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"fhe thermoelectric power is computed within the spin-fluctuation theory, with including both
the umklapp processes and the possibility of a distorted Fermi surface which are found to be im-

portant. The electrical and thermal resistivities are also computed and the eft'ect of umklapp
processes is much less important there than in the case of the thermopower. An application of the
model to the thermopowers of Pd, Pt, Np, Pu, and UA12 is finally presented.

I. INTRODUCTION

It is now well established that the spin-fluctuation
theory can account for many properties of neptunium
apd plutonium metals or of nearly magnetic actinide
compounds such as UA12, USn3, NpRh3, PuRh&, and
PuA12 ~

' In the spin-Auctuation model used for ac-
tinide systems, the conduction electrons of a broad-
band are scattered by the spin Auctuations formed by
the interacting electrons of a very narrow i band (for
example, the f band of an actinide metal) and the
temperature dependence of the Stoner susceptibility of
the i band is explicitly taken into account because of
its relatively small Fermi energy. ' The electrical resis-
tivity' and the thermal conductivity' have been previ-
ously computed within this model. The electron-
paramagnon electrical resistivity starts as T' at low

temperatures and saturates at high temperatures; the
resistivity may go through a maximum or not at inter-
mediate temperatures, which can well account for the
resistivity of plutonium or neptunium metals and of
some U and Pu compounds. Similarly, the electron-
paramagnon thermal fesistivity, after the low-
temperature-enhanced lineai T behavior, goes through
a maximum around the spin-fluctuation temperature
and then decreases as 1/Tat higher temperatures. A
rough agreement with the experimental thermal con-
ductivity of plutonium has been obtained, but a more
quantitative fit is difficult to perform since the spin-
fluctuation and the phonon contributions are typically
of the same order of magnitude in the case of plutoni-
um.

The third transport property which can be computed
within the spin-fluctuation model is the thermoelectric
power. The Seebeck coeScients of thorium, ' urani-
um, ' neptunium, ' plutonium, and UA12, ' have been
experimentally determined: the Seebeck coefticients
of thorium and uranium are rather small and lying
between -5 and +5@,V/K, while the values of nep-
tunium, plutonium, and UA12 are much larger, as
shown in Fig. 7. The fact that the thermopowers of

Np, Pu, and UA12 are much larger than those of Th
and U is clearly the signature of the presence of spin
Auctuations, exactly as in the case of the electrical and
thermal resistivities. Similarly, as shown in Fig. 6, the
thermopower of exchange-enhanced transition metals,
i.e. , Pd and Pt, are negative and have a large absolute
value at high temperatures. Concerning the thermal
dependence, the thermopowers of Pu and UA12 are
negative at very low temperatures become then posi-
tive and saturate at high temperatures.

The thermopower is computed here within the same
spin-Auctuation model, but, if we anticipate the
results, we can say that the thermopower is always
negative and almost linear in temperature within the
previously developed model, which takes into account
only normal processes. On the other hand, it is well

known that the umklapp processes play a very impor-
tant role in the thermopower due to phonons, in con-
trast to the case of the electrical and thermal resistivi-
ties.

So, the purpose of the present paper is to compute
the transport properties within the same spin-
fluctuation model involving two parabolic bands, but
with now including the umklapp processes and a possi-
ble distortion of the Fermi surface with respect to the
case of a sphere. Thus, we will firstly derive the ther-
moelectric power where large effects due to the umk-

lapp processes are expected and then we will compute
the relatively weaker effect of umklapp processes on
the electrical and thermal resistivities,

II. SPIN-FLUCTUATION MODEL FOR
UMKLAPP PROCESSES

A. General points of the model

Before discussing the particularities introduced by
the consideration of the umklapp processes in the
scattering of an electron by a paramagnon, let us recall
the main assumptions and notations of the model, '

%'e use the classical paramagnon model'. The con-
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duction electrons (labeled by the index c) of a broad-
band are scattered by large spin fluctuations formed by
the strongly interacting electrons (labeled by the index
i) of another very narrow band. The Fermi tempera-
ture TF of the conduction band is assumed to be

C

much larger than all the usual temperatures„but the
Fermi temperature T~ of the interacting i band can be

I

within the usual temperature range.
The c and i bands are assumed to be parabolic and

we will use the following notations: v is the number
of atoms per unit volume, while
kF =(3rr n ), W, (eF ) -m 'kF /rr'v, m 'and n

(with a equal to c or i) are, respectively, the Fermi
momentum at T =0, the density of states per atom at
the Fermi level, the effective mass, and the number
of u electrons per unit volume. l is the coupling con-
stant between electrons of the two bands. Finally, we
make 0'= k& = I in the calculations.

