways:
| g(2)| > | g(1)| and g(2) <0. However, there is a
good fit in the sense that the rms error 0.12 eV.

The significance of our fitted values is brought
out in Fig. 21, where we compare the thermo-
chemical values with those fitted and predicted by
(21). Although the general trends are similar,
there are anomalies (notably Sn). However, the
very unphysical value of g(2) suggests either that
¢* is unreliable or that the ¢ of our orbital shell
model of electronegativity is not meaningful.

In view of our considerable success in examining
structural properties, as detailed in the earlier
sections of this paper, we were reluctant to accept
the latter conclusion. We therefore decided to ex-
amine the most recent or final (f) set of variables®
which are based on a much more extensive analy-
sis of thermochemical data including liquid-metal
alloys. Now there are changes in the formulas,
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FIG. 21. Original (1973) work function parameters ¢*
used by Miedema and co-workers (Ref. 55) in their
thermochemical model for the heats of formation. Their
results are compared to those obtained from an orbital
shell model using an expansion in Block-Simons radii.
Note the anomalous behavior of Sn in the thermochemical
model. An orbital shell model fit to ¢* results in
unphysical expansion coefficients.
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notably An
adjusted more freely and is now found to correlate
better with [n(r 4g)] /3 Also there is a molar vol-
ume correction to the regular solution formula for
f(c), and some systematic dependence of R on Z,
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/3 j.e., the second variable has been

(the valence of the simple metal) is identified.
Most important to us, however, were further
changes and augmentation of the variable list,

which now includes 26 simple metals.

We therefore proceeded as before and made a
similar fit to obtain

1.24 1.76  0.22
+ +

f=0.62+
¢ Yo 7, V2

(22)

in eV, with an rms error of 0.12 eV again. This
is a remarkable result. Now g(I)>0 for all [, as
it should be. Moreover, g(2)<g(0),g(1), which
is what we would expect for simple metals, and
the coefficients indicate about 7% d hybridization,
which is quite reasonable. Finally, the ratio of

g(1)/g(0) is pleasing. The metals studied span

columns I (s) to V (s?®) and therefore bearing in
mind that we are concerned with electrons at the
Fermi energy, one would expect (roughly) an aver-
age value of g(1)/g(0) of about 1.5, close to fitted
values. In fact, if we imagine that g(2) has been
borrowed mainly from g(1), i.e., there is some

p-d (dipole) hybridization in the crystal, then the

ratio is very good indeed.

A comparison of ¢*f and ¢/ as given by (22) is
made in Fig. 22, again for the Cu, Ag, and Au
periods. If one were to examine only the numeri-
cal values of ¢X and compare them with ¢*/, the
differences would seem rather small, compared,
e.g., to the uncertainties of 0.4 eV which are not
atypical of measured work functions ¢. However,
as we can see by comparison of Figs. 21 and 22,
the pattern of ¢* and ¢° is totally different from
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FIG. 22. Empirically adjusted work function parameters
¢* of the (1975) thermochemical model of Miedema and
co-workers (Ref. 56). The results are compared to the
orbital shell model parameters ¢.
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the pattern of ¢¥ and ¢’. The first set of values
decreases with Z, but the second set has a mini-
mum at Z=3 (for ¢*) or at Z=2 (for ¢).

Because the agreement between ¢* and ¢ is so
good, and the physical results so reasonable, we
could rest at this point and claim that our central
goal—finding an orbital decomposition for, and
justification of, the thermochemical variables—had
been achieved. However, there is more to be said.
The differences between ¢ * and ¢*, although
small, are not accidental; they are significant,
and they shed light not so much on the thermo-
chemical model but rather on the fundamental as-
sumptions of the orbital shell model.

The central difference between ¢ * and ¢ in Fig.
22 is that the range of values (for a given Z) span-
ned by ¢ is much greater than that spanned by ¢ *.
It seems very likely that the greater range of
{<5(Z)} is a consequence of the simplifying assump-
tion of the orbital shell model made at the outset,
namely that the principal quantum number N is a
good quantum number. Suppose we were to relax
this assumption, and replace »,(N, Z) by (for ex-
ample)

R,(N,Z)=0.4r,(N,Z)+0.3{7,(N-1,2)
+7,(N+1,2)]. (23)

We could then define ¢ (N, Z) in terms of R;(N, Z),
and the end effect would be to reduce the range
spanned by {$#(Z)} and bring it into better accord
with the range of {¢*(Z)}; the ranges could be
made nearly equal by suitably adjusting the broad-
ening parameters in (23). However, we do not
carry through this exercise because we feel that
it would introduce further parameters but would
provide no additional clarity.

