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A group-theoretical analysis is presented of the perturbations in the (n +1)-state Potts model,
which arise when the equivalence between the states is broken. In the continuum version of this
model, described by n real fields, all possible quadratic perturbations transform according to two
irreducible representations of the underlying symmetry group, so there are two associated cross-
over exponents. One of these exponents is equal to the order-parameter exponent 8 for any n. In
the limit » — 0 the other exponent ¢ describes crossover between percolation and random Ising
behavior and is also related to an exponent describing the conductivity of a random resistor net-
work close to the percolation threshold. We show that ¢ =1, in this limit, to all orders in pertur-
bation theory. Consequently, there are no new exponents associated with crossover to anisotropic

behaviot for v —0.

I. INTRODUCTION

The Potts! model is a generalization of the Ising
model in which there are » +1 spin states on each lat-
tice site and the energy between a neighboring pair
takes one vilue if the spin states of the pair are the
same and another value if they are different. As n —0
this model describes? the percolation problem, which
may be viewed? as the T =0 limit of a dilute Ising
model where the interaction between neighbors has
value J or 0 at random. Except for » =1, which is the
Ising model, the Potts model has different exponents
from the more commonly studied spin systems even
in mean-field theory which in this case is known to be
valid? for ¢ > 6, whereas the mean-field theory usually
holds for ¢ > 4.

The dilute fsing model at finite temperature may be
described by an m-component spin model® with cubic
symmetry in the limit m» —0 and so has exponents
different from the percolation problem. Temperature
is therefore a relevant perturbation to the 7 =0 dilute
Ising problem which causes a crossover from percola-
tion to random Ising behavior. Recently, Stephen and
Grest® have shown that the exponent characterizing
this crossover is equal to a crossover exponent ¢ for
anisotropy induced in the » —0 Potts model when the
equivalence between the » +1 states is broken. They
show that ¢ =1 up to order €2 where e=6—d. Itis
therefore of interest to discuss in some detail the an-
isotropic Potts model and in this note we classify, by
group-theoretical methods, the types of perturbation
that may be induced. As a byproduct we show that
¢ =1 to all order in perturbation theory.

Additional interest in the anisotropic Potts model
has arisen from a recent renormalization-group treat-
ment’ of the random resistor network. The bulk con-
ductivity ¥ vanishes, as the concentration of conduct-
ing links p approaches the percolation threshold. The
corresponding exponent u is then shown in Ref. 7 to
be related to a crossover exponent describing anisotro-
py in the n —0 Potts model.

II. GROUP-THEORETICAL ANALYSIS

The partition function of the Potts model may be
written®

e
Wi

Z=Sexp —% Ky e (De ] . )
\ L

where the statistical sum runs over the n +1 »-
dimensional vectors ¢* («=1,...n+1, 1=1,...n) on
each site /, which satisfy the relations®

eel=+1)8P—1 , (2a)
etef=n+1)3, | 2b)
n+1

Ser-0 . 20)

a=1

Standard techniques enable one to rewrite (1) as a
continuum model with » real fields ¢, and "Hamiltoni-
an" given by?®
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H= fd"x

lrod? + (V)14 3rxod,u b,

1
+ E(”l)‘/:/kl Tros ) bbb . 3)
where

n+1
d//k = 2 "l"ei"eka ’ (48)

a=1

n+l
d”“= 2 ":ae/a‘)k"elu ) (4b)

a=]
5/.:Al=fi(5u5u+5IA5,I+51/5;A) , (4¢)

and terms of higher order in fields and derivatives are
neglected.

The underlying symmetry of the Potts model arises
from the equivalence of the » +1 states which means
that the indices «, 8, v.... can be permuted amongst
each other without changing the physics. The
corresponding group is therefore the symmetric (or
permutation) group of » +1 objects S, ,,.° It will now
be demonstrated that the ¢, transform like the
representation (n, 1) of this group.