The spin-fluctuation spectrum ImX(q, co, T) is the
imaginary part of the dynamical paramagnetic suscepti-
bility of the interacting i electrons given by the
random-phase approximation (RPA):

x(q, &o. T) = x'(q. ru, T) /[1 —IX'(q. &u, T) ]

X (q, cv, T) is the i susceptibility without the interaction
I'

f (~-„,T) —f (e-„,-„.T)
x'(q, cu, T) =

k+q k
——E' —QJ

The approach to magnetism is quantitatively described
by the Stoner enhancement factor:

S =1/[1 —Ixo(0, 0, 0)] =1/(1 —I),
which diverges at the ferromagnetic instability

IX (0, 0, 0) = —IN, (~p) =I =1

In the spin-fluctuation model, we have taken into
account the full T dependence of the Fermi distribu-
tion f(~-k, T), by keeping constant the total number of
i electrons:

K =k'-k =q+G (5)

connecting the incoming and outcoming electron wave
vectors k and k' to the paramagnon wave vector q and
to the reciprocal-lattice vector G. If K lies inside the
first Brillouin zone, the scattering process is "normal, "

which corresponds to G =0 in the relation (5). On
the contrary, if K lies outside the first Brillouin zone,
we need a nonzero G value in order to check the rela-
tion (5) and the process is called an "umklapp" one (U
process). The geometry of an umklapp process is

given in Fig. I for a simple-cubic case.
There is presently no calculation including the um-

klapp processes in the electron-pararnagnon scattering,
except a very brief attempt by Kaiser' to describe the
thermopower of nearly magnetic alloys. However,
there are similar calculations for the thermoelectric
power due to phonons by Ziman' and Rosier, " and
we will use here some of their approximations. Zi-
man' has used the rough approximation of changing
the discrete summation over G into an angular in-

tegration which gives then an integration over q and
he has taken the maximum q value q,. „equal to the
radius of the Debye sphere in the Debye model; the
approach of Ziman is reasonable in the case of pho-
nons because the Debye radius is in fact a natural
cutoff'. On the other hand, Rosier" has restricted the
K integration for an umklapp process to values outside
the first Brillouin zone and inside the sphere of radius
2k~, but he has taken the pseudopotential form fac-

tor of phonons constant and equal to its value at 2k~ .
C

So, for the scattering by paramagnons, we will use
the following approximations:

(i) We retain only the. normal processes (6 =0) and
the Umklapp processes corresponding to the smallest
nonzero G value; there are consequently Z-equivalent
reciprocal-lattice vectors, where Z is the coordination

mohan the dimension of the Brillouin zone. But, in the
scattering process of the electrons by paramagnons, we

have in general the relation

(e-„,T) = n, /2v (4)

So, for a given i band, the shift of the Fermi level
may be computed implicitly and, assuming I to be
constant, the thermal variation of the spin-fluctuation
spectrum is deduced and then the electrical' and ther-
mal3 tesistivity curves are derived in the case of nor-
mal processes.

8. Approximations used for the treatment of the

umklapp processes

The preceding calculations of the electrical' and
thermal resistivities are valid only if the radius kF of

C

the conduction-electron Fermi sphere is much smaller
FIG. 1. Geometry of an umklapp process for a simple

cubic lattice.
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number. However, in the case of small G/2kF
t

values, the sphere of radius 2k' cuts the third
t'

Brillouin-zone boundaries and, in principle, we should

be obliged to deal with the two different smallest G
values; so this effect is neglected here, but it certainly
does not modify deeply the physical results.

(ii) In the case of an U process, .we will use the Zi-

man approximatioe of changing the discrete summa-
tion over G into an angular integration which gives
then an integration over q. This approximation will be
explained in detail in Sec. III.

(iii) To compute the transport properties, we need
to integrate over both K and q. For a normal process,
we integrate over K = q from 0 to the maximum q
value q,. „. For an U process, we simplify the calcula-
tions by making a spherical integration over both q
and K. We firstly integrate over K and for a given

~ q~

value, the possible ~K~ values lie between G—q and
2kF . Then, the integration over q is performed from

t'

q,„ to q „. „and the minimum q, „value of q is ob-
tained for K =2k~ and q parallel to G, so that we

C

have q;„=G —2k
t'