There is a more penetrating way to analyze nu-
merically the differences in Fig. 22. There is an
oscillation in the I-B elements, with Cu and Au
(periods IV and VI) having larger values of ¢* and
¢ than Ag (period V). The physical reason for this
is well known: the tops of the bands of d electrons
of Cu and Au lie about 2 eV below Ep, while that
of Ag lies about 4 eV below Ep. Thus the d elec-
trons of Cu and Au are much more polarizable
than those of Ag, which enhances ¢, ¢*, and ¢.

To us the most interesting feature of Fig. 22 is
the extent to which this irregular feature of col-
umn I-B persists through columns II-A, III-A, and
even IV-A, finally becoming small only in column
V-A. Now the fact that Cu, Ag, and Au form solid
solutions (a-brass or Hume-Rothery alloys) with
all these elements is well known,>® and preferenti-
ally each element dissolves in the I-B host of its
own period. From Fig. 22 we would be inclined to
say that it is the d-electron polarizability (even
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FIG. 23. Difference between the average of ¢ (IV) and
¢ (VI) and ¢ (V) as afunctionof Z inthe thermochemical
model (¢*) (see text). Note the closely parallel behavior
except for Z =4 which we attribute to small errors in
o* for Sn and Pb. By modifying ¢* (as indicated by A)
we bring the trends into agreement and obtain an
improved fit to the T1-Sn and T1-Pb phase diagrams.

for Ge, Sn, and Pb!) and its regular contribution
to (¢ *,n) that plays the most important role here.>

We can use the irregularity of the I-B sequence
to calibrate the extent to which N is no longer a
good quantum number in intermetallic alloys. Let
us consider the quantity

0X(2)=z(X(VL,Z)+ X(IV,Z)] - X(V,Z),  (24)

and substitute X =¢*f and X=¢’. The results are
shown in Fig. 23. The irregularity 6X(Z) is great-
est for Z=1 (column I-B) and least for Z=5 (col-
umn V-A). However, the decrease is not mono-
tonic, there being a small peak at Z =4 for both
o*and &.

While it is obvious that 6¢ closely parallels 6¢*,
we also show the ratio 6¢*/6¢ in Fig. 23; this
ratio has a value close to 0.35 + 0.05 except for the
case Z=4. To bring 6¢*(4)/6$(4) close to 0.35 as
indicated by A in Fig. 23, we need only make the
changes in ¢*(Sn) and ¢ *(Pb) indicated by A in
Fig. 22. Our largest recommended change is
¢ *(Pb) from 4.10 to 4.00 eV, while ¢ *(Sn) is
changed from 4.15 to 4.18 eV. All other values of
¢ *f appear to be consistent with a “blurred” or-
bital shell model.

If only § of the shell structure irregularity sur-
vives not only the formation of energy bands but
also the “statistical noise” of the 500 binary alloys
studied in the global thermochemical model, why,
one might ask, should we attach much significance
to the orbital shell model? Toanswer this question,
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let us look again at Fig. 22. Why is ¢ *(Cd)

< ¢*(Zn) and ¢ *(Hg)? Is this an artifact of Miede-
ma’s model, which contains (in addition to P, @,
and R) 106 elemental adjustable variables, or is it
an intrinsic consequence of irregularities in the d
core energy levels? What we show in Fig. 23 is
that the irregularities of ¢* are indeed intrinsic.
We believe that because of the very close agree-
ment between ¢* and ¢ implied by 6¢ */64 = const
that we are justified in believing that in general
{¢p*’} is accurate to better than 0.04 eV.

Our success with fitting ¢ * with a generalized
orbital electronegativity relation (10) has encour-
aged us to look for a similar relation for n'/3, the
second thermochemical variable which appears in
Miedema’s later scheme. There is a strong in-
ternal correlation between ¢* and #'/3, and as a
result of this correlation it seems natural to fit
n'/3 again to a relation of the type (10). In addi-
tion, if we use relation (10) to describe 7*/® we
may explicitly demonstrate the rather large can-
cellation which occurs between the electronegativ-
ity and charge density terms in AH;. The result
(in Miedema’s units) for n'/3=y* is given by

J -3,=0.318(¢ - ¢,) - 0.041/7,, (25)

where ¢ is given by (22) with ¢,=0.62 and §,
=0.21. The rms error in (25) is 0.08. Because
the range spanned by ¢ * is about three times
greater than that of §*, this rms error is about
twice as large as that in the fits to ¢*. Thus the
following algebraic arguments are intended to be
schematic rather than definitive.

