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Memory function for the response of conduction electrons in metals
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The results of the quantum-mechanical treatment of the corrections to the dielectric function due to
scattering are simulated by an extension of the Drude theory with a memory-function term. This
phenomenological approach remains valid at frequencies of the order of the Fermi energy, where Drude's

treatment fails. The optical conductivity and changes of the plasma frequency with scattering are discussed.

I. INTRODUCTION

The response of conduction electrons of metals
to external fields is often treated with the Drude
theory, where the scattering is described by a
frequency-independent relaxation time. At high
frequencies this method fails. ' The corrections
to the dielectric function due to scattering have
been evaluated in the Born approximation. " For
low frequencies, principal diagrams of the per-
turbation series were summed. ' This treatment
leads to a frequency-dependent relaxation time in
agreement with the observed optical conductivi-
ty." These results are obtained after a lengthy
calculation, which hides the physical content.
Here an extension of the Drude theory is intro-
duced, which makes use of a memory function and
leads to results similar to those of quantum-me-
chanical calculation.

The Drude theory is based on the classical equa-
tion of motion for particles of charge e and mass
m in an electric field E with frequency (d,

mY+m)~=eEe ~"',

where $0 is the reciprocal-relaxation time. This
leads to a dielectric constant

c((()) =1 —((d~ /(d)'(1 +i)j(L)) ', (2)

where &o2~=4wNe'/m, N being the density of the
carriers. The corresponding result of the quantum
mechanical treatment2 is

~(~) =1 —(~, /~)'1. 1- (~y) +(i~i)/~] '.
The functions y(&o) and ((&o) are obtained from the
pseudopotential V, and the structure factor S(q) of
the scatterers through the expression"

xS(qÃ~(q o)-~(q ~)l

(4)

where e(q, (d) is Lindhard's complex dielectric
function, ' k» (6wN-e'/Ez)'~' is the Thomas-Fermi
screening parameter, and E~ =kz'/2m is the Fer-
mi energy. Units with 1=1 are used.

In the limit &u-0, Eq. (4) becomes

|'(0)=, J dqq) V, )'S(q)

x 11 q+2kz qkz
4 q —2k~ (2k~)2 —q2

((0)=, f 'dqq'))', )'s(q), (6)

and for (d «E~ Eq. (2) can be approximated by

&((d) =1 —((d /(d)'[1 —y(0)+H(0)/(o] '.
This agrees with Drude's result, if we identify

t'(0) =5, (6)

and neglect y(0) compared to ((0)/(d. The sign of
y(0) depends on the function

~
V,

~
'S(q); it is nega-

tive for sodium.
For high frequencies, such that &u z q', /2m,

k~q, /m where q, is the range of
~ V,(', the quantum

result (4) shows that y and $ become frequency
dependent. Therefore, Drude's formula cannot
cover this frequency range with a constant $,.

II. MEMORY FUNCTION

The change of the relaxation frequency with the
frequency of the external field can be incorporated
into Drude's treatment with an additional term

mx+m(~- @0m dt'M t —t' x t' =eEe ' ',
where M(t) plays the role of a memory function,
which is to be chosen in such a way that the quan-
tum result is reproduced. Memory functions are
often introduced into classical equations of mo-
tion to simulate frequency-dependent forces. ' An

approach in which the quantum behavior of a Fer-
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mi gas is described by a memory function has
been proposed by Jindal et a/. ' It is not transpar-
ent, however, how their memory function in the
limit q-0 compares with that of Eqs. (13) or (14)
and (15).

Equation (9) leads to a dielectric function

6 (ld) = 1 —((0& /(d) [1 —'yo M ((d ) + f$ J(d]

This coincides with (3) with the choice

while for a constant
~
V, ~'S(q} the asymptotic be-

havior $(u&) - ur'~' results. The constant asymptotic
value $(~) =(,-yJv, of (16) somehow lies between
these extremes. The quantum expression for
y(~) behaves in these cases as &u

' and &u
' ', re-

spectively. The two functions y(u&) and $(u&)/ar

are connected by the Kramers-Kronig relations.
The optical conductivity c(ar) = (u&/4n) Ime(&o) with

(3), (16), and (17) becomes, for &u» $o and yo«1,

Imy, M((o) = [$,—$(cv)]/u),

Rey, M((u} =y((u) .
(ii)
(12)

(18)

This can be combined to

(i3)

where the terms in the square brackets are given
by (4). The memory function yoM(&u) simply sub-
tracts the Drude term in (10) and adds the quantum
expression.

The detailed form of M depends on
~
V, ~'S(q},

which often may not be available. However, a
general feature of the memory function is that it
decays with a time v, . In view of this, in the ab-
sence of detailed information regarding

~
V, ~'S(q),

we may consider the approximate form

(14)

(15)

where e(t) is the step function and v, ' is of the or-
der of the Fermi energy. An exponential memory
function gives a rather good, although not perfect,
representation of the dynamics, even though it is
in error at the origin (t «T,) The f.orm (14) for
M(t) used in the equation of motion (9) leads for
short times to an additional relaxation term
yama/v„while it becomes negligible for long
times. Equations (11), (12), and (15) imply the
frequency dependences

(16)

(17)

Actually, for a screened Coulomb potential the
expression (4) leads to $(&o)- &u

'~' for ur- ~,

The last term accounts for the discrepancy with
the Drude theory.

For liquid sodium this formula reproduces the
measured values of c(ar) (Refs. 1 and 4) with ra~

= 5.9 eV, i,' =3.12 eV (=Er) using the fitted pa-
rameters (0=0.44 x10" sec '=0.029 eV and yo
=-0.026. The limited range of the measurement
determines r,' only within the interval 3-6 eV.

This paper does not discuss interband transi-
tions. The memory effect already occurs in an
electron gas with scatterers and a homogeneous
positive background. If there are interband ef-
fects in metals, they add on top of the memory
effect.

The dielectric function (3) vanishes at the true
plasma frequency: e(v~) =0. For ((&u~)/~~«1
and y(or~) «1 this leads with (16) and (17) to

It is noteworthy that there is a shift to first order
in yo, while the Drude theory to this approxima-
tion gives no change in the real part of +~. A
shift of more than 1 eV in the plasma frequency as
a function of temperature has indeed been observed
in Ni, ' and has been accounted for by an explicit
calculation of y(&o~) using Eq. (4).'

The'addition of a memory function to the Drude
theory thus extends this phenomenologieal method
into the high-frequency range. It may often be
useful, when the quantum-mechanical calculation
(4) is not feasible because

~
V,

~

' or S(q) are un-
known.
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