(iv) The determination of the maximum q value

q „, „ is more delicate and depends on the approxima-
tions of the model. There is no natural value for q,. „
as in the Debye model for phonons. So, we will ap-
proximate the first Brillouin zone by a sphere of ra-

dius q,„-—,G, so that the domain for the K integra-

tion, which corresponds to the shaded area of Fig. I,
lies inside both the sphere of radius 2k' and the

t'

sphere translated by G and of radius —,G. This ap-

proximation depends obviously on the crystallographic
structure and it is in fact a better approximation for a

larger coordination number Z of the reciprocal lattice.
This approximation gives probably an underestimation
of the electrical and thermal resistivities as will be dis-

cussed in Sec. IV, but we have checked in this paper
that increasing slightly q „. „does not modify really the
thermal dependence of the transport properties. So,
since the crystallographic structure is generally com-
plex in actinide metals and compounds, as, for exam-

ple, the monoclinic structure of o.-Pu and since the
band structure is also complicated, the purpose of the
present paper is to take a simplified model in order to
make possible the study of the umklapp processes in

the electron-paramagnon scattering. Thus, in the fol-
1owing, we will perform the calculations for a simple-
cubic case (Z 6) with q,„=—, G and for two para-

bolic c and i bands.
(v) Finally, the proposed limits on q only refer to

one of the reciprocal-lattice points and for q to lie in a

sphere surrounding it. Indeed, we must multiply by

the coordination number Z to obtain the full average
over a11 orientations of k and k' in the calculations of
the transport properties.

Finally, we do not make any approximation on the
spin-fluctuation spectrum and we keep the full

q, cu, and Tdependence of ImX(q, cu, T), which is a
very important point for paramagnons and which is

obviously better than the constant value of the form
factor used for phonons by Rosier. "

In Sec. III, we will compute the spin-fluctuation
contribution to the thermopower and we will neglect
both the phonon contribution and the eff'ects of pho-
non or "paramagnon drag. " It is certainly justified to
neglect the phonon contribution, since in the case of
the thermopower we add the quantities pQ, and both
the resistivity p and the thermopower Q are much
smaller for phonons than for paramagnons, as shown
by the rapid increase of p and Q from Th. and U to
Np, U, and UA12. On the other hand, the eff'ect of
"paramagnon-drag" has not really been computed and
has been discussed only qualitatively by Kaiser. ' The
effects of phonon and paramagnon drag will be men-
tioned in Sec. V when comparing the theoretical
results to experiments.

Q = , rr'(ks/e—) (T/TF )x (6)

~here k~ and e are, respectively, the Boltzmann con-
stant and the negative electron charge; x is given by

~2T2 P)) P
x =xp 1+

3

The quantity xp depends on the shape of the
conduction-electron Fermi surface and is defined for
paramagnons as for phonons. ' The present calculation
of the thermoelectric power is performed for a spheri-
cal Fermi surface of conduction electrons, so that xp is

3
equal to —, Indeed, the conduction-electron Fermi

surface of nearly magnetic actinide systems is different
from a sphere and consequently xp must be smaller

3 3
than —, because xp, which is equal to —, for a spherical

Fermi surface of electrons, has a smaller value for a
distorted Fermi surface, becomes negative if the holes
are the most numerous carriers, and reaches finally

the value ——, if the Fermi surface is only a sphere of3

holes inside the first Brillouin zone. In fact, xp can be
in principle computed as a function of the ratio
G/2kF and the relation between xo and G/2kF

c

depends on both the geometry of the Brillouin zone
and the band structure of conduction electrons, but
this calculation yields really inextricate calculations
and does not seem necessary here since we have not
used realistic crystallographic and band structures for
actinide systems. So, we will perform the calculation

I II. TH ERMOELECTR IC POWER

A. Theoretical calculation

According to Ziman, " the spin-fluctuation contribu-
tion to the thermoelectric power can be written
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of the thermopower by assuming a spherical Fermi
3

surface and consequently xp -—, and, only at the end

of the calculation, we will consider x«and G/2k/ as
C

independent parameters and present some results for
different xp values, in order to describe tentatively an

effect due to a distortion of the conduction-electron
Fermi surface.

The method used by Ziman to derive the expression
(7) is a variational one and the P„ functions are then
given by

XXxxf(&g)[1 f(ej)])i /r
'

/r 5$ g ~8(eg —eg — }c«A„dc«
1 ImX(k' —k, ~, T)

G k k' q

(s)

A ]] = (k' u —k u) (k' u —k u) (9a)

A 7) [(ej &/ )k'u (E& —eF }k'U]

x [(E'~ eF )k'. u —(e-„—ez }k u]
C

(9b)

where the sum over 6 includes both G =0 (N
processes) and the smallest nonzero 6 values (U
processes). As usual, T and eo stand, respectively, for
kaTand tao and the A„coeScients are given by

A„.-(k' u —k u)[(e- —eF )k' u —(e-—eF )k u], (9c)k' k

~here u is an unit vector in the direction of the elec-
tric fiel.