To illustrate the large cancellation between ¢ *
and y* we consider the most recent expression
used for AH, by Miedema:

AH;/P=—(a¢p¥?+(Q/P)(Aayp*)?* - R6,6,/P  (26)

(assuming nearly equal molar volumes). @ and P
are constants, Q/P=9.4 V?/(density units)®®. As-
suming 6,0, =0 we substitute (22) and (25) into (26)
and obtain

AH,/P=-0.25A3[0.20A¢ +A(1/7,)] . (27)

This expression explicitly exhibits the large can-
cellation between the ¢ * and ¥ * contributions which
is characteristic of the heats of formation. The
terms in P and @ have cancelled by 95%. The re-
sult implies that “first-principles” calculations
using local pseudopotentials, phase shifts (muffin
tins), or any of the other simplifications commonly
employed in energy-band calculations of bulk or
surface properties are unlikely to yield results
sufficiently accurate to be of thermochemical in-
terest.

According to (22) and (25) the central difference

between ¢ and § is an additional p-shell contribu-
tion to . Because the p-shell contribution is
small [6g(1) <g(1)], it is natural to interpret this
as the average effect of a higher-order multipole
contribution to the charge in the boundary energy®
at polyhedral cellular interfaces when intermetal-
lic compounds are formed. The average isotropic
or spherical contribution to A¢ favors AH, <0,
but kinetic energies are more strongly affected by
the polyhedral terms which emphasize §* and fav-
or AH,>0. The situation in metallic compounds
is quite different from molecules. In molecules,
low-order multipoles give large kinetic energies
and stability is possible, in general, only through
covalent bonding.

While our expression for ¥ in (25) is of signifi-
cance for demonstrating the rather large cancella-
tions between the A¢p* and Ay* terms in AH,, the
9 values are unsatisfactory because the rms error
from y* is rather large. In order to remedy this
situation we tried numerous combinations of 7,
with little success. However, we were able to ob-
tain an accurate fit to ¥ *, involving only a few pa-
rameters, provided we employed the isotropic
radii, 7, where we take 7, = V1/3.5¢ In general,
we expect the atomic charge density to have the
asymptotic form n(7) ~ exp(-a7 &)/~ and thus we
attempted the expansion

F=dor exp(-art) 3 £0L (26)

We found that the best fit was obtained with =2,
«=0.096, g(0)=0.45, g(1)=0.50, and g(2)=0.40.
The rms error for (28) was 0.04 or a twofold im-
provement over our previous expression for ¥*.
The relative values of g(l) are stable for large
changes in B indicating that they are probably of
physical significance.

Au THERMO CHEMICAL
MODEL (1975) \

Prey 1 I 1 1 1 L L 1
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FIG. 24. Comparison of Miedema’s most recent
thermochemical parameters y* with values predicted
by the orbital shell model according to Eq. (28),
which includes both ion-core and atomic size factors.
@*)® is given in density units (d.u.) as in Ref. 56.
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TABLE VI. Electronegativity and charge-density pa-
rameters (¢*,y*) as defined by Miedema and co-workers
(Refs. 54-56) for simple metals. Miedema’s parameters
are compared to the analogous parameters (5,@) as de-
fined by the orbital shell model [Egs. (22) and (28)]. Au
was not used to fix the expansion coefficients in the or-
bital shell model and we tabulate it for completeness
only.

Element P* 1 o* ¢
Li 0.98 0.99 2.85 2.92
Na 0.82 0.83 2.70 2.62
K 0.65 0.68 2.25 2.21
Rb 0.60 0.65 2.10 2.12
Cs 0.55 0.61 1.95 1.99
Be 1.60 1.56 4.20 4.55
Mg 1.17 1.09 3.45 3.36
Ca 0.91 0.90 2.55 2.72
Sr 0.84 0.81 2.40 2.50
Ba 0.81 0.76 2.32 2.30
Al 1.39 1.33 4.20 4.03
Si 1.50 1.53 4.70 4.64
Cu 1.47 1.50 4.55 4.61
Ag 1.39 1.37 4.45 4.44
Au 1.57 (1.87) 5.15 (6.69)
Zn 1.32 1.32 4.10 4.06
Ccd 1.24 1.18 4.05 3.76
Hg 1.24 1.24 4.20 4.15
Ga 1.31 1.33 4.10 4.29
In 1.17 1.16 3.90 3.85
Tl 1.12 1.17 3.90 4.01
Sn 1.24 1.20 4.15 4.02
Pb 1.15 1.17 4.10 4,08
As 1.44 1.49 4.80 4.89
Sb 1.26 1.25 4.40 4.30
Bi 1.16 1.15 4.15 4.18
Ge 1.37 1.46 4.55 4.59

A comparison between the orbital shell model
results and the thermochemical model results for
Y is displayed in Fig. 24. In contrast to the results
for ¢, we note the anomalous behavior of § for the
I-B (Cu, Ag, Au) column does not penetrate beyond
the III-B column. In this sense the orbital shell
effects for § seem to be reduced as compared to
¢. Otherwise, the behavior of § resembles that
of d3 leading to the large cancellation in AH,.