Consider the quantities M* defined by

M"=¢,(',“ , (5)

and the transformed quantities M'“ obtained by a per-
mutation of the states, so

M= MBDF (6)

where D”“ is a permutation matrix with one element
unity in each row and column and the remaining ele-
ments,zero. Through Eq. (5) this transformation on
M induces a transformation on ¢:

b, —d, =6,D, . @)
where
D,=e Def[(n +1) . (8)

The character of the representation x is TrD so

(,,ttﬁ(vﬁl,l/} : )
X=———=TtD—(n+1)"" 3 D¥ .
n+1
. B
TrD is the number of states which are not permuted
(number of one cycles) which is denoted by «, and
3D =n+1,s0

X=a—-1, 9)

which is just the character of the representation (n,1).°
Now the direct product of two irreducible represen-
tations contains the identity representation once if the
representations are the same and not at all if they are
different. It immediately follows that there is only one

quadratic invariant of the ¢’s, which is clearly ¢2. To
investigate the number of third- and fourth-order in-
variants we need to know how the direct product

(n, 1) x (n,1) decomposes into irreducible representa-
tions. The result is’

DxD=+D+n1D)+n~-1,2)+(n—-1.1%)
(10)

where (n +1) is the identity representation ¢2, and by
inspection we deduce that (», 1) corresponds to

d; ¢,¢.. The representation (n —1,1?) is '7;:(" +1)-
fold degenerate and so must correspond to the an-
tisymmetric combination, while (# - 1,2) has degenera-
cy lz(n +1)(n —=2). From (10) it follows that (x, 1)}
contains the identity representation once so there is
just one cubic invariant which must be 4,; defined in
(4a). Since (n,1) x (n,1) contains four irreducible
representations, (»,1)* contains the identity represen-
tation four times and there are four quartic invariants

dl/Al' 8!/81\/' 8/A5/I> 8:I5/k . (1])

Of course only the symmetric tensors d,,, and s, can
appear in Hamiltonian (3). [For n=2, (n—1,2) is not
a standard tableau; there are ony three representations
in the decomposition (10) and d,,, is equivalent to
-‘uu-]

Equation (10) also tells us that all perturbations to
the quadratic term in (3) which destroy the isotropy of
that term, must transform according to the two irredu-
cible representations (»,1) and (n —1,2) of S, , |, so
there are two associated crossover exponents. One of
these will turn out to be the percolation-random Ising
crossover exponent of the Stephen-Grest theory so it
seems appropriate to give a few remarks on their cal-
culation at this stage.

At zero temperature the effective Hamiltonian for the
dilute Ising model is® !0

m
rl=——% EI?,,-[I -TIa +<r,’(r,’7)] (12)
L r=1
in the limit m —0, where o/ =+1. The product in (12)
is zero unless o] = o/, for all + and so (12)
corresponds to a 2" state Potts model where a "state"
denotes a particular configuration of the o7 on a site.
In fact, expanding the product in (12) and compar-
ing with (1) one sees that the values of the 2”7 —1
operators

TLOY o Ty, T Ty, o, Ty, ...,y

in the 2™ states form a representation of the vectors
¢, with all components +1. One can readily verify
that the relations in equation (2) are satisfied. If we
take m =2, for example, the three operators are

ay. oy, and oo, whose values in the four states
ap., ap. ap. () give the vectors (1,1,1),
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(1, -1,-1), (=1,1,=1), (=1, -1,1), which are indeed the
corners of a three-dimensional tetrahedron. In gen-

eral we see that the hypertetrahedron of 2” vertices in
2" —1 dimensions can be neatly embedded in the cube

(+1, +1,..., 1) and a particular representation for this
is

Ty, Ty, Ty T T ooy [T 5 TN [0
with o, =+1 (i=1,..m). In this representation, with

n=2"-1,d, =+Ds, from (2b) and 4 is zero if
any two of the indices are equal.

For T small but nonzero Stephen and Grest® show
that the pair interaction of the Potts model Ke, (/)¢ (1)
is replaced by 3, K, (e, (1), where the K, are no
longer all equal. The equivalence between the Potts
states is broken and in the above representation the
quadratic part of the continuum model is z,r,zb,z. This
necessarily corresponds to a perturbation involving the
representation (n —1,2) because the other possibility
d . ®,¢, has only off diagonal (j # &) terms in this
representation of the ¢ Actually removing the
equivalence between the states in the lattice model
also changes the cubic and higher terms in the contin-
uum version, in a way consistent with the lower sym-
metry, but power counting arguments show that the
quadratic perturbation is the most relevant, at least for
dimensions greater than two.

In their treatment of the random resistor network
Dasgupta er al.” relate this problem to an anisotropic
s" state Potts model in the limits m —0, s —0, where
the limit m —0 is to be taken first. Again the quadrat-
ic part of the continuum model is diagonal and
corresponds to a perturbation of the (n —1,2)
representation.