The electrical and thermal resistivities are propor-
tional to, respectively, P[] and P22 as will be explained
in Sec. IV, while the thermopower involves a ~ew
function P2~. If we call e the energy e-„=k'/2m, . ' and

if we introduce the vector K given by (5},we obtain
immediately

A[] K p

2 (10a)

A22- —[c«'k'+(e &F)(e+c«er)K +2m; cal (~+ c«eF)]
3 C C C

A)t- —, (—,K'[2(e eF ) +c«]+m, 'c«'[
C

{10b)

(ioc)

Performing the integration over k' by use of the Kronecker symbol of (g) and changing the variable q to K =q+6,
give

P, = —Xxxf(e-)[I —f(e--)] ' ' hie-- —e-—c«)A, dc« .1 Imx(K. , ~, T)T--- 4+K
( ~/r I) (I —~/r) k+K k

G k K

Eliminating the 5 function and transforming the summations over k and K into integrals give then

P„—/dc«k dk tK dK 8 2k —K+ '
ImX(K, c«, T)A„

K (e"/r —1)(1—e "/ )

where 8(k) is the Heaviside function.
Making the transformation,

&~Op + Tx

cd= Tp (14)

/

x„(KdK fd*« ck —K+
c

x [f(x) f(x +y)]1m X(K, Ty, T—)

leaves A [] given by (10a) unchanged and transforms
A22 and A&2 into

At& —, T'[y'k'+x(x +y) K'+2m„'Ty'(x +y)]
(15a)

(17a)

with

8(x) is the Heaviside function. As usual, we define
the integrals

l„(y) = fx"(f(x) f(x+y)]dx—

Act 3 T[t Kt(2x+y)+m, Tyt]

Thus, P„becomes

(15b) l«(y) -y, 1,(y) ——y, I2(y) -—'y(y +w ) . (17b)

Following Rosier, " we expand the different func-
tions for a k value near the Fermi value k~, in partic-

C
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ular, we can write
t

0 2k —K+
K

1

—0(2kF —K) +2m, . 'T +~ 5(2k'- —K)
t' kF K

c

m, 'T'
P22 = —

'
kF4

3 ('

(20)

(18)

Then, we calculate the P„ functions by taking into
account the lowest-order term in T in the expression
{18)and by changing the summation over the smallest
6 values into an integral. %'e separate out the sum
on 6 into N and U processes; for G = 0, the vector K
is equal to q and the expression (16) involves an in-
tegral over only y and K, For umklapp processes, the
problem is more delicate and, as announced in Sec.
II B, we will follow an approximate argument of Zi-
man' to perform the sum on G and the integral over
K. Ziman considers that it is possible to change the
discrete sum on G into an integration over the angle
made by 6 with a fixed direction, which represents
certainly a very rough approximation. If we call itI) the
angle between the vectors G and K, we write

q2 = G + K2 —2GK cosy

So, using the approximation of Ziman, we change
the sum on 6 into an integration on P with keeping 6
and K fixed and finally the integration on P is changed
to an integration on q, with the element of integration
sin P d P - q dq /GK.

As previously explained in Sec. II B, we use the lim-
its of integration for K and q and we multiply the
result by the coordination number Z; so, the expres-
sion (16) involves an integral over y, K, and q for U
processes.

So, P~~ and P22 become

- y'A, (yT) + —~'yA 3(yT) ——'y'A 3(y T)
Xfdy0 (e' —1) (1 —e=')

(21)

where the function A„(cu} are the sums of a contribu-
tion A;,'(eo) from normal processes and a contribution
A, ", '(ao) from umklapp processes, i.e.:

A„( )=A;;( )+A,", ( ), (22)

and for G &0

A, ", {o))= Z
G(k, ) "

C;/2 2I«

6 —2/ . ~ . K" 'Imp(K, a), T) dK
('

(24)

If similarly we retain only the lowest-order terms of
(18), P~2 is strictly equal to zero since the integral
over q is proportional to 2I~(y) +ylo(y) which is zero
according to (17b). So we need to evaluate P&2 to an
higher-order term in T, i.e., to consider the second
term of (18). So, P~2 can be written

where we have for G =0
(j'/2

A;,'(o)) = „q"ImX(q, (o, T) dq; {23)
(k )rt + I

t

m, "T' " y'Io(y) dy
K dK O(2kF —K) lmX(K, Ty, T)

3 o (e. 1) (1 —e -") t'+, K' dK ImX(K, Ty, T) 5(2k~ —K)(e~-1)(1-e-~) ~C

X
212(y) 2yit(y) yii(y)+ + +

k~ K kg- K (25)