In summary, the orbital-shell-model parameters
(@, ) are compiled along with the thermochemical
model parameters (y*, ¢ *) in Table VI for the con-
venience of the reader.

VII. CONCLUSIONS

In this paper we have attempted to illustrate how
suitable combinations of Bloch-Simons radii may
be used to construct chemical coordinates. Our
purpose in constructing these coordinates is to
develop intuition and insight with respect to the
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relationship between chemical composition and
crystal structure. As indicated in Sec. I, the pre-
diction of crystal structures is a most difficult
problem: one which involves energy differences
which are too small to be calculated using our
present quantum mechanical framework. We have
proceeded, therefore, not from a “first-princi-
ples” approach, which at this time appears fruit-
less, but rather attempted to separate schematic-
ally the structures using the diagrammatic ap-
proaches of Mooser-Pearson and Phillips—Van
Vechten.

As a first attempt, we have restricted our ef-
forts to include only simple binary compounds of
the form ABf-", where P=8 and 2<P<6. Al-
though these groups have been briefly examined
before by St. John and Bloch,'® and Machlin, Chow,
and Phillips,'® respectively, we have extended
their results to include the noble metals (Cu, Ag,
and Au) and discussed their approaches in more
detail. We noted the extremely important result
that using the same combinations of radii we were
able to separate both the octet (P=8) and suboctet
crystal groups. In addition, we noted the anoma-
lous placement of structures in a St. John-Bloch
diagram, in certain cases, was indicative of spec-
ial or unusual crystalline behavior (e.g., CuF,
CaAg, and RbAu).

While in most cases we found the original defin-
itions of Bloch and Simons to be satisfactory, we
did extend their results to include variations in the
1 =2 radii down the columns of the Periodic Table.
This difference can be significant in defining elec-
tronegativity scales for certain elements as, for
example, Si and Ge. We also expanded their re-
sults to include the noble metals (Cu, Ag, and Au)
and to include the heavy halogens. Finally we gen-
eralized the electronegativity scale of St. John and
Bloch and noted that such scales may be calibrated
by recent thermochemical models.

Further, we noted specific advantages of the St.
John—-Bloch coordinates over other coordinate
schemes. Unlike the MP coordinates, the SB co-
ordinates are completely quantum mechanical in
nature and are not of digital form. Thus SB co-
ordinates vary smoothly across the rows and down
the columns of the Periodic Table. They are also
adaptable to a wide range of simple binary struc-
tures. This is not true, for example, of the PVV
coordinates. These latter coordinates, while very
successful, are restricted in their applicability to
sp?, or tetrahedrally coordinated, binary com-
pounds. Nevertheless, in some cases we were
able to find correlations between the SB.coordin-
ates and the other schemes. As an example we
found the SB coordinate 7., correlated very well
with Pauling’s electronegativity and to a lesser ex-
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tent with the PVV parameter, C.

In addition to the great success of obtaining a
nearly exact separation of the octet and suboctet
binary crystal structures, we have also obtained
striking correlations of the Bloch-Simons radii
with internal crystal parameters involving uniaxial
distortions occurring in the wurtzite and A"B™VCY
chalcopyrite structures. Specifically, we were
able to account for the c/a ratios in wurtzites by
using the SB 7, coordinate alone. This result
should be contrasted with the work of Lawaetz.*’
Lawaetz used a complicated chemical coordinate
involving the formal valence of the cation, the
plasma energy and the Phillips ionic energy gap
C. Our results are comparable to his yet we em-
ploy on the 7, and 7, orbital radii of Bloch and
Simons. In the case of the chalcopyrite structures
we also obtained a satisfactory correlation between
the c/a ratios and a combination of orbital radii.
Unfortunately, this correlation failed for cases in
which relativistic effects become large.

Another aspect examined in the paper was the
melting point behavior of approximately 40 sub-
octet binary compounds. These compounds are
more amenable to a simple analysis than the octets
as they do not contain anions which tend to associ-
ate in the liquid phase. In order to compare the
effectiveness of the SB coordinates over the MP
coordinates we expanded the melting temperatures
T; to second order in (r,,7,) and (#Z, AX). The ex-
pansion coefficients were fixed by experiment. The
MP coordinate expansion was very poor in describ-
ing Ty; the fit was accurate ~30% and the expan-
sion coefficients ill defined. Most of the difficulty
could be traced to the digitalized form of 7, and
the incapacity of (%7, AX) to make fine distinctions
between the binaries. On the other hand, the SB
coordinates yielded a satisfactory description of
the melting point behavior. The accuracy was
~15%, a considerable improvement over the MP
results.

