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A droplet model for ferromagnetic spin waves above Tc
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Fisher's droplet model is used to calculate the neutron-scattering cross section 1'or spin waves in

a ferromagnet above T&.. Predictions are made for the wave-vector dependence of cross section,
and a neutron-scattering experiment is proposed to test these predictions.

In order to explain the observation of spin waves
and the apparent persistence of the Stoner splitting of
spin-up and spin-down bands for temperatures above,
as well as belo~, the Curie temperature in nickel' and
iron, ' a picture of short-wavelength magnetic excita-
tions existing in clusters or droplets was invoked. ' Be-
cause the walls of these droplets are almost as thick as
the droplets themselves for a spin rotationally invari-
ant model (i.e. , a low-anisotropy model such as the
itinerant or Heisenberg model) the physical picture
proposed was that of a slowly but continuously varying
magnetization. '4 On the basis of this physical picture,
the polarized-spin neutron-scattering cross section for
spin-wave creation was calculated, and a prediction
was made for the magnetization dependence of the in-

tensity, ' The picture of slowly varying magnetization
was assumed to be valid as long as the average size of
a droplet is large. Computer-simulation studies show'
that large droplets actually persist for temperatures
well above the Curie temperature T&. It is clear that
simply assuming that the average size of a droplet is

of the order of the correlation length is too naive be-
cause in reality we have a disribution of many
different size droplets. Although at T~. the correlation
length diverges, the size of all the droplets does not
diverge. Rather, what diverges is the second moment
of the droplet size distribution function (i.e., the sus-
ceptibility) .

Fisher's droplet model should provide a qualitative-
ly correct picture of the behavior of the distribution of
such droplets as a function of temperature. Although
this model may not be a quantitatively correct picture
of critical phenomena, it is a simple model which may
be a good starting point for describing magnetic exci-
tations near and above T& in ferromagnets.

Let us assume that independent excitations exist in

each droplet and that the wave function of each exci-
tation goes to zero at the wall of the droplet. Of
course, this assumption is quantitatively incorrect
(especially for an isotropic model in which the wall is

almost as thick as the droplet), but it is a simple
boundary condition which will allow us to study quali-
tatively how requiring the excitations of a ferromagnet
to obey boundary conditions at walls of each droplet
aAects the distribution of excitations as a function of
wave vector. Naturally, this picture should be closer
to the truth for enisotropic than isotropic magnets.
Then, let us assume that the frequency and position-
dependent magnetic susceptibility of a ferromagnet
may be written in the droplet picture as

x(r, r', o)) = — O'R d$) p(0)
V

~X&&(r —R, r —R, co)

where X&& is the susceptibility at zero temperature of a
region of volume 0, p(0) is the number of droplets
of volume 0 (the droplet distribution function), and
R is the location of the "center" of the droplet. Sus-
ceptibilities are defined so that the response in the
magnetization to a field at point r

'
is given by

x„(r,r', ~) =
o) —co(k)

i~(F) (kiS (F)i0}

(2)

and a(k) is the spin-wave frequency. The spacing of
allowed wave vectors k is determined by the boundary
conditions. The Fourier transform of X defined in

Eqs. (I) and (2) is given by

%e assume that X&& vanishes unless r and r' are in the
same droplet. %hat we are doing is averaging the sus-
ceptibility for a droplet of volume 0 and center locat-
ed at R over R. The spin-wave contribution to X&&

(for a spin wave confined to a volume 0 with some
boundary conditions on the walls of the droplet) can
be written

I PQr —R) iP' „-(r' —R)
x(q, co) = — d'R dO p(Q) d'r e'""

V tu —cu (k)
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This becomes

X(q. ~) = d Sl p(O) ger(q, k) ' 1

o) —cu(k)

tude. Then, let us consider a cubic droplet. From Eq.
(6), we find that g is given by a product of three func-
tions (one for k, , one for k, , and one for k ) of the
form

where

g„(tt,k) = Jd'r e "'titQr)

{5)

(6)

For a finite droplet, the spin waves are standing
waves and hence P9 r ) is a standing-wave function.
For example, f'or a cubic droplet with the boundary
condition that the wave function vanishes at the dro-
plet wall,

Qt(r) =(l/(l) sink, X sink, Y sink. Z

where

k = (7r/Q~'3)(n„n, , n .,).
The factor ~g„(q,k) ~' is a function which is sharply
peaked around q = k. Since its precise form depends
on the shape of the droplet and all droplet shapes will

occur, we will replace it by some convenient arbitrary
peaked function. Although the width of this function
depends on the droplet shape, the width for all globu-
lar droplet shapes should be the same order of magni-

sin{q,. —k, ) (—,L) sin(q, . + k, ) ( —,
' L)

2 q,. —k,. q,. +k, , (7)

~g(- k) ~'d'k =
(2~)3 (q k)2 + I 2 4~q2

in Eq. (5). We find for the imaginary part of X,

where L is the length of a cubical droplet. This func-
tion is peaked about k = q with a width of the order of
2rr J3/0 ~'. Also, the minimum value of ~k~ allowed

by the boundary conditions on a droplet of volume 0
depends on the droplet shape, but since it should have
the same order of magnitude for all globular droplets,
the value for a cubic droplet rr J3/fl'~' will be used.
Since the spacing of allowed values of k depends on
the droplet shape and since all possible droplet shapes
occur, the distribution of k values gets "smoothed
out, " and therefore, the sum over k in Eq. (5) may be
replaced by an integral. Also, since we do not know
the specific form of g, let us replace it by an arbitrary
function peaked at k = q (for an infinite droplet, ~g ~'

becomes a h function). Then, let us use

ImX(q, o))=, dO p(O) d'k gr)(q, k) 'h{o) —o)(k))
47' q2 {2n)

d'0 p{O)0 dk —
2 2

5{m —Ok )
4mq2 I 2+ (q —k)2

For relatively long-wavelength spin waves co(k) = Ok'.
The integral over k gives

( /D)'"=k ) a„„„=niX/n'~',
f) ) 7r'3"'(D/tn)"'