The first term of (25) can be evaluated approximately by the method previously used for computing P~~ and P22.
The second term of (25) can be calculated exactly because of the presence of the 5-function and its value is in-

dependent of the nature of the scattering processes, because K can always be equal to 2kF either by N processes
C

(when the sphere of radius 2kF is inside the first Brillouin zone) or by U processes (when the sphere of radius 2k~
t' t'

is outside the first Brillouin zone).
So, finally the expression (25) becomes
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t

P)2= , —(m, 'kF T)' J~" + — ImX(2kF, Ty, T)dy
C (e —1)(1 —e=") 3 P (e-"—1) (1 —e=') C

(26)

So, by use of the expressions (22) —(24), x given by (7} becomes equal to

X = Xp+ A/P

~here

(27)

a '

[ rr—xpyA3(Ty) — yA, -(Ty) ——y(y'+4m )2I mx(2k FTy, T)],'' (e"—1)(1—e ') C
(28)

P = [y'A l(Ty} + —m yA3(Ty) y A3{r}j.
(e -1)(1-e-) (29)

The thermoelectric power is finally given by (6) us-

ing (27)—(29).

B. Theoretical results

The theoretical results for the thermopower Q are
presented versus the reduced temperature T/TF for

I

several parameters: the exchange-enhancement factor
S, g = kF /kF, X = G/2kF, and xp. Indeed, as previ-

C I C

ously explained, a variation of xp is not consistent
with the whole calculation which is performed for a
spherical Fermi surface, however it gives certainly a
good description of the variation of the thermopower
with the distortion of the Fermi surface. %'e may
vary the parameter A. from 1 to 2, because for X ~2
the sphere of radius 2k+ is inside the first Brillouin

C

zone and for A. ~1 the Fermi surface cannot be really
described by a sphere.

Figures 2 and 3 give the main theoretical results of
QTF /TF vs T/TF for S =10, Z -6 (case of a

simple-cubic structure), and several .(, X, and xp
values. Figure 2 gives the results for a spherical Fer-
mi surface (xp = —,) and Fig, 3 gives the results for

several xo values in the case A. =1, for which the Fer-
mi surface is certainly distorted from a sphere.

I.et us firstly summarize the results for the case of
normal processes only, with a spherical Fermi surface:

(i} The value of x is always positive and does not
depend very much on temperature, so that Q is always
negative and almost linear with temperature.

(ii) The main effect on the thermopower comes
from the crystallographic and band structures through
(, A, , and xp, rather than directly from the enchange-
enhancement factor S; this effect was already present
at a minor degree in the case of the resistivity. In the
present case, S appears equally in the numerator u
and the denominator P of (27), so that the thermo-
power is almost completely independent of S. The

0.5

1.6
1.4

1.2

1.8
1

Q.TF /TF
(FV/K )

Qk

300 X =0.5

f,
-/'

l00

Q. TFJTF,q

( IJV/K)

2 18

1.4

1.6
1.2

-l00-

F1G. 2. Theoretical plots of QTq /Tq vs T/Tz, where Q,
C I

Tz, and Tz are, respectively, the thermoelectric power, and
C I

the c and i Fermi energies. The curves are drawn for several

g-k~/k+ and A, G/2k& values and for S 10, Z 6, and
C I C

3
Zp 2'

FIG. 3. Theoretical plots of QT~ /TF vs T/Tz, where Q,
C I

T+, and TF are, respectively, the thermoelectric power, and
C I

the c and i Fermi energies. The curves are dragon for several

k&/kF and xp values and for S 10, Z 6, and X 1.
C I
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same effect is observed for the Lorenz number-' where
S appears equally in the electrical and thermal resis-
tivities, leading to an almost S-independent Lorenz
number. So, in the case of nearly magnetic actinide
systems, the spin fluctuations do not contribute really
to the thermal dependence of the thermopower, while

they are important for the resistivity; however, a large
contribution to the thermopower is obtained because
T& is taken as relatively small as for the electrical and

I

thermal resistivities.
(iii) The thermopower does not vary very much

with (, as it can be easily seen on Fig. 2 for g =1 and

(=0.5.
(iv) If we take a ratio TF /TF of order 20, the abso-

(' I

lute value [Q [ reaches at T = TF a large value of ord-
I

er 20 p,V/K.
The introduction of both the umklapp processes and

the distortion of the conduction-electron Fermi sur-
face yields important modifications of the thermo-
power, while, as we will see in Sec. IV, the electrical
and thermal resistivities are not really modified by the
introduction of U processes.