Encouraged by the success of the orbital radii to
account for the melting points of the suboctets, we
used the radii to analyze the recent thermochem-
ical model of Miedema and co-workers.>*~%
Miedema has developed classical thermochemical
parameters (¢ *, ¥ *) which he found were capable
of predicting the sign of the heat of formation for
several hundred liquid and solid binary alloy sys-
tems. In an examination of his parameters we
found that they could be expressed in terms of or-
bitally dependent ionic radii. Significantly, we
found that the irregularity of the core shell struc-
ture could be identified in his parameters and we
were able to demonstrate a large cancellation oc-
curring between the charge transfer and kinetic
energy contributions to AH,.

All the results of the present paper seem to de-
pend-on the precise form of the Simons pseudo-
potential, Eq. (1). For each ! this pseudopotential
contains one adjustable parameter I, which is de-
termined from the quantum defect 5,,=1 -1. We
are aware, however, that the 2 term in the Si-
mons pseudopotential can be refined by modifying
its functional form at large 7~ and by including a
second adjustable parameter.®® With two adjustable
parameters one can fit both E,; and P,,, the value
of r corresponding to the radial maximum of the
Hartree-Fock wave function of the appropriate hy-
drogenic ion. At present, unfortunately, we have
values of P, only for elements from the first per-
iod.! When a complete set of P, become avail-
able, it will be necessary to refine the Simons-
Bloch orbital radii ». The question is, how much
will this change our answers? Will the empirical
regularities presented here still be valid?

Our expectation is that the changes in »; pro-
duced by refining (1) will be largely multiplicative,
corresponding to nearly constant scaling factors.
Thus we suppose that refinement of the pseudopot-
ential will not alter the results of this paper great-
ly, as long as the refined pseudopotential contains
an "2 “hard-core” term for small » even for s
states. (Most pseudopotentials used in early work®®
were chosen for reasons of computational conven-
ience to be of the Ashcroft “empty-core” type.) In
these cases there will always be classical turning
points which can be used to define /-dependent ion-
core radii simiiar to the Simons-Bloch radii used
here.

In this paper we have attempted primarily to ex-
pand the data base to which quantum structural
pseudopotential theories can be applied. The most
sophisticated pseudopotential calculations at pres-
ent employ !-dependent pseudopotentials, fitted
either to experimental band structures®®®® or to
energies and wave-function maxima of neutral
atoms or hydrogenic ions.®* However, far the
most part these calculations are carried out in an
isolated manner which does not make manifest the
regularities in core properties (especially core
turning points) as a function of I, Z, and N which
are immediately evident in Figs. 1-3 and Table I.
We hope that the connections between structural
regularities and hard-core nonlocal pseudopoten-
tials discovered by this and other recent work will
encourage a systematic global approach to these
problems.

APPENDIX A: “ANOMALOUS Au”

We have noted in the discussion of Fig. 15 in
Sec. IV that MgAu has a melting point which is
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500 °C higher than that of ZnAu (or, e.g., CdAu) and
which is 500° higher than the value predicted by fitting
toall other suboctet intermetallic compounds (rms
deviation 140 °C). The very high melting point cannot
be explained by the large difference in chemical
potential between Mg and Au, for other compounds
with equally large differences in chemical poten-
tial are described adequately.

We believe that an important difference between
MgAu and ZnAu lies in the presence of a very
loosely filled d shell on Au, a d core level on Zn
that is only ~10 eV below the Fermi energy on Zn,
and no d core states in Mg. In the crystal the Au
d states can “expand” into the Mg cells more than

into the Zn cells. This effect is qualitatively in-
cluded in the 7, values of Table I for Mg and Zn,
but not in »; and »,. In any case, such a d-d ef-
fect lies outside the framework of our s-p coor-
dinates or Miedema’s coordinates (which lump to-
gether s, p, and d effects). In some ways the
anomalously high melting point of MgAu may be at-
tributed to p-d hybridization, which is described
in the Miedema model by the third term on the
right-hand side of Eq. (26), especially if Au is re-
garded as a special element which lies halfway be-
tween Cu and Ag, one the one hand, and Pb and Pt
on the other, in terms of its Miedema coordinates

(p*,n*3).
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