(»a)

(11b)
Imx(q, (o)- d 0 p(O) 0

X
I 1

~ (10)I'+ [q —(& /D)'"]' 47rq'
p(Sl) = 0 'e "" (12a)

Let us use for the distribution in 0 the distribution
function from Fisher's droplet model

Since the diA'erential neutron scattering cross section
is proportional to q' ImX(q, co), the cross section is

peaked around q = (cu/D)"- in this model, as it should
be. For a cubic droplet, we estimate from Eq. (7) that

where

e=J(r, —n/r, [()/n'), (12b)

l = 2 7r K3/ f)"
and the minimum allowed value of k is given by

Since for any shaped globular droplet k„„„andI
should be of the same form as for a cubic drop, we

will use these values in Eq. (10). Therefore, in the
integration over 0 there is a minimum value of 0 for
each ~ necessitated by the inequalities

where a is a lattice constant, ~ = 2.3 and o- =0.67.
Although Fisher's droplet model has its shortcomings,
it contains what should be a qualitatively correct pic-
ture of the existence of a distribution of fluctuating
clusters whose distribution function favors larger and
larger clusters as T,. is approached. Converting the in-

tegral in Eq. (10) to an integral over I, we get
2ttt

p I 3-, ~2 (rtt jl') 3 &r

q' Im X(q, cu) — d I er2+ (q qO}

(13)
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where qa = (&u/D) ~' and q, = 2m& 38"". ln practice,
because Eq. (12a) is only asymptotically correct for
0 && a', ' Eq. (13) should only be valid for
I/q»qo&q, . A plot of the spectral function given

by Eq. (13) is given in Fig. 1. The total intensity fthe
integral of Eq. (13) over q] is

2'I
Q —( I)
dr I'"'e

0
(i 4)

A plot of intensity versus qa/q, is given in Fig. 2 for

qp & q, . The intensity as a function of qa/q, . is ap-

proximately given by

exp(qa/q, . ) {is)
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FIG. 1. Neutron scattering cross section (in arbitrary un-

its) is plotted for q, ./qQ=1 as a function of q/qQ.

Thus, we see that the spectral density and hence the
neutron scattering intensity becomes small as qQ ap-
proaches q, . from above. On the other hand, it is easy
to show on the basis of Fisher's droplet model that
the reciprocal correlation length goes approximately as
8" """.Thus, we see that although the characteris-
tic wavelength at which the spin-wave neutron
scattering intensity drops off is different from the
correlation length, both lengths approach infinity at
T Tt' ~

Although we do not expect this theory to be quanti-
tatively correct, we expect the following qualitative
results to be correct: There should exist highly
damped spin waves above T,. of wavelength shorier
than a characteristic length which approaches infinity

as T, is approached, with a temperature dependence
different from that of the correlation length. As the
wavelength of the spin waves approaches this charac-
teristic length, the spin-wave scattering intensity
should fall off quite rapidly. This paper also provides
a physical picture of how the existence of a distribu-
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F1G. 2. Logarithm of' the neutron scattering intensity (in

arbitrary units) is plotted as a function of q()/q,

tion of fluctuating clusters or domains above T, affects
the existence of and broadening of short-wavelength
excitations.

Equation (9) has the form of the convolution ot'

some broadening function with the spin-wave spectral
density, very much similar to the broadening function
introduced by Liu and Swanson and by Liu in their
treatments of spin waves above T, .' In fact, if co is set
equal to zero in Liu's broadening function (i.e. the
static limit taken), his results are qualitatively similar
to ours in the sense that we both obtain a spectral
function, which is a convolution of a broadening func-
tion with the zero-temperature spectral function,
whose width increases as the spin-wave frequency in-

creases. In this sense, this paper could be thought of
as a type of microscopic justification of Liu's
phenomenological theory.

The present theory, being a static one, should be
valid as long as the spin-wave frequency is much
greater than the decay rate ot droplets of size greater
than the spin wave q '. The decay time of a droplet
should be larger than the time for a spin (pointed in a
direction opposite to the magnetization of the droplet)
to diffuse from the surface to the center of the dro-
plet. On the basis of diffusion theory, this time is
(O'I ') ' where O' is the diffusion constant, which is

of the order of the spin-wave stiffness D, and / is the
droplet radius. From Eq. (11b), Only droplets with
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I & q
' contribute to the spin-wave neutron scattering,

Since D'q' is the width of the central critical scattering
peak, the criterion appears to be thai the spin-wave
frequency must be greater than the width of the cen-
tral peak at wave vector q. Although the central peak
width is not of the form D'q' for q

' less than the
correlation length according to dynamical scaling, ' the
criterion for validity of the static theory that the spin-
wave frequency be much greater than the central peak
width should still be valid. In EuO and EuS(isotopic
Heisenberg ferromagnets), ' the spin-wave frequency is
always comparable to the central peak width, which is

probably why spin waves are not seen in EuO above
T, as they are in Ni, for which the spin-wave frequen-

cies are much greater than the central peak widths for
0

q &0.1A '. (The spin waves fall within the central
peak. )

Although the droplet model is not refined enough
to predict in which materials spin waves will be seen
above T, , it can give the wave-vector dependence of
the neutron-scattering cross section for materials in

which they are seen.
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