As previously done for the electrical and thermal
resistivities, "we have computed here the high-
temperature expansion of x by use of relations on
X(q, o, T) and we have sho~n that x tends at high
temperatures to a constant x given by

x„=2x„—2/[ —,', It'+ Z(1+ —,', k' ——,
'

It —2/5k)] . (30)

So, the asymptotic value x„depends on the crystal-
lographic and band structure by Z, X, and xo. For
A. =2 (N processes), x„ is equal to 2(xo —1), i.e., 1

3
for xo = —, x„decreases when A, decreases from 2,
then goes to a negative rninimurn value for A. of order
1.5 and increases finally to reach, for A. =1, a x value
smaller than the x value obtained for X =2.

The main results of the total therrnopower due to
both N and U processes can be summarized as fol
lows:

(i) First, there is a drastic effect of the U-processes
for xo= —,. We see in Fig. 2 that the thermopower,

although remaining always negative, has a clear posi-
tive curvature when k differs from 2 and even goes
through a minimum when A. is close to 1.5.

(ii) Second, there is also a drastic effect of a distor-
tion of the conduction-electron Fermi surface. The
results are plotted in Fig. 3 for several xo values and
for A =1, because, when A. is close to 1, the Fermi
surface is certainly distorted from a sphere. We see in

Fig. 3 that, for xo = —,, we obtain a curve changing

sign with temperature or even a curve which is always
positive. Moreover, if a negative xo value had been
chosen, we would have found a very large and posi-
tive thermopower. However, the curvature of the
different curves is always positive and we cannot ob-

IV. ELECTRICAL AND THERMAL RESISTIVITIES

A. Theoretical calculations

We have shown in Sec. III that the umklapp
processes play an important role in the thermopower
and we will study here their role in the electrical and
thermal resistivities.

The electrical and thermal resistivities are, respec-
tively, connected to P]] and P22 by the following rela-
tions:

p/po ——(9n, /2m, 'kF4 v) P, , (31)

27n,
P22,

po/LoTF 2rr'm, 'kF4 t T'. (32)

~here

m( Tp

Po = [ 'JN, (eF)]'—
4 ' ne' (33a)

2 kB2
Lo= (33b)

so that we can write

p()
" o)A 3(cv) d cu

T o (e —l)(1 —e
(34)

tain at present a positive and saturating thermopower.
(iii) We observe that the thermopower curves for A.

different from 2 are closer to the A. =2 curve at low

temperatures than at high temperatures, indicating
that the U processes are more efticient at high tem-
peratures, as expected.

(iv) The thermopower is almost completely in-

dependent of the exchange-enhancement factor as dis-
cussed in the case of N processes only, so that all the
curves have been drawn for S =10.

(v) The thermopower does not vary very much with

g, although the variation with g is much more impor-
tant for U processes than for N processes. Moreover,
according to (30), the high-temperature slope of the Q
vs T curves is independent of (, as it can be seen in

Fig. 3 ~

(vi) If we take a ratio TF /TF of order 20, we obtain
( I

values of Q ranging at T = TI between —20 to +20
I

p,V/K, according to the different parameters of Figs. 2

and 3. Thus the Q values are relatively large at
T = T& and if we take relatively small Tl.- values, as

I I

generally done in the case of nearly magnetic ac-
tinides, "we obtain large thermopower values.
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pu cuT'A 3(cu) + (3/m') cu'A ) {cu) —(1/2m') cu'A, {cu)8'= de .(e-~r-1) (1 e—=~') (35)

B. Theoretical results

Figures 4 and 5 give typical plots of the electrical
and thermal resistivities versus T/TF for a spherical

I

Fermi surface, S = 10, Z = 6 and for several values of
L=G/2k~ and g kF/kr.

The high-temperature behavior of the electrical
resistivity p has been a)so determined and is equal to

p —~i [1+—(l ——g ) Tp-/T),
I

(36)

where

p „=p [—„)I, + Z (1 + —„)c ——X —2/5 h)], (37)

p„= 2rr ppn, /v (38)

The main results of the electrical resistivity calcula-
tion can be summarized as follows:

(i) The general form of the electrical resistivity
curves is exactly the same here as in the previous cal-
culation which does not consider the U processes, ' the
only differenc being the asymptotic value of the resis-
tivity at high temperatures. In particular, there is the
same dependence of p on the two parameters S and g
and the conditions for the existence of a maximum
are not modified by the introduction of the U
processes, as it can be easily seen in formula (36).
So, the effect of U processes is not physically impor- W= W' Ti/T (39)

tant for the resistivity and all the conclusions of the
previous paper' on the resistivity remain valid.