III. CROSSOVER EXPONENTS

Having completed the group-theoretical part of this
analysis we now show that the crossover exponent for
quadratic perturbations transforming like (n —1,2) is
unity to all orders in perturbation theory for n —0.

Define!'-'? a vertex function l‘gf,,,/ with two external

legs ¢, and ¢,, and an insertion of an operator ¢,¢,.
The structure of the Feynman graphs is shown in Fig.
1. The I''s must be invariant quantities and therefore
be expressible in terms of the four invariant tensors in
Eq. (11). Since the insertion ¢,¢, is symmetric in

i —j, We can write

Fdlo, = Ad s +B (8,8, +8,5,)
+C8,8, . (13)

where A4, B, and C are invariant functions of the exter-
nal momenta, etc.

It is now straightforward to show that in the limit
n — 0 one obtains the same vertex function for inser-

WALLACE AND A. P. YOUNG 17

FIG. 1. Schematic representation of a graph contributing
o l'h,.
/

tions corresponding to the representations
(n+1) (=¢*=3" ¢} and (n —1,2). Fora ¢{
insertion gives the vertex function

MYh=[(n+DA4 +Cl18,+2B8,,8, , (14)
“

using definition (4b) of d,,; and the explicit represen-
tation for the ¢"'s in terms of the o’s. Hence the
eigenoperators are ¢2, with

l“:f=[11(11 +1)A4 +nC +2B1%,, (15a)
and (¢f} = &f — ¢*/n, with
l‘,lz,=28[8“5,|-—(]/n)ﬁ,‘,] . (15b)
i

The factors 8, and [84,8,, —(1/n)8,,] in Eqgs. (15a)
and (15b) give the same tensor structure as the opera-
tor insertions &2 and {¢?), respectively. Dividing out
this tensor part both vertex functions are equal to 2B
in the limit n —0 so the operator ¢{ behaves like ¢°.
Therefore, in terms of reduced temperature'® ¢ the
crossover exponent of {¢?} and hence of all operators
in the (n —1,2) representation is 1 to all orders in
perturbation theory.'* This result arises entirely from
the Potts symmetry and is not tied to an expansion in
e(=6 — d) which would correspond to considering only
the cubic interaction in Eq. (3). Even with the inclu-
sion of quartic and higher terms, which might possibly
be necessary at sufficiently low dimensionality, the
result that ¢ =1 still holds within perturbation theory.
On the basis of numerical calculations Dasgupta er al.’
argue that ¢ # 1 for ¢ < 4. If real this discrepancy
cannot be explained on the grounds that quartic in-
teractions may be needed in the continuum model for
this dimensionality range.

This derivation of the result depends on the choice
of the particular representation of the ¢’s valid only
for n =2"—1. In fact the result can be proved for ar-
bitrary n. The ¢? insertion is always as in (15a) and
since from (13),

dm”r,_‘/\,f,h, = [(”2 - ‘)A + ZB](I,,,H N (]6)

there is always an n-fold degenerate eigenoperator
dp,b.®, (m=1,2,...n) with vertex function
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A(n*—1) +2B. However the sum of all the vertex
functions equals the sum of the diagonal elements

El’gl‘,,l=n[n(n +1)A + C+(n+1)B]

Hence by simple subtraction the remaining
—;-(n +1)(n —2) vertex functions must have the value
2B as in Eq. (15b).

Finally, we discuss crossover induced by the eigeno-
perators d,,;¢,¢; following an argument of Syman-
zik.'> The graphs which contribute are as in Fig. 1 ex-
cept that the insertion now looks exactly like another
three point vertex d,;. Hence order by order in per-
turbation theory we have

1 3
780F§,I',U¢'¢_i=dmk/rm , 17)

where the right-hand side is the usual three-point
function, the two vertex functions being evaluated at
the same external momenta. Thus the scaling
behavior of the operator d,,¢,¢, is determined by the

scaling behavior of ¢ alone. Specifically, if we take
the vertex functions at zero momentum one has'®
[V ~ o= N8 with a single ¢? insertion the exponent
becomes dv — NB—1 and one can show that inserting
an anisotropic quadratic operator characterized by
crossover exponent ¢ the vertex function varies as
tdr=NB -4 Consequently

%801‘:‘/‘;,(,@«0// ro—~rs .
However the left-hand side is just I'?’/T'? ~ 1% so
the crossover exponent is'’ 3.
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