(ii) The resistivity is smaller for A. different from 2
than for A, =2. When, for a fixed k~- value, A. or G

t

decrease, small regions outside the first Brillouin
zone, such as the shadded area sho~n on Fig. l, are
created for the q integration and the resistivity de-
creases for the two following reasons: first, we change

1the q integration involving large q values from —, G to
2k~- to another q integration involving smaller qt'

1values from G --2k~ to —, G; second, we neglect small
t'

portions for the q integration, namely, the regions in-
side the sphere of radius 2k~ and outside the regions

('

equivalent to the shadded area of Fig. 1. So, the
effect resulting from the approximation of taking

q „. „=—, G is hidden by the first effect and we see here
I

1

that the choice of q„,„. „=—, G is not so crucial.

(iii) The contribution of the U processes increases
with temperature for a given A. value. In particular,
the low-temperature resistivity T' law is due practical-
ly only to W processes, while the U processes become
important at higher temperatures.

Similarly, the high-temperature behavior of the
thermal resistivity N has been computed and is given
by

w/w„

1.5 .
6.

h= 2
c= i.e't

~(=05
h=)g
h ~ 16)

4..

.5"
h= l lp

0.5 0.5 T/TF

I L

FIG. 4. Theoretical plots of p/p vs T/T~ where p, p
I

and T& are, respectively, the electrical resistivity, its high-
I

temperature limit, and the i Fermi energy. The curves are

drawn for several (=kz /kz and A, = G/2k+ values and for
t' l t'

S =10, Z =6.

FIG. 5. Theoretical plots of 8'/8' vs T/Tz, where 8',
t

, and Tz are, respectively, the thermal resistivity, the
I

coe%cient of its high-temperature T ' law, and the i Fermi

energy. The curves are dragon for several g = kF /kF and
I

G/2k+ values and for S = 10, Z =6.
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where

& ' = p 'lLoTi (40)

The main results of the thermal resistivity curves
are exactly the same here as in the previous calcula-
tion wh'ich does not consider the U processes, the
only difference being the coeScient W ' of the
asymptotic 1/T laN at high temperatures. The depen-
dence on S and ( is the same as previously' and in

particular the temperature of the maximum does not
vary with the value of P. The thermal resistivity is
smaller for X different from 2 than for A, = 2, for the
same reasons as for the electrical resistivity.
The contribution of the U processes increases with
temperature, as for the electrical resistivity.

Thus, the conclusions of the previous papers on the
electrical' and thermal' resistivities are not modified
by the introduction of the U processes, in contrast to
the case of the thermoelectric power.

V. COMPARISON %ITH EXPERIMENTS AND

CONCLUDING REMARKS

%e will compare now the preceding theoretical
results to the experimental transport properties of
nearly magnetic metals. Since it is difficult to compute
the different parameters A. and xo for the diAerent
nearly magnetic systems, we will present here only a

qualitative comparison with experiment in the only
case of the thermoelectric power. Concerning the
electrical and thermal resistivities, it is clear from Sec.
IV that the introduction of the umklapp processes
does not modify the main results and all the conclu-
sions of the previous papers' ' remain unchanged. In
particular, the electrical resistivities of Np and Pu me-
tals or of many uranium and plutonium compounds, '

as well as the thermal resistivities of Pu' or UA12' can
be accounted for by the spin-fluctuation theory and
the introduction of the umklapp processes changes
only slightly the parameters used for the different fits
without modifying really the physical results.

The only available data for the thermoelectric power
of nearly magnetic systems concern Pt, "Pd, "Np, '
Pu, ' and UA12. ' The thermoelectric power of plati-
num and palladium is negative except at low tempera-
tures and reaches values of order —30 or —40 p.~/K
at very high temperatures, as shown on Fig. 6. In the
case of nearly magnetic transition metals, the broad-
band c is the s band and the narrow band i is the d
band. Thus, the experimental curves of Fig. 6 could
be accounted for by the curves of Fig. 2 obtained for
xo= —, , S =10, A. close to 1 or 2, /=1, T& of order3

1500—2000 K and T~/T~ of order 10, i.e., T~ and T~

Q(ILV/K )

10

$000
I

2000
I

-10

-3O ia

"IO

FIG. 6. Experimental plots of the thermoelectric powers of
Pt and Pd vs temperature.

ot order, respectively, 0.15—0.2 and 1.5 —2 eV. Let us
remark that the values of S, (, and TI. are the same!
as those used previously to fit the resistivity of palladi-
um. ' Moreover, the value of TI, which is much

I

larger for palladium than for actinide systems, is cer-
tainly reasonable here, since the distance between the
Fermi energy and the top of the d band is small be-
cause there is only 0.5 hole in the d band of Pd; how-

ever, the d band of Pd is certainly far from a parabolic
band. We can also remark that

~ Q ~
is large at high

temperatures, which agrees with the large theoretical
values that we can obtain in the spin-fluctuation
model. Finally, the positive peaks observed at low

temperatures could be attributed to an effect either of
"paramagnon-drag"' or of "phonon-drag". "

Figure 7 shows the experimental curves for the
thermoelectric power of neptunium, -' plutonium, " and
UAl;. ' The thermopower of Pu and UA12 is negative
at low temperatures, changes sign at roughly 30—40 K

and shows a clear tendency to saturation at high tem-
peratures. To compare these results to theory, we
consider that the i band of these nearly magnetic ac-
tinide systems is the very narrow 5 f' band, that the c
band is formed by the 7s and 6d bands and that the
d- f hybridization is neglected here. The experimental
thermopower of Pu and UA1~ cannot be fitted by the
curves of Figs. 2 and 3, since we have never found a

positive thermopower saturating at high temperatures.
However, we can qualitatively account for the curves
of Fig. 7 by the theoretical curves of Fig. 3 with xo

3
smaller than —,, indicating, as expected, that the

conduction-electron Fermi surface of Pu and UA12 is

certainly different from a sphert'. . The thermoelectric
power of plutonium can be reasonably compared to
the curve x0=0.5, (=I, and S =10 of Fig. 3 with TI

I
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ao UAI,

Pu

FIG. 7. Experimental plots of the thermoelectric powers

of Np, Pu, and UA12 vs temperature.

of order 300 K and TF /Tr of order 20, but the

theoretical curve is linear instead of presenting a sa-
turation at high temperatures. A similar comparison
can be done for UA1~. However, the negative values
of the thermopower observt;d at low temperatures, in

particular the negative peak of UA12, are perhaps due
to another phenomenon such as the phonon or the
paramagnon drag. The thermopower of neptunium is
more dificult to be accounted for by the theoretical
Figs. 2 and 3. A value for TF of 750 K had been pre-

viously used to fit the resistivity of neptunium' and
we need to know the thermopower of Np above 300 K
before comparing reasonably the data to theory. How-
ever, a possible explanation could be that the negative
value of Q above 250 K would correspond to a curve
of Fig. 2 and that the positive broad maximum below
250 K would be due to another phenomenon such as
the paramagnon drag. So, we have much less suc-
ceeded in fitting the thermopowers of nearly magnetic
metals than previously their electrical resistivities;
however, the general shape and the order of magni-
tude seem to indicate that the thermopowers of Pd,
Pt, Np, Pu, and UA12 are essentially due to spin fluc-
tuations.

But it is clear that the present calculation, which is
at our knowledge the first detailed one of the spin-
fluctuation contribution to the thermopower, must be
considered as a first calculation which must be im-

proved, because this approach considers two parabolic
c and i bands, treats approximately the umklapp

processes and neglects both the phonon contribution
and the phonon- or paramagnon-drag effects. Howev-

er, this calculation is theoretically better than previous
calculations on the phonon thermopower" since we

take into account here the full q, cv, and T dependence
of 3({q, QJ, T).

The preceding calculation must be improved, in par-
ticular to obtain a x value passing through a negative
minimum and increasing then rapidly with tempera-
ture, in order to account for the tendency to satura-
tion observed in Pu and UA12 at high temperatures.
We can propose at least three possible improvements:
first, it would be necessary to have a better description
of the umklapp processes and in particular to not use
the Ziman approximation; an exact numerical calcula-
tion although very long and tedious, is in principle
possible to describe correctly the geometry of Fig. 1.
The second possible improvement would be to have a
better description of the c- and i-band structure; the
first step would be to compute xo as a function of A.

for a given geometry of the Brillouin zone and for a
given model for the conduction electrons and then the
next step should use more realistic band calculations.
The third improvement would be to compute the
paramagnon-drag effects which are certainly important
at low temperatures. All these improvements would
probably yield a positive thermopower saturating at
high temperatures as in Pu and UA12. The second im-

provement of considering more realistic band struc-
tures is very important and in fact more important
here than in the previous calculations of the electrical
and thermal resistivities, because the thermopower is
very sensitive on the details of the Fermi surface and
less dependent on the exchange enhancement factor
of the magnetic susceptibility.

At last, in spite of the approximations of the model,
both the general form and the order of magnitude of
the thermopowers of nearly magnetic metals can be
described by the spin-fluctuation model with including
the umklapp processes and a distortion of the
conduction-electron Fermi surface.
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